1
|
MARTINO GIOVANNI, VALLI GIACOMO, SARTO FABIO, FRANCHI MARTINOV, NARICI MARCOV, DE VITO GIUSEPPE. Neuromodulatory Contribution to Muscle Force Production after Short-Term Unloading and Active Recovery. Med Sci Sports Exerc 2024; 56:1830-1839. [PMID: 38689447 PMCID: PMC11463074 DOI: 10.1249/mss.0000000000003473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
PURPOSE Prior evidence has shown that neural factors contribute to the loss of muscle force after skeletal muscle disuse. However, little is known about the specific neural mechanisms altered by disuse. Persistent inward current (PIC) is an intrinsic property of motoneurons responsible for prolonging and amplifying the synaptic input, proportionally to the level of neuromodulation, thus influencing motoneuron discharge rate and force production. Here, we hypothesized that short-term unilateral lower limb suspension (ULLS) would reduce the neuromodulatory input associated with PIC, contributing to the reduction of force generation capacity. In addition, we tested whether physical exercise would restore the force generation capacity by reestablishing the initial level of neuromodulatory input. METHODS In 12 young adults, we assessed maximal voluntary contraction pre- and post-10 d of ULLS and after 21 d of active recovery (AR) based on resistance exercise. PIC was estimated from high-density surface electromyograms of the vastus lateralis muscle as the delta frequency (Δ F ) of paired motor units calculated during isometric ramped contractions. RESULTS The values of Δ F were reduced after 10 d of ULLS (-33%, P < 0.001), but were fully reestablished after the AR (+29.4%, P < 0.001). The changes in estimated PIC values were correlated ( r = 0.63, P = 0.004) with the reduction in maximal voluntary contraction after ULLS (-29%, P = 0.002) and its recovery after the AR (+28.5%, P = 0.003). CONCLUSIONS Our findings suggest that PIC estimates are reduced by muscle disuse and may contribute to the loss of force production and its recovery with exercise. Overall, this is the first study demonstrating that, in addition to peripheral neuromuscular changes, central neuromodulation is a major contributor to the loss of force generation capacity after disuse, and can be recovered after resistance exercise.
Collapse
Affiliation(s)
- GIOVANNI MARTINO
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - GIACOMO VALLI
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - FABIO SARTO
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - MARTINO V. FRANCHI
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
- CIR-MYO Myology Centre, University of Padova, Padova, ITALY
| | - MARCO V. NARICI
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
- CIR-MYO Myology Centre, University of Padova, Padova, ITALY
| | - GIUSEPPE DE VITO
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
- CIR-MYO Myology Centre, University of Padova, Padova, ITALY
| |
Collapse
|
2
|
Olarogba OB, Lockyer EJ, Antolinez AK, Button DC. Sex-related differences in corticospinal excitability outcome measures of the biceps brachii during a submaximal elbow flexor contraction. Physiol Rep 2024; 12:e16102. [PMID: 39095333 PMCID: PMC11296885 DOI: 10.14814/phy2.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 08/04/2024] Open
Abstract
The purpose of this study was to investigate the effects of sex, muscle thickness, and subcutaneous fat thickness (SFT) on corticospinal excitability outcome measures of the biceps brachii. Eighteen participants (10 males and 8 females) completed this study. Ultrasound was used to assess biceps brachii muscle thickness and the overlying SFT. Transcranial magnetic stimulation (TMS) was used to determine corticospinal excitability by inducing motor-evoked potentials (MEPs) at eight different TMS intensities from 90% to 160% of active motor threshold (AMT) from the biceps brachii during an isometric contraction of the elbow flexors at 10% of maximum voluntary contraction (MVC). Biceps brachii maximal compound muscle action potential (Mmax) was also recorded prior to and after TMS. Males had higher (p < 0.001) biceps brachii muscle thickness and lower SFT, produced higher levels of MVC force and had, on average, higher (p < 0.001) MEP amplitudes at lower (p < 0.05) percentages of maximal stimulator output than females during the 10% elbow flexion MVC. Multiple linear regression modeling revealed that sex was not associated with any of the neurophysiological parameters examined, while SFT showed a positive association with the stimulation intensity required at AMT (p = 0.035) and a negative association with biceps brachii pre-stimulus electromyography (EMG) activity (p = 0.021). Additionally, there was a small positive association between muscle thickness and biceps brachii pre-stimulus EMG activity (p = 0.049). Overall, this study suggests that some measures of corticospinal excitability may be different between the sexes and influenced by SFT and muscle thickness.
Collapse
Affiliation(s)
- Olalekan B. Olarogba
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
| | - Evan J. Lockyer
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
- Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Angie K. Antolinez
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
| | - Duane C. Button
- Human Neurophysiology LabSchool of Human Kinetics and RecreationSt. John'sNewfoundlandCanada
- Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
3
|
Dai Y, Cheng Y, Ge R, Chen K, Yang L. Exercise-induced adaptation of neurons in the vertebrate locomotor system. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:160-171. [PMID: 37914153 PMCID: PMC10980905 DOI: 10.1016/j.jshs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli. In particular, how these neurons respond to physical exercise has long been an area of active research. Studies of the vertebrate locomotor system's adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise. In this brief review, we highlight recent results and insights from the field with a focus on the following mechanisms: (a) alterations in neuronal excitability during acute exercise; (b) alterations in neuronal excitability after chronic exercise; (c) exercise-induced changes in neuronal membrane properties via modulation of ion channel activity; (d) exercise-enhanced dendritic plasticity; and (e) exercise-induced alterations in neuronal gene expression and protein synthesis. Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
Collapse
Affiliation(s)
- Yue Dai
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China.
| | - Yi Cheng
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang 330013, China
| | - Ke Chen
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing 100871, China
| | - Liming Yang
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Zhao R, Wu R, Jin J, Ning K, Wang Z, Yi X, Kapilevich L, Liu J. Signaling pathways regulated by natural active ingredients in the fight against exercise fatigue-a review. Front Pharmacol 2023; 14:1269878. [PMID: 38155906 PMCID: PMC10752993 DOI: 10.3389/fphar.2023.1269878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Exercise fatigue is a normal protective mechanism of the body. However, long-term fatigue hinders normal metabolism and exercise capacity. The generation and recovery from exercise fatigue involves alterations in multiple signaling pathways, mainly AMPK, PI3K/Akt, Nrf2/ARE, NF-κB, PINK1/Parkin, and BDNF/TrkB, as well as MAPK signaling pathways that mediate energy supply, reduction of metabolites, oxidative stress homeostasis, muscle fiber type switching, and central protective effects. In recent studies, a rich variety of natural active ingredients have been identified in traditional Chinese medicines and plant extracts with anti-fatigue effects, opening up the field of research in new anti-fatigue drugs. In this review we give an overview of the signaling pathways associated with the activity of natural food active ingredients against exercise fatigue. Such a comprehensive review is necessary to understand the potential of these materials as preventive measures and treatments of exercise fatigue. We expect the findings highlighted and discussed here will help guide the development of new health products and provide a theoretical and scientific basis for future research on exercise fatigue.
Collapse
Affiliation(s)
- Rongyue Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ruomeng Wu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Junjie Jin
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xuejie Yi
- Exercise and Health Research Center, Department of Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Nаtionаl Reseаrch Tomsk Stаte University, Tomsk, Russia
| | - Jiao Liu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
5
|
Power KE, Lockyer EJ, Botter A, Vieira T, Button DC. Endurance-exercise training adaptations in spinal motoneurones: potential functional relevance to locomotor output and assessment in humans. Eur J Appl Physiol 2022; 122:1367-1381. [PMID: 35226169 DOI: 10.1007/s00421-022-04918-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
It is clear from non-human animal work that spinal motoneurones undergo endurance training (chronic) and locomotor (acute) related changes in their electrical properties and thus their ability to fire action potentials in response to synaptic input. The functional implications of these changes, however, are speculative. In humans, data suggests that similar chronic and acute changes in motoneurone excitability may occur, though the work is limited due to technical constraints. To examine the potential influence of chronic changes in human motoneurone excitability on the acute changes that occur during locomotor output, we must develop more sophisticated recording techniques or adapt our current methods. In this review, we briefly discuss chronic and acute changes in motoneurone excitability arising from non-human and human work. We then discuss the potential interaction effects of chronic and acute changes in motoneurone excitability and the potential impact on locomotor output. Finally, we discuss the use of high-density surface electromyogram recordings to examine human motor unit firing patterns and thus, indirectly, motoneurone excitability. The assessment of single motor units from high-density recording is mainly limited to tonic motor outputs and minimally dynamic motor output such as postural sway. Adapting this technology for use during locomotor outputs would allow us to gain a better understanding of the potential functional implications of endurance training-induced changes in human motoneurone excitability on motor output.
Collapse
Affiliation(s)
- Kevin E Power
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada. .,Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Evan J Lockyer
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy.,PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Taian Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy.,PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Duane C Button
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
6
|
Health Benefits of Endurance Training: Implications of the Brain-Derived Neurotrophic Factor-A Systematic Review. Neural Plast 2019; 2019:5413067. [PMID: 31341469 PMCID: PMC6613032 DOI: 10.1155/2019/5413067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/07/2019] [Accepted: 02/24/2019] [Indexed: 02/06/2023] Open
Abstract
This article presents a concept that wide expression of brain-derived neurotrophic factor (BDNF) and its receptors (TrkB) in the nervous tissue, evoked by regular endurance training (ET), can cause numerous motor and metabolic adaptations, which are beneficial for human health. The relationships between the training-evoked increase of endogenous BDNF and molecular and/or physiological adaptations in the nervous structures controlling both motor performance and homeostasis of the whole organism have been presented. Due to a very wide range of plastic changes that ET has exerted on various systems of the body, the improvement of motor skills and counteraction of the development of civilization diseases resulting from the posttraining increase of BDNF/TrkB levels have been discussed, as important for people, who undertake ET. Thus, this report presents the influence of endurance exercises on the (1) transformation of motoneuron properties, which are a final element of the motor pathways, (2) reduction of motor deficits evoked by Parkinson disease, and (3) prevention of the metabolic syndrome (MetS). This review suggests that the increase of posttraining levels of BDNF and its TrkB receptors causes simultaneous changes in the activity of the spinal cord, the substantia nigra, and the hypothalamic nuclei neurons, which are responsible for the alteration of the functional properties of motoneurons innervating the skeletal muscles, for the enhancement of dopamine release in the brain, and for the modulation of hormone levels involved in regulating the metabolic processes, responsively. Finally, training-evoked increase of the BDNF/TrkB leads to a change in a manner of regulation of skeletal muscles, causes a reduction of motor deficits observed in the Parkinson disease, and lowers weight, glucose level, and blood pressure, which accompany the MetS. Therefore, BDNF seems to be the molecular factor of pleiotropic activity, important in the modulation processes, underlying adaptations, which result from ET.
Collapse
|
7
|
Button DC, Kalmar JM. Understanding exercise-dependent plasticity of motoneurons using intracellular and intramuscular approaches. Appl Physiol Nutr Metab 2019; 44:1125-1133. [PMID: 31075205 DOI: 10.1139/apnm-2018-0862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spinal motoneurons (MN) exhibit exercise-dependent adaptations to increased activity, such as exercise and locomotion, as well as decreased activity associated with disuse, spinal cord injury, and aging. The development of several experimental approaches, in both human and animal models, has contributed significantly to our understanding of this plasticity. The purpose of this review is to summarize how intracellular recordings in an animal model and motor unit recordings in a human model have, together, contributed to our current understanding of exercise-dependent MN plasticity. These approaches and techniques will allow neuroscientists to continue to advance our understanding of MN physiology and the plasticity of the "final common path" of the motor system, and to design experiments to answer the critical questions that are emerging in this field.
Collapse
Affiliation(s)
- Duane C Button
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Jayne M Kalmar
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
8
|
Bączyk M, Drzymała-Celichowska H, Mrówczyński W, Krutki P. Motoneuron firing properties are modified by trans-spinal direct current stimulation in rats. J Appl Physiol (1985) 2019; 126:1232-1241. [PMID: 30789288 DOI: 10.1152/japplphysiol.00803.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal polarization evoked by direct current stimulation [trans-spinal direct current stimulation (tsDCS)] is a novel method for altering spinal network excitability; however, it remains not well understood. The aim of this study was to determine whether tsDCS influences spinal motoneuron activity. Twenty Wistar rats under general pentobarbital anesthesia were subjected to 15 min anodal (n = 10) or cathodal (n = 10) tsDCS of 0.1 mA intensity, and the electrophysiological properties of their motoneurons were intracellularly measured before, during, and after direct current application. The major effects of anodal intervention included increased minimum firing frequency and the slope of the frequency-current (f-I) relationship, as well as decreased rheobase and currents evoking steady-state firing (SSF). The effects of cathodal polarization included decreased maximum SSF frequency, decreased f-I slope, and decreased current evoking the maximum SSF. Notably, the majority of observed effects appeared immediately after the current onset, developed during polarization, and outlasted it for at least 15 min. Moreover, the effects of anodal polarization were generally more pronounced and uniform than those evoked by cathodal polarization. Our study is the first to present polarity-dependent, long-lasting changes in spinal motoneuron firing following tsDCS, which may aid in the development of more safe and accurate application protocols in medicine and sport. NEW & NOTEWORTHY Trans-spinal direct current stimulation induces significant polarity-dependent, long-lasting changes in the threshold and firing properties of spinal motoneurons. Anodal polarization potentiates motoneuron firing whereas cathodal polarization acts mainly toward firing inhibition. The alterations in rheobase and rhythmic firing properties are not restricted to the period of current application and can be observed long after the current offset.
Collapse
Affiliation(s)
- M Bączyk
- Department of Neurobiology, Poznań University of Physical Education , Poznań , Poland
| | - H Drzymała-Celichowska
- Department of Neurobiology, Poznań University of Physical Education , Poznań , Poland.,Department of Biochemistry, Poznań University of Physical Education , Poznań , Poland
| | - W Mrówczyński
- Department of Neurobiology, Poznań University of Physical Education , Poznań , Poland
| | - P Krutki
- Department of Neurobiology, Poznań University of Physical Education , Poznań , Poland
| |
Collapse
|
9
|
Sun J, Harrington MA. The Alteration of Intrinsic Excitability and Synaptic Transmission in Lumbar Spinal Motor Neurons and Interneurons of Severe Spinal Muscular Atrophy Mice. Front Cell Neurosci 2019; 13:15. [PMID: 30792629 PMCID: PMC6374350 DOI: 10.3389/fncel.2019.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/16/2019] [Indexed: 01/22/2023] Open
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of death in infants. Studies with mouse models have demonstrated increased excitability and loss of afferent proprioceptive synapses on motor neurons (MNs). To further understand functional changes in the motor neural network occurring in SMA, we studied the intrinsic excitability and synaptic transmission of both MNs and interneurons (INs) from ventral horn in the lumbar spinal cord in the survival motor neuron (SMN)Δ7 mouse model. We found significant differences in the membrane properties of MNs in SMA mice compared to littermate controls, including hyperpolarized resting membrane potential, increased input resistance and decreased membrane capacitance. Action potential (AP) properties in MNs from SMA mice were also different from controls, including decreased rheobase current, increased amplitude and an increased afterdepolarization (ADP) potential. The relationship between AP firing frequency and injected current was reduced in MNs, as was the threshold current, while the percentage of MNs showing long-lasting potentiation (LLP) in the intrinsic excitability was higher in SMA mice. INs showed a high rate of spontaneous firing, and those from SMA mice fired at higher frequency. INs from SMA mice showed little difference in their input-output relationship, threshold current, and plasticity in intrinsic excitability. The changes observed in both passive membrane and AP properties suggest greater overall excitability in both MNs and INs in SMA mice, with MNs showing more differences. There were also changes of synaptic currents in SMA mice. The average charge transfer per post-synaptic current of spontaneous excitatory and inhibitory synaptic currents (sEPSCs/sIPSCs) were lower in SMA MNs, while in INs sIPSC frequency was higher. Strikingly in light of the known loss of excitatory synapses on MNs, there was no difference in sEPSC frequency in MNs from SMA mice compared to controls. For miniature synaptic currents, mEPSC frequency was higher in SMA MNs, while for SMA INs, both mEPSC and mIPSC frequencies were higher. In SMA-affected mice we observed alterations of intrinsic and synaptic properties in both MNs and INs in the spinal motor network that may contribute to the pathophysiology, or alternatively, may be a compensatory response to preserve network function.
Collapse
Affiliation(s)
- Jianli Sun
- Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, United States.,Department of Biological Science, Delaware State University, Dover, DE, United States
| | - Melissa A Harrington
- Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, United States.,Department of Biological Science, Delaware State University, Dover, DE, United States
| |
Collapse
|
10
|
MacDonell CW, Gardiner PF. Mechanisms and functional implications of motoneuron adaptations to increased physical activity. Appl Physiol Nutr Metab 2018; 43:1186-1193. [DOI: 10.1139/apnm-2018-0185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motoneurons demonstrate adaptations in their physiological properties to alterations in chronic activity levels. The most consistent change that appears to result from endurance-type exercise training is the reduced excitatory current required to initiate and maintain rhythmic firing. While the precise mechanisms through which these neurons adapt to activity are currently unknown, evidence exists that adaptation may involve alterations in the expression of genes that code for membrane receptors, which can influence the responses of neurons to transmitters during activation. The influence of these adaptations may also extend to the resting condition, where ambient levels of neuroactive substances may influence ion conductances at rest, and thus result in the activation or inhibition of specific ion conductances that underlie the measurements of increased excitability that have been reported for motoneurons in the anesthetised state. We have applied motoneuron excitability and muscle unit contractile changes with endurance training to a mathematical computerized model of motor unit recruitment (Heckman and Binder 1991; J. Neurophysiol. 65(4):952–967). The results from the modelling exercise demonstrate increased task efficiency at relative levels of effort during a submaximal contraction. The physiological impact that nerve and muscle adaptations have on the neuromuscular system during standardized tasks seem to fit with reported changes in motor unit behaviour in trained human subjects.
Collapse
Affiliation(s)
- Christopher W. MacDonell
- Spinal Cord Research Center, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Spinal Cord Research Center, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Phillip F. Gardiner
- Spinal Cord Research Center, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Spinal Cord Research Center, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
11
|
Lombardo J, Sun J, Harrington MA. Rapid activity-dependent modulation of the intrinsic excitability through up-regulation of KCNQ/Kv7 channel function in neonatal spinal motoneurons. PLoS One 2018; 13:e0193948. [PMID: 29579068 PMCID: PMC5868771 DOI: 10.1371/journal.pone.0193948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 02/21/2018] [Indexed: 11/25/2022] Open
Abstract
Activity-dependent changes in the properties of the motor system underlie the necessary adjustments in its responsiveness on the basis of the environmental and developmental demands of the organism. Although plastic changes in the properties of the spinal cord have historically been neglected because of the archaic belief that the spinal cord is constituted by a hardwired network that simply relays information to muscles, plenty of evidence has been accumulated showing that synapses impinging on spinal motoneurons undergo short- and long-term plasticity. In the brain, brief changes in the activity level of the network have been shown to be paralleled by changes in the intrinsic excitability of the neurons and are suggested to either reinforce or stabilize the changes at the synaptic level. However, rapid activity-dependent changes in the intrinsic properties of spinal motoneurons have never been reported. In this study, we show that in neonatal mice the intrinsic excitability of spinal motoneurons is depressed after relatively brief but sustained changes in the spinal cord network activity. Using electrophysiological techniques together with specific pharmacological blockers of KCNQ/Kv7 channels, we demonstrate their involvement in the reduction of the intrinsic excitability of spinal motoneurons. This action results from an increased M-current, the product of the activation of KCNQ/Kv7 channels, which leads to a hyperpolarization of the resting membrane potential and a decrease in the input resistance of spinal motoneurons. Computer simulations showed that specific up-regulations in KCNQ/Kv7 channels functions lead to a modulation of the intrinsic excitability of spinal motoneurons as observed experimentally. These results indicate that KCNQ/Kv7 channels play a fundamental role in the activity-dependent modulation of the excitability of spinal motoneurons.
Collapse
Affiliation(s)
- Joseph Lombardo
- Department of Biology, Delaware State University, Dover, Delaware, United States of America
| | - Jianli Sun
- Department of Biology, Delaware State University, Dover, Delaware, United States of America
| | - Melissa A. Harrington
- Department of Biology, Delaware State University, Dover, Delaware, United States of America
- * E-mail:
| |
Collapse
|
12
|
Jean-Xavier C, Sharples SA, Mayr KA, Lognon AP, Whelan PJ. Retracing your footsteps: developmental insights to spinal network plasticity following injury. J Neurophysiol 2017; 119:521-536. [PMID: 29070632 DOI: 10.1152/jn.00575.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During development of the spinal cord, a precise interaction occurs between descending projections and sensory afferents, with spinal networks that lead to expression of coordinated motor output. In the rodent, during the last embryonic week, motor output first occurs as regular bursts of spontaneous activity, progressing to stochastic patterns of episodes that express bouts of coordinated rhythmic activity perinatally. Locomotor activity becomes functionally mature in the 2nd postnatal wk and is heralded by the onset of weight-bearing locomotion on the 8th and 9th postnatal day. Concomitantly, there is a maturation of intrinsic properties and key conductances mediating plateau potentials. In this review, we discuss spinal neuronal excitability, descending modulation, and afferent modulation in the developing rodent spinal cord. In the adult, plastic mechanisms are much more constrained but become more permissive following neurotrauma, such as spinal cord injury. We discuss parallel mechanisms that contribute to maturation of network function during development to mechanisms of pathological plasticity that contribute to aberrant motor patterns, such as spasticity and clonus, which emerge following central injury.
Collapse
Affiliation(s)
- C Jean-Xavier
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - K A Mayr
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - A P Lognon
- Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
13
|
MacDonell CW, Chopek JW, Gardiner KR, Gardiner PF. α-Motoneurons maintain biophysical heterogeneity in obesity and diabetes in Zucker rats. J Neurophysiol 2017; 118:2318-2327. [PMID: 28747469 DOI: 10.1152/jn.00423.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Small-diameter sensory dysfunction resulting from diabetes has received much attention in the literature, whereas the impact of diabetes on α-motoneurons (MN) has not. In addition, the chance of developing insulin resistance and diabetes is increased in obesity. No study has examined the impact of obesity or diabetes on the biophysical properties of MN. Lean Zucker rats and Zucker diabetic fatty (ZDF) rats were separated into lean, obese (ZDF fed standard chow), and diabetic (ZDF fed high-fat diet that led to diabetes) groups. Glass micropipettes recorded hindlimb MN properties from identified flexor and extensor MN. MN were separated within their groups on the basis of input conductance, which created high- and low-input conductance subpopulations for each. A significant shorter (20%) afterhyperpolarization half-decay (AHP1/2) was found in low-conductance MN for the diabetic group only, whereas AHP½ tended to be shorter in the obese group (19%). Significant positive correlations were found among rheobase and input conductance for both lean and obese animals. No differences were found between the groups for afterhyperpolarization amplitude (AHPamp), input conductance, rheobase, or any of the rhythmic firing properties (frequency-current slope and spike-frequency adaptation index). MN properties continue to be heterogeneous in obese and diabetic animals. Obesity does not seem to influence lumbar MN. Despite the resistance of MN to the impact of diabetes, the reduced AHP1/2 decay and the tendency for a reduction in AHPamp may be the first sign of change to MN function.NEW & NOTEWORTHY Knowledge about the impact of obesity and diabetes on the biophysical properties of motoneurons is lacking. We found that diabetes reduces the duration of the afterhyperpolarization and that motoneuron function is unchanged by obesity. A reduced afterhyperpolarization may impact discharge characteristics and may be the first sign of change to motoneuron function.
Collapse
Affiliation(s)
- Christopher W MacDonell
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, Rady Faculty of Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeremy W Chopek
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, Rady Faculty of Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kalan R Gardiner
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, Rady Faculty of Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Phillip F Gardiner
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, Rady Faculty of Health, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Krutki P, Mrówczyński W, Bączyk M, Łochyński D, Celichowski J. Adaptations of motoneuron properties after weight-lifting training in rats. J Appl Physiol (1985) 2017; 123:664-673. [DOI: 10.1152/japplphysiol.00121.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 11/22/2022] Open
Abstract
Resistance training, with repeated short-term and high-intensity exercises, is responsible for an increase in muscle mass and force. The aim of this study was to determine whether such training induces adaptations in the electrophysiological properties of motoneurons innervating the trained muscles and to relate these adaptive changes to previous observations made on motor unit contractile properties. The study was performed on adult male Wistar rats. Animals from the training group were subjected to a 5-wk voluntary progressive weight-lifting program, whereas control rats were restricted to standard cage activity. Intracellular recordings from lumbar spinal motoneurons were made under pentobarbital anesthesia. Membrane properties were measured, and rhythmic firing of motoneurons was analyzed. Strength training evoked adaptive changes in both slow- and fast-type motoneurons, indicating their increased excitability. A shorter spike duration, a higher input resistance, a lower rheobase, a decrease in the minimum current required to evoke rhythmic firing, an increase in the maximum frequencies of the early-state firing (ESF) and the steady-state firing (SSF), and an increase in the respective slopes of the frequency-current ( f/ I) relationship were observed in fast motoneurons of the trained group. The increase in the maximum ESF and SSF frequencies and an increase in the SSF f/ I slope were also present in slow motoneurons. Higher maximum firing rates of motoneurons as well as higher discharge frequencies evoked at the same level of intracellular depolarization current imply higher levels of tetanic forces developed by motor units over the operating range of force production after strength training. NEW & NOTEWORTHY Neuronal responses to weight-lifting training can be observed in altered properties of both slow and fast motoneurons. Motoneurons of trained animals are more excitable, require lower intracellular currents to evoke rhythmic firing, and have the ability to evoke higher maximum discharge frequencies during repetitive firing.
Collapse
Affiliation(s)
- Piotr Krutki
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland; and
| | | | - Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland; and
| | - Dawid Łochyński
- Department of Musculoskeletal Rehabilitation, Poznań University of Physical Education, Poznań, Poland
| | - Jan Celichowski
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland; and
| |
Collapse
|
15
|
Abstract
BACKGROUND Genetic techniques rendering murine models a popular choice for neuroscience research has led to important insights on neural networks controlling locomotor function. Using genetically altered mouse models for in vivo, electrophysiological studies in the adult state could validate key principles of locomotor network organization that have been described in neonatal, in vitro preparations. NEW METHOD The experimental model presented here describes a decerebrate, in vivo adult mouse preparation in which focal, electrical midbrain stimulation was combined with monitoring lumbar neural activity and motor output after pre-collicular decerebration and neuromuscular blockade. RESULTS Lumbar cord dorsum potentials (in 9/10 animals) and motoneuron output (in 3/5 animals) including fictive locomotion, was achieved by focal midbrain stimulation. The stimulation electrode locations could be reconstructed (in 6/7 animals) thereby allowing anatomical identification of the stimulated supraspinal regions. COMPARISON WITH EXISTING METHODS This preparation allows for concomitant recording or stimulation in the spinal cord and in the mid/hindbrain of adult mice. It differs from other methods used in the past with adult mice as it does not require pharmacological manipulation of neural excitability in order to generate motor output. CONCLUSIONS Midbrain stimulation can consistently be used for inducing lumbar neural activity in adult mice under neuromuscular blockade. This model is suited for examination of brain-spinal connectivity and it may benefit a wide range of fields depending on the features of the genetically modified mouse models used in combination with the presented methods.
Collapse
Affiliation(s)
- Katinka Stecina
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave., BMSB-436, Winnipeg, MB, R3E0J9, Canada.
| |
Collapse
|
16
|
Collins BW, Gale LH, Buckle NCM, Button DC. Corticospinal excitability to the biceps brachii and its relationship to postactivation potentiation of the elbow flexors. Physiol Rep 2017; 5:5/8/e13265. [PMID: 28455452 PMCID: PMC5408290 DOI: 10.14814/phy2.13265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 11/24/2022] Open
Abstract
We examined the effects of a submaximal voluntary elbow flexor contraction protocol on measures of corticospinal excitability and postactivation potentiation of evoked muscle forces and if these measures were state‐dependent (rest vs. voluntary muscle contraction). Participants completed four experimental sessions where they rested or performed a 5% maximum voluntary contraction (MVC) of the elbow flexors prior to, immediately, and 5 min following a submaximal contraction protocol. During rest or 5% MVC, transcranial magnetic stimulation, transmastoid electrical stimulation, electrical stimulation of biceps brachii motor point and Erb's point were elicited to induce motor‐evoked potentials (MEPs), cervicomedullary MEPs (CMEPs), potentiated twitch (PT) force, and maximal muscle compound action potential (Mmax), respectively prior to, immediately, and 5 min postcontraction protocol. MEP amplitudes increased (215 and 165%Mmax, P ≤ 0.03) only at 1 and 6s postcontraction protocol, respectively during rest but not 5% MVC. CMEP amplitudes decreased during rest and 5% MVC (range:21–58%Mmax, P ≤ 0.04) for up to 81 sec postcontraction protocol. Peak twitch force increased immediately postcontraction protocol and remained elevated for 90 sec (range:122–147% increase, P < 0.05). There was a significant positive correlation between MEP and PT force during rest (r = 0.88, P = 0.01) and a negative correlation between CMEP and PT force during rest (r = −0.85, P < 0.02 and 5% MVC (r = −0.96, P < 0.01) immediately postcontraction protocol. In conclusion, the change in corticospinal and spinal excitability was state‐ and time‐dependent whereas spinal excitability and postactivation potentiation were time‐dependent following the contraction protocol. Changes in corticospinal excitability and postactivation potentiation correlated and were also state‐dependent.
Collapse
Affiliation(s)
- Brandon W Collins
- Human Neurophysiology Laboratory, School of Human Kinetics and Recreation, Newfoundland and Labrador Canada
| | - Laura H Gale
- Human Neurophysiology Laboratory, School of Human Kinetics and Recreation, Newfoundland and Labrador Canada
| | - Natasha C M Buckle
- Human Neurophysiology Laboratory, School of Human Kinetics and Recreation, Newfoundland and Labrador Canada
| | - Duane C Button
- Human Neurophysiology Laboratory, School of Human Kinetics and Recreation, Newfoundland and Labrador Canada .,BioMedical Sciences, Faculty of Medicine Memorial University St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
17
|
MacDonell CW, Power KE, Chopek JW, Gardiner KR, Gardiner PF. Extensor motoneurone properties are altered immediately before and during fictive locomotion in the adult decerebrate rat. J Physiol 2015; 593:2327-42. [PMID: 25809835 DOI: 10.1113/jp270239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/17/2015] [Indexed: 11/08/2022] Open
Abstract
This study examined motoneurone properties during fictive locomotion in the adult rat for the first time. Fictive locomotion was induced via electrical stimulation of the mesencephalic locomotor region in decerebrate adult rats under neuromuscular blockade to compare basic and rhythmic motoneurone properties in antidromically identified extensor motoneurones during: (1) quiescence, before and after fictive locomotion; (2) the 'tonic' period immediately preceding locomotor-like activity, whereby the amplitude of peripheral flexor (peroneal) and extensor (tibial) nerves are increased but alternation has not yet occurred; and (3) locomotor-like episodes. Locomotion was identified by alternating flexor-extensor nerve activity, where the motoneurone either produced membrane oscillations consistent with a locomotor drive potential (LDP) or did not display membrane oscillation during alternating nerve activity. Cells producing LDPs were referred to as such, while those that did not were referred to as 'idle' motoneurones. LDP and idle motoneurones during locomotion had hyperpolarized spike threshold (Vth ; LDP: 3.8 mV; idle: 5.8 mV), decreased rheobase and an increased discharge rate (LDP: 64%; idle: 41%) during triangular ramp current injection even though the frequency-current slope was reduced by 70% and 55%, respectively. Modulation began in the tonic period immediately preceding locomotion, with a hyperpolarized Vth and reduced rheobase. Spike frequency adaptation did not occur in spiking LDPs or firing generated from sinusoidal current injection, but occurred during a sustained current pulse during locomotion. Input conductance showed no change. Results suggest motoneurone modulation occurs across the pool and is not restricted to motoneurones engaged in locomotion.
Collapse
Affiliation(s)
- C W MacDonell
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - K E Power
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - J W Chopek
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - K R Gardiner
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - P F Gardiner
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Health Leisure and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba
| |
Collapse
|
18
|
Pearcey GEP, Power KE, Button DC. Differences in supraspinal and spinal excitability during various force outputs of the biceps brachii in chronic- and non-resistance trained individuals. PLoS One 2014; 9:e98468. [PMID: 24875495 PMCID: PMC4038556 DOI: 10.1371/journal.pone.0098468] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 05/03/2014] [Indexed: 11/19/2022] Open
Abstract
Motor evoked potentials (MEP) and cervicomedullary evoked potentials (CMEP) may help determine the corticospinal adaptations underlying chronic resistance training-induced increases in voluntary force production. The purpose of the study was to determine the effect of chronic resistance training on corticospinal excitability (CE) of the biceps brachii during elbow flexion contractions at various intensities and the CNS site (i.e. supraspinal or spinal) predominantly responsible for any training-induced differences in CE. Fifteen male subjects were divided into two groups: 1) chronic resistance-trained (RT), (n = 8) and 2) non-RT, (n = 7). Each group performed four sets of ∼5 s elbow flexion contractions of the dominant arm at 10 target forces (from 10%-100% MVC). During each contraction, subjects received 1) transcranial magnetic stimulation, 2) transmastoid electrical stimulation and 3) brachial plexus electrical stimulation, to determine MEP, CMEP and compound muscle action potential (Mmax) amplitudes, respectively, of the biceps brachii. All MEP and CMEP amplitudes were normalized to Mmax. MEP amplitudes were similar in both groups up to 50% MVC, however, beyond 50% MVC, MEP amplitudes were lower in the chronic RT group (p<0.05). CMEP amplitudes recorded from 10-100% MVC were similar for both groups. The ratio of MEP amplitude/absolute force and CMEP amplitude/absolute force were reduced (p<0.012) at all contraction intensities from 10-100% MVC in the chronic-RT compared to the non-RT group. In conclusion, chronic resistance training alters supraspinal and spinal excitability. However, adaptations in the spinal cord (i.e. motoneurone) seem to have a greater influence on the altered CE.
Collapse
Affiliation(s)
- Gregory E. P. Pearcey
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kevin E. Power
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Duane C. Button
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
19
|
Motoneurone afterhyperpolarisation time-course following stroke. Clin Neurophysiol 2013; 125:544-51. [PMID: 24074627 DOI: 10.1016/j.clinph.2013.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Our aim was to investigate any changes in the estimated time-course of the afterhyperpolarisation (AHP) in motoneurones innervating the tibialis anterior following stroke, with a secondary objective to compare the results from two different AHP estimation techniques. METHODS Motor units from tibialis anterior on the paretic and non-paretic sides of 15 subjects with chronic stroke were recorded using intramuscular electrodes during voluntary isometric contraction. Participants varied the motor unit firing rate from its lowest rate to approximately 10 Hz. The AHP duration was estimated using the interval death rate (IDR) and transition point methods. RESULTS The AHP decay time-constant was significantly different between sides (paretic: 41.7 ± 8.5 ms, non-paretic: 36.2 ± 6.4 ms). Additionally, the paretic AHP time-constant was significantly longer in participants with low motor recovery (45.9 ± 9.1 ms) than with high motor recovery (39.3 ± 10.0 ms) as measured by CMSA score. The AHP estimates from the two techniques were correlated (r=0.78). CONCLUSIONS The AHP time-course prolongation on the paretic side of people with chronic stroke is more pronounced in people with low motor recovery. SIGNIFICANCE Changes in the motoneurone AHP time course post-stroke were related to muscle function and may play a role in the commonly-observed reduction of motor unit discharge rate during voluntary contractions following stroke.
Collapse
|