1
|
Doan H, Tavasoli S, Seo G, Park HS, Park H, Roh J. Electro-tactile modulation of muscle activation and intermuscular coordination in the human upper extremity. Sci Rep 2025; 15:2559. [PMID: 39833302 PMCID: PMC11756415 DOI: 10.1038/s41598-025-86342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Electro-tactile stimulation (ETS) can be a promising aid in augmenting sensation for those with sensory deficits. Although applications of ETS have been explored, the impact of ETS on the underlying strategies of neuromuscular coordination remains largely unexplored. We investigated how ETS, alone or in the presence of mechano-tactile environment change, modulated the electromyogram (EMG) of individual muscles during force control and how the stimulation modulated the attributes of intermuscular coordination, assessed by muscle synergy analysis, in human upper extremities. ETS was applied to either the thumb or middle fingertip which had greater contact with the handle, grasped by the participant, and supported a target force match. EMGs were recorded from 11 arm muscles of 15 healthy participants during three-dimensional exploratory force control. EMGs were modeled as the linear combination of muscle co-activation patterns (the composition of muscle synergies) and their activation profiles. Individual arm muscle activation changed depending on the ETS location on the finger. The composition of muscle synergies was conserved, but synergy activation coefficients altered reflecting the effects of electro-tactile modulation. The mechano-tactile modulation tended to decrease the effects of ETS on the individual muscle activation and synergy activation magnitude. This study provides insights into sensory augmentation and its impact on intermuscular coordination in the human upper extremity.
Collapse
Affiliation(s)
- Hy Doan
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA
| | - Shahabedin Tavasoli
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA
| | - Gang Seo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Hyung-Soon Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hangue Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Electrical and Computer Engineering, Texas A&M University,, TX, 77843, College Station, USA
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Department of MetaBioHealth, Sungkyunkwan University, Suwon, South Korea
| | - Jinsook Roh
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA.
| |
Collapse
|
2
|
Manickaraj N, Kavanagh JJ, Bisset LM. Altered anconeus muscle activation characteristics during isometric gripping in individuals with lateral elbow tendinopathy compared with age- and sex-matched control. J Shoulder Elbow Surg 2024:S1058-2746(24)00957-1. [PMID: 39742949 DOI: 10.1016/j.jse.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Individuals with lateral epicondyle tendinopathy (LET) commonly experience gripping deficits, which are marked by pain and altered motor control of the forearm extensors and flexors. Although delayed activation of the anconeus muscle during rapid wrist extension has been observed in LET, its role during gripping is not well understood. This study aimed to investigate anconeus activation and its relation to forearm muscle activity during gripping in individuals with LET. METHODS Eleven participants with LET and 11 healthy, age-, sex-, and limb-matched controls performed steady-state isometric gripping at 15% and 30% of their maximum voluntary contraction (MVC). Surface electromyography was recorded from anconeus and 6 forearm muscles. Standard clinical assessments for LET were conducted to evaluate the severity of the condition. RESULTS Participants with LET exhibited increased relative activation of the anconeus compared with the forearm flexors, but not with the extensors, during both 15% and 30% MVC gripping. In addition, the LET group demonstrated an increased coactivation ratio between anconeus and extensor carpi radialis brevis, as well as the flexor digitorum superficialis, during 15% MVC. At 30% MVC, this increased coactivation was observed between anconeus and all 3 flexors (flexor digitorum superficialis, flexor carpi radialis, and flexor carpi ulnaris). Lower anconeus activation was associated with greater LET-related disability, whereas higher anconeus activation was associated with increased anconeus tenderness. CONCLUSION This study presents novel evidence of an adaptive motor pattern in LET, characterized by increased relative activation and coactivation of the anconeus muscle depending on grip force. Signs of maladaptive motor patterns emerge when grip force becomes painful. These findings enhance our understanding of anconeus dysfunction in LET and the gripping deficits that accompany it, offering new insights into potential management strategies for this condition.
Collapse
Affiliation(s)
- Nagarajan Manickaraj
- School of Health Science, Menzies Health Institute, University of Tasmania, Sandy Bay, TAS, Australia.
| | - Justin J Kavanagh
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
| | - Leanne M Bisset
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
3
|
Sato Y, Takanaka S, Izumi SI. Alteration of Interhemispheric Inhibition in Patients With Lateral Epicondylalgia. THE JOURNAL OF PAIN 2024; 25:104440. [PMID: 38065465 DOI: 10.1016/j.jpain.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Patients with lateral epicondylalgia (LE) show alterations in the primary motor cortex (M1) contralateral to the affected side. Cortical alterations have been investigated by measuring intracortical facilitation/inhibition; however, their association with pain remains controversial. Furthermore, no studies have investigated changes in interhemispheric inhibition (IHI). IHI can be assessed using the ipsilateral silent period (iSP) known as the temporary inhibition of electromyographic activity evoked by transcranial magnetic stimulation in the ipsilateral M1 of the contracting muscle. To better understand the relationship between cortical alterations and pain in LE, this observational study investigated the relationship between iSP and pain in LE. Twenty-seven healthy volunteers and 21 patients with LE were recruited. The duration of iSP in the extensor carpi radialis brevis was measured. The IHI asymmetry ratio was calculated to determine the IHI balance. Pain and disability were scored using the Japanese version of the patient-rated elbow evaluation. We observed increased inhibitory input from the ipsilateral M1 on the affected side to the contralateral M1 in LE. Additionally, the IHI balance correlated with pain severity. Hence, regulating imbalanced IHI can potentially decrease lateral elbow pain in LE. PERSPECTIVE: Patients with lateral epicondylalgia (LE) experience persistent pain and cortical alterations. However, there is no established relationship between cortical alterations and pain. This study demonstrated that the interhemispheric inhibition (IHI) balance is correlated with pain. Regulating imbalanced IHI can potentially decrease lateral elbow pain in patients with LE.
Collapse
Affiliation(s)
- Yosuke Sato
- Course of Rehabilitation, Department of Health Sciences, Tohoku Fukushi University, Aoba-ku, City, Miyagi, Japan; Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Shun Takanaka
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan; Graduate School of Biomedical Engineering, Tohoku University, Sendai City, Miyagi, Japan
| |
Collapse
|
4
|
Weinman LE, Del Vecchio A, Mazzo MR, Enoka RM. Motor unit modes in the calf muscles during a submaximal isometric contraction are changed by brief stretches. J Physiol 2024; 602:1385-1404. [PMID: 38513002 DOI: 10.1113/jp285437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
The purpose of our study was to investigate the influence of a stretch intervention on the common modulation of discharge rate among motor units in the calf muscles during a submaximal isometric contraction. The current report comprises a computational analysis of a motor unit dataset that we published previously (Mazzo et al., 2021). Motor unit activity was recorded from the three main plantar flexor muscles while participants performed an isometric contraction at 10% of the maximal voluntary contraction force before and after each of two interventions. The interventions were a control task (standing balance) and static stretching of the plantar flexor muscles. A factorization analysis on the smoothed discharge rates of the motor units from all three muscles yielded three modes that were independent of the individual muscles. The composition of the modes was not changed by the standing-balance task, whereas the stretching exercise reduced the average correlation in the second mode and increased it in the third mode. A centroid analysis on the correlation values showed that most motor units were associated with two or three modes, which were presumed to indicate shared synaptic inputs. The percentage of motor units adjacent to the seven centroids changed after both interventions: Control intervention, mode 1 decreased and the shared mode 1 + 2 increased; stretch intervention, shared modes either decreased (1 + 2) or increased (1 + 3). These findings indicate that the neuromuscular adjustments during both interventions were sufficient to change the motor unit modes when the same task was performed after each intervention. KEY POINTS: Based on covariation of the discharge rates of motor units in the calf muscles during a submaximal isometric contraction, factor analysis was used to assign the correlated discharge trains to three motor unit modes. The motor unit modes were determined from the combined set of all identified motor units across the three muscles before and after each participant performed a control and a stretch intervention. The composition of the motor unit modes changed after the stretching exercise, but not after the control task (standing balance). A centroid analysis on the distribution of correlation values found that most motor units were associated with a shared centroid and this distribution, presumably reflecting shared synaptic input, changed after both interventions. Our results demonstrate how the distribution of multiple common synaptic inputs to the motor neurons innervating the plantar flexor muscles changes after a brief series of stretches.
Collapse
Affiliation(s)
- Logan E Weinman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen, Germany
| | - Melissa R Mazzo
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
5
|
Hill CE, Heales LJ, Stanton R, Holmes MWR, Kean CO. Effects of multidirectional elastic tape on forearm muscle activity and wrist extension during submaximal gripping in individuals with lateral elbow tendinopathy: A randomised crossover trial. Clin Biomech (Bristol, Avon) 2022; 100:105810. [PMID: 36327545 DOI: 10.1016/j.clinbiomech.2022.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lateral elbow tendinopathy is associated with changes to forearm muscle activity and wrist posture during gripping. Multidirectional elastic tape is thought to exert a deloading effect on underlying musculotendinous structures, which could potentially alter muscle activity or wrist posture. METHODS This single-blinded randomised crossover trial compared the immediate effects of tensioned multidirectional elastic tape, untensioned control tape, and no tape, in individuals with lateral elbow tendinopathy. Muscle activity of extensor carpi radialis longus and brevis, extensor carpi ulnaris, and extensor digitorum and wrist extension angle were recorded during a submaximal gripping task. Muscle activity was normalised to the maximum amplitude recorded during maximal grip. Change scores were calculated (post-condition minus baseline). Repeated-measure analyses of variance were used to examine between-condition differences. FINDINGS 27 participants (16 males, mean age (SD): 48.6 (11.9) years) underwent all conditions. Extensor digitorum muscle activity was reduced during the multidirectional elastic tape, compared to control tape and no tape (MD -5.6% [95%CI: -9.9 to -1.3], MD -5.8% [95%CI: -10.2 to -1.4], respectively). Extensor carpi ulnaris muscle activity was reduced during the multidirectional elastic tape, compared to the control tape (mean difference [MD] -3.2% [95%CI: -5.3 to -1.1]), but increased during the control tape, compared to the no tape (MD 2.9% [95%CI: 0.8 to 5.0]). No differences were observed in extensor carpi radialis brevis or longus muscle activity, or extension wrist angle between conditions. INTERPRETATION A decreased in extensor carpi ulnaris and extensor digitorum muscle activity during multidirectional elastic tape may be evidence of a deloading effect during submaximal gripping.
Collapse
Affiliation(s)
- Caitlin E Hill
- School of Health, Medical and Applied Sciences, Central Queensland University, Norman Gardens, QLD, Australia
| | - Luke J Heales
- School of Health, Medical and Applied Sciences, Central Queensland University, Norman Gardens, QLD, Australia
| | - Robert Stanton
- School of Health, Medical and Applied Sciences, Central Queensland University, Norman Gardens, QLD, Australia; Appleton Institute, Central Queensland University, Adelaide, SA, Australia
| | - Michael W R Holmes
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Crystal O Kean
- School of Health, Medical and Applied Sciences, Central Queensland University, Norman Gardens, QLD, Australia.
| |
Collapse
|
6
|
Stephan Y, Sutin AR, Canada B, Deshayes M, Kekäläinen T, Terracciano A. Five-factor model personality traits and grip strength: Meta-analysis of seven studies. J Psychosom Res 2022; 160:110961. [PMID: 35779438 PMCID: PMC9932623 DOI: 10.1016/j.jpsychores.2022.110961] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To examine the association between Five-Factor Model personality traits and grip strength. METHOD Adults aged 16 to 104 years old (N > 40,000) were from the Health and Retirement Study, the Midlife in the United States Study, The English Longitudinal Study of Aging, the National Health and Aging Trends Survey, the United Kingdom Household Longitudinal Study, and the Wisconsin Longitudinal Study graduate and sibling samples. Participants had data on personality traits, demographic factors, grip strength, and mediators such as depressive symptoms, physical activity, body mass index (BMI), and c-reactive protein (CRP). RESULTS Across all samples and a meta-analysis, higher neuroticism was related to lower grip strength (meta-analytic estimate: -0.07, 95%CI: -0.075; -0.056). Higher extraversion (0.04, 95%CI: 0.022; 0.060), openness (0.05, 95%CI: 0.032; 0.062), and conscientiousness (0.05, 95%CI: 0.04; 0.065) were associated with higher grip strength across most samples and the meta-analysis. Depressive symptoms were the most consistent mediators between neuroticism and grip strength. Depressive symptoms and physical activity partly mediated the associations with extraversion, openness, and conscientiousness. Lower CRP partly mediated the association with conscientiousness. Sex moderated the associations for extraversion, openness, and conscientiousness, with stronger associations among males. Age moderated the neuroticism association, with stronger associations among younger individuals. CONCLUSION This study provides replicable evidence that personality is related to grip strength and identifies potential moderators and mediators of these associations. Overall, higher neuroticism is a risk factor for low grip strength, whereas high extraversion, openness, and conscientiousness may be protective.
Collapse
Affiliation(s)
| | - Angelina R. Sutin
- Department of Behavioral Sciences and Social Medicine, College of Medicine, Florida State University, USA
| | | | | | - Tiia Kekäläinen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Finland.
| | - Antonio Terracciano
- Department of Geriatrics, College of Medicine, Florida State University, USA.
| |
Collapse
|
7
|
Kantak SS, Johnson T, Zarzycki R. Linking Pain and Motor Control: Conceptualization of Movement Deficits in Patients With Painful Conditions. Phys Ther 2022; 102:6497839. [PMID: 35079833 DOI: 10.1093/ptj/pzab289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/13/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
UNLABELLED When people experience or expect pain, they move differently. Pain-altered movement strategies, collectively described here as pain-related movement dysfunction (PRMD), may persist well after pain resolves and, ultimately, may result in altered kinematics and kinetics, future reinjury, and disability. Although PRMD may manifest as abnormal movements that are often evident in clinical assessment, the underlying mechanisms are complex, engaging sensory-perceptual, cognitive, psychological, and motor processes. Motor control theories provide a conceptual framework to determine, assess, and target processes that contribute to normal and abnormal movement and thus are important for physical therapy and rehabilitation practice. Contemporary understanding of motor control has evolved from reflex-based understanding to a more complex task-dependent interaction between cognitive and motor systems, each with distinct neuroanatomic substrates. Though experts have recognized the importance of motor control in the management of painful conditions, there is no comprehensive framework that explicates the processes engaged in the control of goal-directed actions, particularly in the presence of pain. This Perspective outlines sensory-perceptual, cognitive, psychological, and motor processes in the contemporary model of motor control, describing the neural substrates underlying each process and highlighting how pain and anticipation of pain influence motor control processes and consequently contribute to PRMD. Finally, potential lines of future inquiry-grounded in the contemporary model of motor control-are outlined to advance understanding and improve the assessment and treatment of PRMD. IMPACT This Perspective proposes that approaching PRMD from a contemporary motor control perspective will uncover key mechanisms, identify treatment targets, inform assessments, and innovate treatments across sensory-perceptual, cognitive, and motor domains, all of which have the potential to improve movement and functional outcomes in patients with painful conditions.
Collapse
Affiliation(s)
- Shailesh S Kantak
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA.,Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
| | - Tessa Johnson
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA
| | - Ryan Zarzycki
- Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
| |
Collapse
|
8
|
Wiebusch M, Coombes BK, Silva MF. Joint position sense, motor imagery and tactile acuity in lateral elbow tendinopathy: A cross-sectional study. Musculoskelet Sci Pract 2021; 55:102422. [PMID: 34271414 DOI: 10.1016/j.msksp.2021.102422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/30/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Impairments of sensorimotor function are evident in individuals with lateral elbow tendinopathy (LET), although understanding of the mechanisms for this is lacking. OBJECTIVES To determine if motor imagery, tactile acuity and wrist joint position sense (JPS) are impaired in participants with unilateral LET compared to controls, whether deficits are localised to the affected side, and whether deficits relate to severity of pain. DESIGN Cross-sectional study with control group. METHODS 14 participants with unilateral LET of 6 weeks or longer and 14 matched control participants were assessed bilaterally for motor imagery (left/right hand judgement task), tactile acuity (two-point discrimination test) and wrist JPS (reposition test for flexion and extension). Pain levels were measured using a numeric rating scale. RESULTS Significant differences in JPS were observed for wrist extension only, such that participants with LET adopted less extended postures with their affected side when compared to their unaffected side (MD = 2.97°; p = 0.01) and to the matched-affected side of controls (MD = 4.89°; p < 0.01). No differences in tactile acuity or motor imagery were observed. CONCLUSION Altered wrist extension JPS, but not motor imagery or tactile acuity, was found in the affected side of patients with unilateral LET when compared to non-injured side and asymptomatic controls.
Collapse
Affiliation(s)
- Matheus Wiebusch
- Post-Graduate Program in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, 245 Sarmento Leite Street, Postcode: 90050-170, Porto Alegre, Brazil.
| | - Brooke Kaye Coombes
- School of Allied Health Sciences, Griffith University, Postcode: 4111, Brisbane, Australia.
| | - Marcelo Faria Silva
- Post-Graduate Program in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, 245 Sarmento Leite Street, Postcode: 90050-170, Porto Alegre, Brazil; Faculty of Physiotherapy, Federal University of Health Sciences of Porto Alegre, 245 Sarmento Leite Street, Postcode: 90050-170, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Turpin NA, Uriac S, Dalleau G. How to improve the muscle synergy analysis methodology? Eur J Appl Physiol 2021; 121:1009-1025. [PMID: 33496848 DOI: 10.1007/s00421-021-04604-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/10/2021] [Indexed: 01/02/2023]
Abstract
Muscle synergy analysis is increasingly used in domains such as neurosciences, robotics, rehabilitation or sport sciences to analyze and better understand motor coordination. The analysis uses dimensionality reduction techniques to identify regularities in spatial, temporal or spatio-temporal patterns of multiple muscle activation. Recent studies have pointed out variability in outcomes associated with the different methodological options available and there was a need to clarify several aspects of the analysis methodology. While synergy analysis appears to be a robust technique, it remain a statistical tool and is, therefore, sensitive to the amount and quality of input data (EMGs). In particular, attention should be paid to EMG amplitude normalization, baseline noise removal or EMG filtering which may diminish or increase the signal-to-noise ratio of the EMG signal and could have major effects on synergy estimates. In order to robustly identify synergies, experiments should be performed so that the groups of muscles that would potentially form a synergy are activated with a sufficient level of activity, ensuring that the synergy subspace is fully explored. The concurrent use of various synergy formulations-spatial, temporal and spatio-temporal synergies- should be encouraged. The number of synergies represents either the dimension of the spatial structure or the number of independent temporal patterns, and we observed that these two aspects are often mixed in the analysis. To select a number, criteria based on noise estimates, reliability of analysis results, or functional outcomes of the synergies provide interesting substitutes to criteria solely based on variance thresholds.
Collapse
Affiliation(s)
- Nicolas A Turpin
- IRISSE (EA 4075), UFR SHE-STAPS Department, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France.
| | - Stéphane Uriac
- IRISSE (EA 4075), UFR SHE-STAPS Department, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France
| | - Georges Dalleau
- IRISSE (EA 4075), UFR SHE-STAPS Department, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France
| |
Collapse
|
10
|
McClanahan A, Moench M, Fu Q. Dimensionality analysis of forearm muscle activation for myoelectric control in transradial amputees. PLoS One 2020; 15:e0242921. [PMID: 33270686 PMCID: PMC7714228 DOI: 10.1371/journal.pone.0242921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022] Open
Abstract
Establishing a natural communication interface between the user and the terminal device is one of the central challenges of hand neuroprosthetics research. Surface electromyography (EMG) is the most common source of neural signals for interpreting a user’s intent in these interfaces. However, how the capacity of EMG generation is affected by various clinical parameters remains largely unknown. In this study, we examined the EMG activity of forearm muscles recorded from 11 transradially amputated subjects who performed a wide range of movements. EMG recordings from 40 able-bodied subjects were also analyzed to provide comparative benchmarks. By using non-negative matrix factorization, we extracted the synergistic EMG patterns for each subject to estimate the dimensionality of muscle control, under the framework of motor synergies. We found that amputees exhibited less than four synergies (with substantial variability related to the length of remaining limb and age), whereas able-bodied subjects commonly demonstrate five or more synergies. The results of this study provide novel insight into the muscle synergy framework and the design of natural myoelectric control interfaces.
Collapse
Affiliation(s)
- Alexander McClanahan
- College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Matthew Moench
- College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Qiushi Fu
- NeuroMechanical Systems Laboratory, Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, United States of America
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, University of Central Florida, Orlando, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Liew BXW, Del Vecchio A, Falla D. The influence of musculoskeletal pain disorders on muscle synergies-A systematic review. PLoS One 2018; 13:e0206885. [PMID: 30395599 PMCID: PMC6218076 DOI: 10.1371/journal.pone.0206885] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
Background Musculoskeletal (MSK) pain disorders represent a group of highly prevalent and often disabling conditions. Investigating the structure of motor variability in response to pain may reveal novel motor impairment mechanisms that may lead to enhanced management of motor dysfunction associated with MSK pain disorders. This review aims to systematically synthesize the evidence on the influence of MSK pain disorders on muscle synergies. Methods Nine electronic databases were searched using Medical Subject Headings and keywords describing pain, electromyography and synergies. Relevant characteristics of included studies were extracted and assessed for generalizability and risk of bias. Due to the significant heterogeneity, a qualitative synthesis of the results was performed. Results The search resulted in a total of 1312 hits, of which seven articles were deemed eligible. There was unclear consistency that pain reduced the number of muscle synergies. There were low consistencies of evidence that the synergy vector (W weights) and activation coefficient (C weights) differed in painful compared to asymptomatic conditions. There was a high consistency that muscle synergies were dissimilar between painful and asymptomatic conditions. Conclusions MSK pain alters the structure of variability in muscle control, although its specific nature remains unclear. Greater consistency in muscle synergy analysis may be achieved with appropriate selection of muscles assessed and ensuring consistent achievement of motor task outcomes. Synergy analysis is a promising method to reveal novel understandings of altered motor control, which may facilitate the assessment and treatment of MSK pain disorders.
Collapse
Affiliation(s)
- Bernard X. W. Liew
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail: ,
| | - Alessandro Del Vecchio
- Neuromuscular Research & Technology, Department of Bioengineering, Faculty of Engineering, Imperial College London, Kensington, London, United Kingdom
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
12
|
The Effects of Selective Muscle Weakness on Muscle Coordination in the Human Arm. Appl Bionics Biomech 2018; 2018:5637568. [PMID: 30402139 PMCID: PMC6192169 DOI: 10.1155/2018/5637568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022] Open
Abstract
Despite the fundamental importance of muscle coordination in daily life, it is currently unclear how muscle coordination adapts when the musculoskeletal system is perturbed. In this study, we quantified the impact of selective muscle weakness on several metrics of muscle coordination. Seven healthy subjects performed 2D and 3D isometric force target matches, while electromyographic (EMG) signals were recorded from 13 elbow and shoulder muscles. Subsequently, muscle weakness was induced by a motor point block of brachialis muscle. Postblock subjects repeated the force generation tasks. We quantified muscle coordination pre- and postblock using three metrics: tuning curve preferred direction, tuning curve area, and motor modules analysis via nonnegative matrix factorization. For most muscles, the tuning direction for the 2D protocol was not substantially altered postblock, while tuning areas changed more drastically. Typically, five motor modules were identified from the 3D task, and four motor modules were identified in the 2D task; this result held across both pre- and postblock conditions. The composition of one or two motor modules, ones that involved mainly the activation of shoulder muscles, was altered postblock. Our results demonstrate that selective muscle weakness can induce nonintuitive alternations in muscle coordination in the mechanically redundant human arm.
Collapse
|
13
|
Manickaraj N, Bisset LM, Kavanagh JJ. Lateral epicondylalgia exhibits adaptive muscle activation strategies based on wrist posture and levels of grip force: a case-control study. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2018; 18:323-332. [PMID: 30179209 PMCID: PMC6146193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES To investigate forearm muscle activity in individuals with lateral epicondylalgia (LE) when gripping at different wrist postures, and investigate the association between muscle activity and clinical characteristics of LE. METHODS Eleven LE and 11 healthy participants performed isometric handgrips at 15% and 30% of maximum grip force (MVC). Gripping was performed in wrist extension, wrist flexion, and wrist neutral. Surface electromyography was collected from six forearm muscles. Standard clinical and tendon structural measures for LE were obtained. RESULTS LE group had reduced magnitude of extensor carpi radialis brevis (ECRB) with increased contribution of extensor carpi ulnaris (ECU) during 15% MVC. However, during 30% MVC the LE group had reduced flexor carpi radialis and flexor digitorum superficialis activity, which was coupled with increased contribution from extensor digitorum communis (EDC) and ECU. Although ECRB and ECU activity differed in wrist flexion compared to other wrist postures for controls, different wrist posture had no effect on forearm muscle activation in LE. Pain and disability, and tendon thickness had significant associations with EDC and ECRB activity respectively in LE. CONCLUSION Individuals with LE use different neuromuscular strategies when gripping with different wrist postures which appears to be dependent on the level of grip force.
Collapse
Affiliation(s)
| | - Leanne M. Bisset
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Justin J. Kavanagh
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia,Corresponding author: Associate Professor Justin Kavanagh, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia E-mail:
| |
Collapse
|
14
|
A Systematic Review on Muscle Synergies: From Building Blocks of Motor Behavior to a Neurorehabilitation Tool. Appl Bionics Biomech 2018; 2018:3615368. [PMID: 29849756 PMCID: PMC5937559 DOI: 10.1155/2018/3615368] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) is believed to utilize specific predefined modules, called muscle synergies (MS), to accomplish a motor task. Yet questions persist about how the CNS combines these primitives in different ways to suit the task conditions. The MS hypothesis has been a subject of debate as to whether they originate from neural origins or nonneural constraints. In this review article, we present three aspects related to the MS hypothesis: (1) the experimental and computational evidence in support of the existence of MS, (2) algorithmic approaches for extracting them from surface electromyography (EMG) signals, and (3) the possible role of MS as a neurorehabilitation tool. We note that recent advances in computational neuroscience have utilized the MS hypothesis in motor control and learning. Prospective advances in clinical, medical, and engineering sciences and in fields such as robotics and rehabilitation stand to benefit from a more thorough understanding of MS.
Collapse
|
15
|
Feasibility of Muscle Synergy Outcomes in Clinics, Robotics, and Sports: A Systematic Review. Appl Bionics Biomech 2018; 2018:3934698. [PMID: 29808098 PMCID: PMC5902115 DOI: 10.1155/2018/3934698] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/04/2023] Open
Abstract
In the last years, several studies have been focused on understanding how the central nervous system controls muscles to perform a specific motor task. Although it still remains an open question, muscle synergies have come to be an appealing theory to explain the modular organization of the central nervous system. Even though the neural encoding of muscle synergies remains controversial, a large number of papers demonstrated that muscle synergies are robust across different tested conditions, which are within a day, between days, within a single subject, and between subjects that have similar demographic characteristics. Thus, muscle synergy theory has been largely used in several research fields, such as clinics, robotics, and sports. The present systematical review aims at providing an overview on the applications of muscle synergy theory in clinics, robotics, and sports; in particular, the review is focused on the papers that provide tangible information for (i) diagnosis or pathology assessment in clinics, (ii) robot-control design in robotics, and (iii) athletes' performance assessment or training guidelines in sports.
Collapse
|