1
|
Protective potential of dimethyl fumarate in a mouse model of thalamocortical demyelination. Brain Struct Funct 2018; 223:3091-3106. [PMID: 29744572 PMCID: PMC6132667 DOI: 10.1007/s00429-018-1680-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Alterations in cortical cellular organization, network functionality, as well as cognitive and locomotor deficits were recently suggested to be pathological hallmarks in multiple sclerosis and corresponding animal models as they might occur following demyelination. To investigate functional changes following demyelination in a well-defined, topographically organized neuronal network, in vitro and in vivo, we focused on the primary auditory cortex (A1) of mice in the cuprizone model of general de- and remyelination. Following myelin loss in this model system, the spatiotemporal propagation of incoming stimuli in A1 was altered and the hierarchical activation of supra- and infragranular cortical layers was lost suggesting a profound effect exerted on neuronal network level. In addition, the response latency in field potential recordings and voltage-sensitive dye imaging was increased following demyelination. These alterations were accompanied by a loss of auditory discrimination abilities in freely behaving animals, a reduction of the nuclear factor-erythroid 2-related factor-2 (Nrf-2) protein in the nucleus in histological staining and persisted during remyelination. To find new strategies to restore demyelination-induced network alteration in addition to the ongoing remyelination, we tested the cytoprotective potential of dimethyl fumarate (DMF). Therapeutic treatment with DMF during remyelination significantly modified spatiotemporal stimulus propagation in the cortex, reduced the cognitive impairment, and prevented the demyelination-induced decrease in nuclear Nrf-2. These results indicate the involvement of anti-oxidative mechanisms in regulating spatiotemporal cortical response pattern following changes in myelination and point to DMF as therapeutic compound for intervention.
Collapse
|
2
|
Momose-Sato Y, Sato K, Kamino K. Monitoring Population Membrane Potential Signals During Development of the Vertebrate Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:213-42. [DOI: 10.1007/978-3-319-17641-3_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Ziskind-Conhaim L. Neuronal correlates of the dominant role of GABAergic transmission in the developing mouse locomotor circuitry. Ann N Y Acad Sci 2013; 1279:43-53. [PMID: 23531001 DOI: 10.1111/nyas.12064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GABA and glycine are the primary fast inhibitory neurotransmitters in the mammalian spinal cord, but they differ in their regulatory functions, balancing neuronal excitation in the locomotor circuitry in the mammalian spinal cord. This review focuses on the unique role of GABAergic transmission during the assembly of the locomotor circuitry, from early embryonic stages when GABA(A) receptor-activated membrane depolarizations increase network excitation, to the period of early postnatal development, when GABAergic inhibition plays a primary role in coordinating the patterns of locomotor-like motor activity. To gain insight into the mechanisms that underlie the dominant contribution of GABAergic transmission to network activity during that period, we examined the morphological and electrophysiological properties of a subpopulation of GABAergic commissural interneurons that fit well with their putative function as integrated components of the rhythm-coordinating networks in the mouse spinal cord.
Collapse
Affiliation(s)
- Lea Ziskind-Conhaim
- Department of Neuroscience, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
4
|
Hama N, Ito SI, Hirota A. An improved multiple-site optical membrane potential-recording system to obtain high-quality single sweep signals in intact rat cerebral cortex. J Neurosci Methods 2010; 194:73-80. [DOI: 10.1016/j.jneumeth.2010.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/14/2010] [Accepted: 09/21/2010] [Indexed: 11/26/2022]
|
5
|
O'Donovan MJ, Bonnot A, Mentis GZ, Arai Y, Chub N, Shneider NA, Wenner P. Imaging the spatiotemporal organization of neural activity in the developing spinal cord. Dev Neurobiol 2008; 68:788-803. [PMID: 18383543 DOI: 10.1002/dneu.20620] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we discuss the use of imaging to visualize the spatiotemporal organization of network activity in the developing spinal cord of the chick embryo and the neonatal mouse. We describe several different methods for loading ion- and voltage-sensitive dyes into spinal neurons and consider the advantages and limitations of each one. We review work in the chick embryo, suggesting that motoneurons play a critical role in the initiation of each cycle of spontaneous network activity and describe how imaging has been used to identify a class of spinal interneuron that appears to be the avian homolog of mammalian Renshaw cells or 1a-inhibitory interneurons. Imaging of locomotor-like activity in the neonatal mouse revealed a wave-like activation of motoneurons during each cycle of discharge. We discuss the significance of this finding and its implications for understanding how locomotor-like activity is coordinated across different segments of the cord. In the last part of the review, we discuss some of the exciting new prospects for the future.
Collapse
Affiliation(s)
- Michael J O'Donovan
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Okada Y, Masumiya H, Tamura Y, Oku Y. Respiratory and metabolic acidosis differentially affect the respiratory neuronal network in the ventral medulla of neonatal rats. Eur J Neurosci 2008; 26:2834-43. [PMID: 18001280 DOI: 10.1111/j.1460-9568.2007.05891.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the medullary respiratory neuronal network to respiratory and metabolic acidosis are different. To test these hypotheses, we analysed respiratory-related activity in the pFRG/RTN and preBötC/VRG of the neonatal rat brainstem-spinal cord in vitro by optical imaging using a voltage-sensitive dye, and compared the effects of respiratory and metabolic acidosis on these two populations. We found that the spatiotemporal responses of respiratory-related regional activities to respiratory and metabolic acidosis are fundamentally different, although both acidosis similarly augmented respiratory output by increasing respiratory frequency. PreBötC/VRG activity, which is mainly inspiratory, was augmented by respiratory acidosis. Respiratory-modulated pixels increased in the preBötC/VRG area in response to respiratory acidosis. Metabolic acidosis shifted the respiratory phase in the pFRG/RTN; the pre-inspiratory dominant pattern shifted to inspiratory dominant. The responses of the pFRG/RTN activity to respiratory and metabolic acidosis are complex, and involve either augmentation or reduction in the size of respiratory-related areas. Furthermore, the activation pattern in the pFRG/RTN switched bi-directionally between pre-inspiratory/inspiratory and post-inspiratory. Electrophysiological study supported the results of our optical imaging study. We conclude that respiratory and metabolic acidosis differentially affect activities of the pFRG/RTN and preBötC/VRG, inducing switching and shifts of the respiratory phase. We suggest that they differently influence the coupling states between the pFRG/RTN and preBötC/VRG.
Collapse
Affiliation(s)
- Yasumasa Okada
- Department of Medicine, Keio University Tsukigase Rehabilitation Center, Izu, Japan
| | | | | | | |
Collapse
|
7
|
Glover JC, Sato K, Sato YM. Using voltage-sensitive dye recording to image the functional development of neuronal circuits in vertebrate embryos. Dev Neurobiol 2008; 68:804-16. [DOI: 10.1002/dneu.20629] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Oku Y, Masumiya H, Okada Y. Postnatal developmental changes in activation profiles of the respiratory neuronal network in the rat ventral medulla. J Physiol 2007; 585:175-86. [PMID: 17884928 PMCID: PMC2375450 DOI: 10.1113/jphysiol.2007.138180] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Two putative respiratory rhythm generators (RRGs), the para-facial respiratory group (pFRG) and the pre-Bötzinger complex (preBötC), have been identified in the neonatal rodent brainstem. To elucidate their functional roles during the neonatal period, we evaluated developmental changes of these RRGs by optical imaging using a voltage-sensitive dye. Optical signals, recorded from the ventral medulla of brainstem-spinal cord preparations of neonatal (P0-P4) rats (n = 44), were analysed by a cross correlation method. With development during the first few postnatal days, the respiratory-related activity in the pFRG reduced and shifted from a preinspiratory (P0-P1) to an inspiratory (P2-P4) pattern, whereas preBötC activity remained unchanged. The mu-opioid agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) augmented preinspiratory activity in the pFRG, while the mu-opioid antagonist naloxone induced changes in spatiotemporal activation profiles that closely mimicked the developmental changes. These results are consistent with the recently proposed hypothesis by Janczewski and Feldman that the pFRG is activated to compensate for the depression of the preBötC by perinatal opiate surge. We conclude that significant reorganization of the respiratory neuronal network, characterized by a reduction of preinspiratory activity in the pFRG, occurs at P1-P2 in rats. The changes in spatiotemporal activation profiles of the pFRG neurones may reflect changes in the mode of coupling of the two respiratory rhythm generators.
Collapse
Affiliation(s)
- Yoshitaka Oku
- Department of Physiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | |
Collapse
|
9
|
Arai Y, Mentis GZ, Wu JY, O'Donovan MJ. Ventrolateral origin of each cycle of rhythmic activity generated by the spinal cord of the chick embryo. PLoS One 2007; 2:e417. [PMID: 17479162 PMCID: PMC1855078 DOI: 10.1371/journal.pone.0000417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 03/15/2007] [Indexed: 11/19/2022] Open
Abstract
Background The mechanisms responsible for generating rhythmic motor activity in the developing spinal cord of the chick embryo are poorly understood. Here we investigate whether the activity of motoneurons occurs before other neuronal populations at the beginning of each cycle of rhythmic discharge. Methodology/Principal Findings The spatiotemporal organization of neural activity in transverse slices of the lumbosacral cord of the chick embryo (E8-E11) was investigated using intrinsic and voltage-sensitive dye (VSD) imaging. VSD signals accompanying episodes of activity comprised a rhythmic decrease in light transmission that corresponded to each cycle of electrical activity recorded from the ipsilateral ventral root. The rhythmic signals were widely synchronized across the cord face, and the largest signal amplitude was in the ventrolateral region where motoneurons are located. In unstained slices we recorded two classes of intrinsic signal. In the first, an episode of rhythmic activity was accompanied by a slow decrease in light transmission that peaked in the dorsal horn and decayed dorsoventrally. Superimposed on this signal was a much smaller rhythmic increase in transmission that was coincident with each cycle of discharge and whose amplitude and spatial distribution was similar to that of the VSD signals. At the onset of a spontaneously occurring episode and each subsequent cycle, both the intrinsic and VSD signals originated within the lateral motor column and spread medially and then dorsally. By contrast, following a dorsal root stimulus, the optical signals originated within the dorsal horn and traveled ventrally to reach the lateral motor column. Conclusions/Significance These findings suggest that motoneuron activity contributes to the initiation of each cycle of rhythmic activity, and that motoneuron and/or R-interneuron synapses are a plausible site for the activity-dependent synaptic depression that modeling studies have identified as a critical mechanism for cycling within an episode.
Collapse
Affiliation(s)
- Yoshiyasu Arai
- Laboratory of Neural Control, Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - George Z. Mentis
- Laboratory of Neural Control, Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jiang-young Wu
- Laboratory of Neural Control, Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- Department of Physiology and Biophysics, Georgetown University, Washington, D. C., United States of America
| | - Michael J. O'Donovan
- Laboratory of Neural Control, Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Fukuda K, Okada Y, Yoshida H, Aoyama R, Nakamura M, Chiba K, Toyama Y. Ischemia-induced disturbance of neuronal network function in the rat spinal cord analyzed by voltage-imaging. Neuroscience 2006; 140:1453-65. [PMID: 16675139 DOI: 10.1016/j.neuroscience.2006.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 03/07/2006] [Accepted: 03/12/2006] [Indexed: 11/24/2022]
Abstract
Using a voltage-imaging technique, we analyzed the acute effect of ischemia, hypoxia and hypoglycemia on the neuronal network function of the rat spinal cord. Ischemic, hypoxic, or hypoglycemic stress was loaded to spinal cord slices with an oxygen- and glucose-free, oxygen-free, or glucose-free mock cerebrospinal fluid, respectively. Depolarizing signals in the dorsal horn, induced by dorsal root stimulation, consisted of fast (pre-synaptic) and slow (post-synaptic) components. The slow component was attenuated much more than the fast component under an ischemic condition (P<0.0002). Post-synaptic neuronal activities in lamina III-IV were suppressed earlier than those in lamina I-II. The nerve fiber was relatively resistant to ischemia. As long as the fast component was preserved in the dorsal horn, the suppression of the fast and slow components was reversible. There was a significant difference (P<0.05) in the recovered slow component sizes between the group in which the fast component was suppressed by more than 20% by ischemia and the group in which the suppression was less than 20%. Further prolonged stress irreversibly eliminated most of the slow component, and attenuated the fast component (to 59+/-8%) accompanied by cellular damage in histology. Suppression of neural activity by hypoxic or hypoglycemic stress was less prominent than that by ischemia. Prolonged ischemic stress suddenly and irreversibly eliminated depolarizing signals in the ventral horn accompanied by morphological damage of motoneurons. Immunohistochemical staining was negative for apoptosis. We have, for the first time, analyzed the processes of spinal cord disturbance induced by ischemia, hypoxia and hypoglycemia at the neuronal network level by directly observing the regional neuronal network activities within the spinal cord. We conclude that synaptic transmission in the dorsal horn, especially in deep regions, is vulnerable and first affected by these stresses. Severe ischemic stress induces irreversible dysfunction of neurons accompanied by eventual cell death in both dorsal and ventral horns.
Collapse
Affiliation(s)
- K Fukuda
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|