1
|
Wang Y, Neto OP, Weinrich M, Abbott R, Diaz-Artiles A, Kennedy DM. The effect of inherent and incidental constraints on bimanual force control in simulated Martian gravity. Hum Mov Sci 2024; 95:103199. [PMID: 38518737 DOI: 10.1016/j.humov.2024.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
The ability to coordinate actions between the limbs is important for many operationally relevant tasks associated with space exploration. A future milestone in space exploration is sending humans to Mars. Therefore, an experiment was designed to examine the influence of inherent and incidental constraints on the stability characteristics associated with the bimanual control of force in simulated Martian gravity. A head-up tilt (HUT)/head-down tilt (HDT) paradigm was used to simulate gravity on Mars (22.3° HUT). Right limb dominant participants (N = 11) were required to rhythmically coordinate patterns of isometric forces in 1:1 in-phase and 1:2 multifrequency patterns by exerting force with their right and left limbs. Lissajous displays were provided to guide task performance. Participants performed 14 twenty-second practice trials at 90° HUT (Earth). Following a 30-min rest period, participants performed 2 test trials for each coordination pattern in both Earth and Mars conditions. Performance during the test trials were compared. Results indicated very effective temporal performance of the goal coordination tasks in both gravity conditions. However, results indicated differences associated with the production of force between Earth and Mars. In general, participants produced less force in simulated Martian gravity than in the Earth condition. In addition, force production was more harmonic in Martian gravity than Earth gravity for both limbs, indicating that less force distortions (adjustments, hesitations, and/or perturbations) occurred in the Mars condition than in the Earth condition. The force coherence analysis indicated significantly higher coherence in the 1:1 task than in the 1:2 task for all force frequency bands, with the highest level of coherence in the 1-4 Hz frequency band for both gravity conditions. High coherence in the 1-4 Hz frequency band is associated with a common neural drive that activates the two arms simultaneously and is consistent with the requirements of the two tasks. The results also support the notion that neural crosstalk stabilizes the performance of the 1:1 in-phase task. In addition, significantly higher coherence in the 8-12 Hz frequency bands were observed for the Earth condition than the Mars condition. Force coherence in the 8-12 Hz bands is associated with the processing of sensorimotor information, suggesting that participants were better at integrating visual, proprioceptive, and/or tactile feedback in Earth than for the Mars condition. Overall, the results indicate less neural interference in Martian gravity; however, participants appear to be more effective at using the Lissajous displays to guide performance under Earth's gravity.
Collapse
Affiliation(s)
- Yiyu Wang
- Department of Kinesiology and Sport Management, Texas A&M University, TX, USA
| | - Osmar P Neto
- Department of Biomedical Engineering, Anhembi Morumbi University, SP, Brazil
| | - Madison Weinrich
- Department of Kinesiology and Sport Management, Texas A&M University, TX, USA
| | - Renee Abbott
- Department of Aerospace Engineering, Texas A&M University, TX, USA
| | - Ana Diaz-Artiles
- Department of Kinesiology and Sport Management, Texas A&M University, TX, USA; Department of Aerospace Engineering, Texas A&M University, TX, USA
| | - Deanna M Kennedy
- Department of Kinesiology and Sport Management, Texas A&M University, TX, USA.
| |
Collapse
|
2
|
Kravets VG, Clark TK. An experimentally informed computational model of neurovestibular adaptation to altered gravity. Exp Physiol 2024. [PMID: 38625533 DOI: 10.1113/ep091817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Transitions to altered gravity environments result in acute sensorimotor impairment for astronauts, leading to serious mission and safety risks in the crucial first moments in a new setting. Our understanding of the time course and severity of impairment in the early stages of adaptation remains limited and confounded by unmonitored head movements, which are likely to impact the rate of adaptation. Here, we aimed to address this gap by using a human centrifuge to simulate the first hour of hypergravity (1.5g) exposure and the subsequent 1g readaptation period, with precisely controlled head tilt activity. We quantified head tilt overestimation via subjective visual vertical and found ∼30% tilt overestimation that did not decrease over the course of 1 h of exposure to the simulated gravity environment. These findings extended the floor of the vestibular adaptation window (with controlled vestibular cueing) to 1 h of exposure to altered gravity. We then used the empirical data to inform a computational model of neurovestibular adaptation to changes in the magnitude of gravity, which can offer insight into the adaptation process and, with further tuning, can be used to predict the temporal dynamics of vestibular-mediated misperceptions in altered gravity.
Collapse
Affiliation(s)
- Victoria G Kravets
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, USA
| | - Torin K Clark
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
3
|
Allred AR, Kravets VG, Ahmed N, Clark TK. Modeling orientation perception adaptation to altered gravity environments with memory of past sensorimotor states. Front Neural Circuits 2023; 17:1190582. [PMID: 37547052 PMCID: PMC10399228 DOI: 10.3389/fncir.2023.1190582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Transitioning between gravitational environments results in a central reinterpretation of sensory information, producing an adapted sensorimotor state suitable for motor actions and perceptions in the new environment. Critically, this central adaptation is not instantaneous, and complete adaptation may require weeks of prolonged exposure to novel environments. To mitigate risks associated with the lagging time course of adaptation (e.g., spatial orientation misperceptions, alterations in locomotor and postural control, and motion sickness), it is critical that we better understand sensorimotor states during adaptation. Recently, efforts have emerged to model human perception of orientation and self-motion during sensorimotor adaptation to new gravity stimuli. While these nascent computational frameworks are well suited for modeling exposure to novel gravitational stimuli, they have yet to distinguish how the central nervous system (CNS) reinterprets sensory information from familiar environmental stimuli (i.e., readaptation). Here, we present a theoretical framework and resulting computational model of vestibular adaptation to gravity transitions which captures the role of implicit memory. This advancement enables faster readaptation to familiar gravitational stimuli, which has been observed in repeat flyers, by considering vestibular signals dependent on the new gravity environment, through Bayesian inference. The evolution and weighting of hypotheses considered by the CNS is modeled via a Rao-Blackwellized particle filter algorithm. Sensorimotor adaptation learning is facilitated by retaining a memory of past harmonious states, represented by a conditional state transition probability density function, which allows the model to consider previously experienced gravity levels (while also dynamically learning new states) when formulating new alternative hypotheses of gravity. In order to demonstrate our theoretical framework and motivate future experiments, we perform a variety of simulations. These simulations demonstrate the effectiveness of this model and its potential to advance our understanding of transitory states during which central reinterpretation occurs, ultimately mitigating the risks associated with the lagging time course of adaptation to gravitational environments.
Collapse
Affiliation(s)
- Aaron R. Allred
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Victoria G. Kravets
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Nisar Ahmed
- Cooperative Human-Robot Interaction Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Torin K. Clark
- Bioastronautics Laboratory, Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
4
|
Zhang JY, Anderson AP. Performance Risks During Surface Extravehicular Activity and Potential Mitigation Using Multimodal Displays. Aerosp Med Hum Perform 2023; 94:34-41. [PMID: 36757234 DOI: 10.3357/amhp.6066.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND: Surface extravehicular activity (sEVA) will be a critical component of future human missions to the Moon. sEVA presents novel risks to astronaut crews not associated with microgravity operations due to fundamental differences in task demands, physiology, environment, and operations of working on the lunar surface. Multimodal spacesuit informatics displays have been proposed as a method of mitigating sEVA risk by increasing operator autonomy.METHODS: A formalized literature review was conducted. In total, 95 journal articles, conference papers, and technical reports were included. Characteristics of U.S. spacesuits were reviewed, ranging from the Apollo A7L to the xEMU Z-2.5. Multimodal display applications were then reviewed and assessed for their potential in aiding sEVA operations.RESULTS: Through literature review 25 performance impairments were identified. Performance impairments caused by the spacesuit represented the greatest number of sEVA challenges. Multimodal displays were mapped to impairments and approximately 36% of performance impairments could be aided by using display interfaces.DISCUSSION: Multimodal displays may provide additional benefits for alleviating performance impairments during sEVA. Utility of multimodal displays may be greater in certain performance impairment domains, such as spacesuit-related impairments.Zhang JY, Anderson AP. Performance risks during surface extravehicular activity and potential mitigation using multimodal displays. Aerosp Med Hum Perform. 2023; 94(1):34-41.
Collapse
|
5
|
Diaz-Artiles A, Wang Y, Davis MM, Abbott R, Keller N, Kennedy DM. The Influence of Altered-Gravity on Bimanual Coordination: Retention and Transfer. Front Physiol 2022; 12:794705. [PMID: 35069255 PMCID: PMC8777123 DOI: 10.3389/fphys.2021.794705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Many of the activities associated with spaceflight require individuals to coordinate actions between the limbs (e.g., controlling a rover, landing a spacecraft). However, research investigating the influence of gravity on bimanual coordination has been limited. The current experiment was designed to determine an individual's ability to adapt to altered-gravity when performing a complex bimanual force coordination task, and to identify constraints that influence coordination dynamics in altered-gravity. A tilt table was used to simulate gravity on Earth [90° head-up tilt (HUT)] and microgravity [6° head-down tilt (HDT)]. Right limb dominant participants (N = 12) were required to produce 1:1 in-phase and 1:2 multi-frequency force patterns. Lissajous information was provided to guide performance. Participants performed 14, 20 s trials at 90° HUT (Earth). Following a 30-min rest period, participants performed, for each coordination pattern, two retention trials (Earth) followed by two transfer trials in simulated microgravity (6° HDT). Results indicated that participants were able to transfer their training performance during the Earth condition to the microgravity condition with no additional training. No differences between gravity conditions for measures associated with timing (interpeak interval ratio, phase angle slope ratio) were observed. However, despite the effective timing of the force pulses, there were differences in measures associated with force production (peak force, STD of peak force mean force). The results of this study suggest that Lissajous displays may help counteract manual control decrements observed during microgravity. Future work should continue to explore constraints that can facilitate or interfere with bimanual control performance in altered-gravity environments.
Collapse
Affiliation(s)
- Ana Diaz-Artiles
- Bioastronautics and Human Performance Lab, Department of Aerospace Engineering, Texas A&M University, College Station, TX, United States
| | - Yiyu Wang
- Neuromuscular Coordination Lab, Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Madison M. Davis
- Neuromuscular Coordination Lab, Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Renee Abbott
- Bioastronautics and Human Performance Lab, Department of Aerospace Engineering, Texas A&M University, College Station, TX, United States
| | - Nathan Keller
- Bioastronautics and Human Performance Lab, Department of Aerospace Engineering, Texas A&M University, College Station, TX, United States
| | - Deanna M. Kennedy
- Neuromuscular Coordination Lab, Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Kravets VG, Dixon JB, Ahmed NR, Clark TK. COMPASS: Computations for Orientation and Motion Perception in Altered Sensorimotor States. Front Neural Circuits 2021; 15:757817. [PMID: 34720889 PMCID: PMC8553968 DOI: 10.3389/fncir.2021.757817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
Reliable perception of self-motion and orientation requires the central nervous system (CNS) to adapt to changing environments, stimuli, and sensory organ function. The proposed computations required of neural systems for this adaptation process remain conceptual, limiting our understanding and ability to quantitatively predict adaptation and mitigate any resulting impairment prior to completing adaptation. Here, we have implemented a computational model of the internal calculations involved in the orientation perception system’s adaptation to changes in the magnitude of gravity. In summary, we propose that the CNS considers parallel, alternative hypotheses of the parameter of interest (in this case, the CNS’s internal estimate of the magnitude of gravity) and uses the associated sensory conflict signals (i.e., difference between sensory measurements and the expectation of them) to sequentially update the posterior probability of each hypothesis using Bayes rule. Over time, an updated central estimate of the internal magnitude of gravity emerges from the posterior probability distribution, which is then used to process sensory information and produce perceptions of self-motion and orientation. We have implemented these hypotheses in a computational model and performed various simulations to demonstrate quantitative model predictions of adaptation of the orientation perception system to changes in the magnitude of gravity, similar to those experienced by astronauts during space exploration missions. These model predictions serve as quantitative hypotheses to inspire future experimental assessments.
Collapse
Affiliation(s)
- Victoria G Kravets
- Bioastronautics Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Jordan B Dixon
- Bioastronautics Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Nisar R Ahmed
- COHRINT Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - Torin K Clark
- Bioastronautics Laboratory, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
7
|
Wada Y, Yamanaka T, Kitahara T, Kurata J. Effect of head roll-tilt on the subjective visual vertical in healthy participants: Towards better clinical measurement of gravity perception. Laryngoscope Investig Otolaryngol 2020; 5:941-949. [PMID: 33134543 PMCID: PMC7585259 DOI: 10.1002/lio2.461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 09/12/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Gravity perception is an essential function for spatial orientation and postural stability; however, its assessment is not easy. We evaluated the head-tilt perception gain (HTPG, that is, mean perceptual gain [perceived/actual tilt angle] during left or right head roll-tilt conditions) and head-upright subjective visual vertical (SVV) using a simple method developed by us to investigate the characteristics of gravity perception in healthy participants. METHODS We measured the SVV and head roll-tilt angle during head roll-tilt within ±30° of vertical in the sitting and standing positions while the participant maintained an upright trunk (sitting, 434 participants; standing, 263 participants). We evaluated the head-upright SVV, HTPG, and laterality of the HTPG. RESULTS We determined the reference ranges of the absolute head-upright SVV (<2.5°), HTPG (0.80-1.25), and HTPG laterality (<10%) for the sitting position. The head-upright SVV and HTPG laterality were not influenced by sex or age. However, the HTPG was significantly greater in women than in men and in middle-aged (30-64 years) and elderly (65-88 years) participants than in young participants (18-29 years). The HTPG, but not the head-upright SVV or HTPG laterality, was significantly higher in the standing vs sitting position. CONCLUSION The HTPG is a novel parameter of gravity perception involving functions of the peripheral otolith and neck somatosensory systems to the central nervous system. The HTPG in healthy participants is influenced by age and sex in the sitting position and immediately increases after standing to reinforce the righting reflex for unstable posture, which was not seen in the head-upright SVV, previously considered the only parameter. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- Yoshiro Wada
- Department of Otolaryngology, Head and Neck SurgeryNara Medical UniversityNaraJapan
- Wada ENT ClinicOsakaJapan
| | - Toshiaki Yamanaka
- Department of Otolaryngology, Head and Neck SurgeryNara Medical UniversityNaraJapan
| | - Tadashi Kitahara
- Department of Otolaryngology, Head and Neck SurgeryNara Medical UniversityNaraJapan
| | - Junichi Kurata
- Department of Mechanical Systems EngineeringKansai UniversityOsakaJapan
| |
Collapse
|
8
|
Dixon JB, Clark TK. Sensorimotor impairment from a new analog of spaceflight-altered neurovestibular cues. J Neurophysiol 2020; 123:209-223. [PMID: 31747329 DOI: 10.1152/jn.00156.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to microgravity during spaceflight causes central reinterpretations of orientation sensory cues in astronauts, leading to sensorimotor impairment upon return to Earth. Currently there is no ground-based analog for the neurovestibular system relevant to spaceflight. We propose such an analog, which we term the "wheelchair head-immobilization paradigm" (WHIP). Subjects lie on their side on a bed fixed to a modified electric wheelchair, with their head restrained by a custom facemask. WHIP prevents any head tilt relative to gravity, which normally produces coupled stimulation to the otoliths and semicircular canals, but does not occur in microgravity. Decoupled stimulation is produced through translation and rotation on the wheelchair by the subject using a joystick. Following 12 h of WHIP exposure, subjects systematically felt illusory sensations of self-motion when making head tilts and had significant decrements in balance and locomotion function using tasks similar to those assessed in astronauts postspaceflight. These effects were not observed in our control groups without head restraint, suggesting the altered neurovestibular stimulation patterns experienced in WHIP lead to relevant central reinterpretations. We conclude by discussing the findings in light of postspaceflight sensorimotor impairment, WHIP's uses beyond a spaceflight analog, limitations, and future work.NEW & NOTEWORTHY We propose, implement, and demonstrate the feasibility of a new analog for spaceflight-altered neurovestibular stimulation. Following extended exposure to the analog, we found subjects reported illusory self-motion perception. Furthermore, they demonstrated decrements in balance and locomotion, using tasks similar to those used to assess astronaut sensorimotor performance postspaceflight.
Collapse
Affiliation(s)
- Jordan B Dixon
- Smead Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado
| | - Torin K Clark
- Smead Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado
| |
Collapse
|
9
|
Clark TK, Newman MC, Karmali F, Oman CM, Merfeld DM. Mathematical models for dynamic, multisensory spatial orientation perception. PROGRESS IN BRAIN RESEARCH 2019; 248:65-90. [PMID: 31239146 DOI: 10.1016/bs.pbr.2019.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mathematical models have been proposed for how the brain interprets sensory information to produce estimates of self-orientation and self-motion. This process, spatial orientation perception, requires dynamically integrating multiple sensory modalities, including visual, vestibular, and somatosensory cues. Here, we review the progress in mathematical modeling of spatial orientation perception, focusing on dynamic multisensory models, and the experimental paradigms in which they have been validated. These models are primarily "black box" or "as if" models for how the brain processes spatial orientation cues. Yet, they have been effective scientifically, in making quantitative hypotheses that can be empirically assessed, and operationally, in investigating aircraft pilot disorientation, for example. The primary family of models considered, the observer model, implements estimation theory approaches, hypothesizing that internal models (i.e., neural systems replicating the behavior/dynamics of physical systems) are used to produce expected sensory measurements. Expected signals are then compared to actual sensory afference, yielding sensory conflict, which is weighted to drive central perceptions of gravity, angular velocity, and translation. This approach effectively predicts a wide range of experimental scenarios using a small set of fixed free parameters. We conclude with limitations and applications of existing mathematical models and important areas of future work.
Collapse
Affiliation(s)
- Torin K Clark
- Smead Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, United States.
| | - Michael C Newman
- Environmental Tectonics Corporation, Southampton, PA, United States
| | - Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, United States; Otolaryngology, Harvard Medical School, Boston, MA, United States
| | - Charles M Oman
- Human Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Daniel M Merfeld
- Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, United States; Naval Aerospace Medical Research Lab (NAMRL), Naval Medical Research Unit-Dayton (NAMRUD), Dayton, OH, United States
| |
Collapse
|
10
|
Rosenberg MJ, Galvan-Garza RC, Clark TK, Sherwood DP, Young LR, Karmali F. Human manual control precision depends on vestibular sensory precision and gravitational magnitude. J Neurophysiol 2018; 120:3187-3197. [PMID: 30379610 DOI: 10.1152/jn.00565.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Precise motion control is critical to human survival on Earth and in space. Motion sensation is inherently imprecise, and the functional implications of this imprecision are not well understood. We studied a "vestibular" manual control task in which subjects attempted to keep themselves upright with a rotational hand controller (i.e., joystick) to null out pseudorandom, roll-tilt motion disturbances of their chair in the dark. Our first objective was to study the relationship between intersubject differences in manual control performance and sensory precision, determined by measuring vestibular perceptual thresholds. Our second objective was to examine the influence of altered gravity on manual control performance. Subjects performed the manual control task while supine during short-radius centrifugation, with roll tilts occurring relative to centripetal accelerations of 0.5, 1.0, and 1.33 GC (1 GC = 9.81 m/s2). Roll-tilt vestibular precision was quantified with roll-tilt vestibular direction-recognition perceptual thresholds, the minimum movement that one can reliably distinguish as leftward vs. rightward. A significant intersubject correlation was found between manual control performance (defined as the standard deviation of chair tilt) and thresholds, consistent with sensory imprecision negatively affecting functional precision. Furthermore, compared with 1.0 GC manual control was more precise in 1.33 GC (-18.3%, P = 0.005) and less precise in 0.5 GC (+39.6%, P < 0.001). The decrement in manual control performance observed in 0.5 GC and in subjects with high thresholds suggests potential risk factors for piloting and locomotion, both on Earth and during human exploration missions to the moon (0.16 G) and Mars (0.38 G). NEW & NOTEWORTHY The functional implications of imprecise motion sensation are not well understood. We found a significant correlation between subjects' vestibular perceptual thresholds and performance in a manual control task (using a joystick to keep their chair upright), consistent with sensory imprecision negatively affecting functional precision. Furthermore, using an altered-gravity centrifuge configuration, we found that manual control precision was improved in "hypergravity" and degraded in "hypogravity." These results have potential relevance for postural control, aviation, and spaceflight.
Collapse
Affiliation(s)
- Marissa J Rosenberg
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,KBRwyle Science, Technology and Engineering, NASA Johnson Space Center , Houston, Texas.,Center for Space Medicine, Baylor College of Medicine , Houston, Texas
| | - Raquel C Galvan-Garza
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Torin K Clark
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts.,University of Colorado at Boulder , Boulder, Colorado
| | - David P Sherwood
- Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Laurence R Young
- Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Faisal Karmali
- Jenks Vestibular Physiology Lab, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|