1
|
Liu C, Shi J, Jiang Z, Jiang S, Wu Y, Peng D, Tang J, Guo L. RP11-495P10.1 promotes HCC cell proliferation by regulating reprogramming of glucose metabolism and acetylation of the NR4A3 promoter via the PDK1/PDH axis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:44-53. [PMID: 37905340 PMCID: PMC10875365 DOI: 10.3724/abbs.2023242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 11/02/2023] Open
Abstract
The incidence and related death of hepatocellular carcinoma (HCC) have increased over the past decades. However, the molecular mechanisms underlying HCC pathogenesis are not fully understood. Long noncoding RNA (lncRNA) RP11-495P10.1 has been proven to be closely associated with the progression of prostate cancer, but its role and specific mechanism in HCC are still unknown. Here, we identify that RP11-495P10.1 is highly expressed in HCC tissues and cells and contributes to the proliferation of HCC cells. Moreover, this study demonstrates that RP11-495P10.1 affects the proliferation of HCC by negatively regulating the expression of nuclear receptor subfamily 4 group a member 3 (NR4A3). Glycometabolism reprogramming is one of the main characteristics of tumor cells. In this study, we discover that RP11-495P10.1 regulates glycometabolism reprogramming by changing the expression of pyruvate dehydrogenase kinase 1 (PDK1) and pyruvate dehydrogenase (PDH), thus contributing to the proliferation of HCC cells. Furthermore, knockdown of RP11-495P10.1 increases enrichment of H3K27Ac in the promoter of NR4A3 by promoting the activity of PDH and the production of acetyl-CoA, which leads to the increased transcription of NR4A3. Altogether, RP11-495P10.1 promotes HCC cell proliferation by regulating the reprogramming of glucose metabolism and acetylation of the NR4A3 promoter via the PDK1/PDH axis, which provides an lncRNA-oriented therapeutic strategy for the diagnosis and treatment of HCC.
Collapse
MESH Headings
- Humans
- Male
- Acetylation
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Neoplastic
- Glucose
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- Pyruvate Dehydrogenase Complex/metabolism
Collapse
Affiliation(s)
- Chi Liu
- Department of Biochemistry & Molecular BiologyHarbin Medical UniversityHarbin150000China
- Department of Anatomy and HistologySchool of Preclinical MedicineChengdu UniversityChengdu610000China
| | - Jie Shi
- Department of Biochemistry & Molecular BiologyHarbin Medical UniversityHarbin150000China
| | - Zhengyuan Jiang
- Department of Biochemistry & Molecular BiologyHarbin Medical UniversityHarbin150000China
| | - Shan Jiang
- Department of Biochemistry & Molecular BiologyHarbin Medical UniversityHarbin150000China
| | - Yuan Wu
- General MedicinePeople’s Hospital of Ningxia Hui Autonomous RegionYinchuan750000China
| | - Dongqian Peng
- General MedicinePeople’s Hospital of Ningxia Hui Autonomous RegionYinchuan750000China
| | - Jiebing Tang
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbin150086China
| | - Linchi Guo
- General MedicinePeople’s Hospital of Ningxia Hui Autonomous RegionYinchuan750000China
- Department of Endocrinology and GeriatricsAffiliated Renhe Hospital of Sanxia UniversityYichang443000China
| |
Collapse
|
2
|
Solis EM, Good LB, Vázquez RG, Patnaik S, Hernandez-Reynoso AG, Ma Q, Angulo G, Dobariya A, Cogan SF, Pancrazio JJ, Pascual JM, Jakkamsetti V. Isolation of the murine Glut1 deficient thalamocortical circuit: wavelet characterization and reverse glucose dependence of low and gamma frequency oscillations. Front Neurosci 2023; 17:1191492. [PMID: 37829723 PMCID: PMC10565352 DOI: 10.3389/fnins.2023.1191492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/25/2023] [Indexed: 10/14/2023] Open
Abstract
Glucose represents the principal brain energy source. Thus, not unexpectedly, genetic glucose transporter 1 (Glut1) deficiency (G1D) manifests with encephalopathy. G1D seizures, which constitute a prominent disease manifestation, often prove refractory to medications but may respond to therapeutic diets. These seizures are associated with aberrant thalamocortical oscillations as inferred from human electroencephalography and functional imaging. Mouse electrophysiological recordings indicate that inhibitory neuron failure in thalamus and cortex underlies these abnormalities. This provides the motivation to develop a neural circuit testbed to characterize the mechanisms of thalamocortical synchronization and the effects of known or novel interventions. To this end, we used mouse thalamocortical slices on multielectrode arrays and characterized spontaneous low frequency oscillations and less frequent 30-50 Hz or gamma oscillations under near-physiological bath glucose concentration. Using the cortical recordings from layer IV among other regions recorded, we quantified oscillation epochs via an automated wavelet-based algorithm. This method proved analytically superior to power spectral density, short-time Fourier transform or amplitude-threshold detection. As expected from human observations, increased bath glucose reduced the lower frequency oscillations while augmenting the gamma oscillations, likely reflecting strengthened inhibitory neuron activity, and thus decreasing the low:high frequency ratio (LHR). This approach provides an ex vivo method for the evaluation of mechanisms, fuels, and pharmacological agents in a crucial G1D epileptogenic circuit.
Collapse
Affiliation(s)
- Elysandra M. Solis
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Levi B. Good
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rafael Granja Vázquez
- Department of Neuroscience and the Center for Advanced Pain Studies, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sourav Patnaik
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | | | - Qian Ma
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Gustavo Angulo
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Aksharkumar Dobariya
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Juan M. Pascual
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Eugene McDermott Center for Human Growth & Development/Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
3
|
Solis EM, Good LB, Granja Vázquez R, Patnaik S, Hernandez-Reynoso AG, Ma Q, Angulo G, Dobariya A, Cogan SF, Pancrazio JJ, Pascual JM, Jakkamsetti V. Isolation of the murine Glut1 deficient thalamocortical circuit: wavelet characterization and reverse glucose dependence of low and gamma frequency oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543611. [PMID: 37645928 PMCID: PMC10461930 DOI: 10.1101/2023.06.05.543611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Glucose represents the principal brain energy source. Thus, not unexpectedly, genetic glucose transporter 1 (Glut1) deficiency (G1D) manifests with encephalopathy. G1D seizures, which constitute a prominent disease manifestation, often prove refractory to medications but may respond to therapeutic diets. These seizures are associated with aberrant thalamocortical oscillations as inferred from human electroencephalography and functional imaging. Mouse electrophysiological recordings indicate that inhibitory neuron failure in thalamus and cortex underlies these abnormalities. This provides the motivation to develop a neural circuit testbed to characterize the mechanisms of thalamocortical synchronization and the effects of known or novel interventions. To this end, we used mouse thalamocortical slices on multielectrode arrays and characterized spontaneous low frequency oscillations and less frequent 30-50 Hz or gamma oscillations under near-physiological bath glucose concentration. Using the cortical recordings from layer IV, we quantified oscillation epochs via an automated wavelet-based algorithm. This method proved analytically superior to power spectral density, short-time Fourier transform or amplitude-threshold detection. As expected from human observations, increased bath glucose reduced the lower frequency oscillations while augmenting the gamma oscillations, likely reflecting strengthened inhibitory neuron activity. This approach provides an ex vivo method for the evaluation of mechanisms, fuels, and pharmacological agents in a crucial G1D epileptogenic circuit.
Collapse
Affiliation(s)
- Elysandra M. Solis
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
| | - Levi B. Good
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rafael Granja Vázquez
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
| | - Sourav Patnaik
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
| | | | - Qian Ma
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gustavo Angulo
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aksharkumar Dobariya
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stuart F. Cogan
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
| | - Joseph J. Pancrazio
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
| | - Juan M. Pascual
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Physiology; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Eugene McDermott Center for Human Growth & Development / Center for Human Genetics; The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vikram Jakkamsetti
- Department of Bioengineering; The University of Texas at Dallas, Richardson, Texas, USA
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Rajasekaran K, Ma Q, Good LB, Kathote G, Jakkamsetti V, Liu P, Avila A, Primeaux S, Alva JE, Markussen KH, Marin-Valencia I, Sirsi D, Hacker PMS, Gentry MS, Su J, Lu H, Pascual JM. Metabolic modulation of synaptic failure and thalamocortical hypersynchronization with preserved consciousness in Glut1 deficiency. Sci Transl Med 2022; 14:eabn2956. [PMID: 36197967 PMCID: PMC10276203 DOI: 10.1126/scitranslmed.abn2956] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Individuals with glucose transporter type I deficiency (G1D) habitually experience nutrient-responsive epilepsy associated with decreased brain glucose. However, the mechanistic association between blood glucose concentration and brain excitability in the context of G1D remains to be elucidated. Electroencephalography (EEG) in G1D individuals revealed nutrition time-dependent seizure oscillations often associated with preserved volition despite electrographic generalization and uniform average oscillation duration and periodicity, suggesting increased facilitation of an underlying neural loop circuit. Nonlinear EEG ictal source localization analysis and simultaneous EEG/functional magnetic resonance imaging converged on the thalamus-sensorimotor cortex as one potential circuit, and 18F-deoxyglucose positron emission tomography (18F-DG-PET) illustrated decreased glucose accumulation in this circuit. This pattern, reflected in a decreased thalamic to striatal 18F signal ratio, can aid with the PET imaging diagnosis of the disorder, whereas the absence of noticeable ictal behavioral changes challenges the postulated requirement for normal thalamocortical activity during consciousness. In G1D mice, 18F-DG-PET and mass spectrometry also revealed decreased brain glucose and glycogen, but preserved tricarboxylic acid cycle intermediates, indicating no overall energy metabolism failure. In brain slices from these animals, synaptic inhibition of cortical pyramidal neurons and thalamic relay neurons was decreased, and neuronal disinhibition was mitigated by metabolic sources of carbon; tonic-clonic seizures were also suppressed by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor inhibition. These results pose G1D as a thalamocortical synaptic disinhibition disease associated with increased glucose-dependent neuronal excitability, possibly in relation to reduced glycogen. Together with findings in other metabolic defects, inhibitory neuron dysfunction is emerging as a modulable mechanism of hyperexcitability.
Collapse
Affiliation(s)
- Karthik Rajasekaran
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qian Ma
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Levi B. Good
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gauri Kathote
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peiying Liu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adrian Avila
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sharon Primeaux
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julio Enciso Alva
- Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Isaac Marin-Valencia
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deepa Sirsi
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter M. S. Hacker
- St. John’s College and Department of Philosophy, University of Oxford, Oxford OX1 3JP, UK
- University College London Queen’s Square Institute of Neurology, London WC1N 3BG, UK
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jianzhong Su
- Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan M. Pascual
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development/Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Metabolic and Cellular Compartments of Acetyl-CoA in the Healthy and Diseased Brain. Int J Mol Sci 2022; 23:ijms231710073. [PMID: 36077475 PMCID: PMC9456256 DOI: 10.3390/ijms231710073] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
The human brain is characterised by the most diverse morphological, metabolic and functional structure among all body tissues. This is due to the existence of diverse neurons secreting various neurotransmitters and mutually modulating their own activity through thousands of pre- and postsynaptic interconnections in each neuron. Astroglial, microglial and oligodendroglial cells and neurons reciprocally regulate the metabolism of key energy substrates, thereby exerting several neuroprotective, neurotoxic and regulatory effects on neuronal viability and neurotransmitter functions. Maintenance of the pool of mitochondrial acetyl-CoA derived from glycolytic glucose metabolism is a key factor for neuronal survival. Thus, acetyl-CoA is regarded as a direct energy precursor through the TCA cycle and respiratory chain, thereby affecting brain cell viability. It is also used for hundreds of acetylation reactions, including N-acetyl aspartate synthesis in neuronal mitochondria, acetylcholine synthesis in cholinergic neurons, as well as divergent acetylations of several proteins, peptides, histones and low-molecular-weight species in all cellular compartments. Therefore, acetyl-CoA should be considered as the central point of metabolism maintaining equilibrium between anabolic and catabolic pathways in the brain. This review presents data supporting this thesis.
Collapse
|