1
|
Májer T, Bódi V, Kelemen V, Szűcs A, Varró P, Világi I. Valproate treatment induces age- and sex-dependent neuronal activity changes according to a patch clamp study. Dev Neurobiol 2024; 84:32-43. [PMID: 38124434 DOI: 10.1002/dneu.22933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Autism spectrum disorder is a heterogeneous neurodevelopmental disorder characterized by impaired social interactions, restricted, and stereotyped behaviors. The valproic acid model is one of the most recognized and broadly used models in rats to induce core symptoms of this disorder. Comorbidity of epilepsy and autism occurs frequently, due to similar background mechanisms that include the imbalance of excitation and inhibition. In this series of experiments, treatment was performed on rat dams with a single 500 mg/kg dose i.p. valproate injection on embryonic day 12.5. Intracellular whole-cell patch clamp recordings were performed on brain slices prepared from adolescent and adult offspring of both sexes on pyramidal neurons of the medial prefrontal cortex and entorhinal cortex. Current clamp stimulation utilizing conventional current step protocols and dynamic clamp stimulation were applied to assess neuronal excitability. Membrane properties and spiking characteristics of layer II-III pyramidal cells were analyzed in both cortical regions. Significant sex-dependent and age-dependent differences were found in several parameters in the control groups. Considering membrane resistance, rheobase, voltage sag slope, and afterdepolarization slope, we observed notable changes mainly in the female groups. Valproate treatment seemed to enhance these differences and increase network excitability. However, it is possible that compensatory mechanisms took place during the maturation of the network while reaching the age-group of 3 months. Based on the results, the expression of the hyperpolarization-activated cyclic nucleotide-gated channels may be appreciably affected by the valproate treatment, which influences fundamental electrophysiological properties of the neurons such as the voltage sag. Remarkable changes appeared in the prefrontal cortex; however, also the entorhinal cortex shows similar tendencies.
Collapse
Affiliation(s)
- Tímea Májer
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Veronika Bódi
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Viktor Kelemen
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Attila Szűcs
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Hungarian Center of Excellence for Molecular Medicine, Szeged, Hungary
| | - Petra Varró
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Ildikó Világi
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Conventional measures of intrinsic excitability are poor estimators of neuronal activity under realistic synaptic inputs. PLoS Comput Biol 2021; 17:e1009378. [PMID: 34529674 PMCID: PMC8478185 DOI: 10.1371/journal.pcbi.1009378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/28/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Activity-dependent regulation of intrinsic excitability has been shown to greatly contribute to the overall plasticity of neuronal circuits. Such neuroadaptations are commonly investigated in patch clamp experiments using current step stimulation and the resulting input-output functions are analyzed to quantify alterations in intrinsic excitability. However, it is rarely addressed, how such changes translate to the function of neurons when they operate under natural synaptic inputs. Still, it is reasonable to expect that a strong correlation and near proportional relationship exist between static firing responses and those evoked by synaptic drive. We challenge this view by performing a high-yield electrophysiological analysis of cultured mouse hippocampal neurons using both standard protocols and simulated synaptic inputs via dynamic clamp. We find that under these conditions the neurons exhibit vastly different firing responses with surprisingly weak correlation between static and dynamic firing intensities. These contrasting responses are regulated by two intrinsic K-currents mediated by Kv1 and Kir channels, respectively. Pharmacological manipulation of the K-currents produces differential regulation of the firing output of neurons. Static firing responses are greatly increased in stuttering type neurons under blocking their Kv1 channels, while the synaptic responses of the same neurons are less affected. Pharmacological blocking of Kir-channels in delayed firing type neurons, on the other hand, exhibit the opposite effects. Our subsequent computational model simulations confirm the findings in the electrophysiological experiments and also show that adaptive changes in the kinetic properties of such currents can even produce paradoxical regulation of the firing output.
Collapse
|
3
|
Homeostatic plasticity and burst activity are mediated by hyperpolarization-activated cation currents and T-type calcium channels in neuronal cultures. Sci Rep 2021; 11:3236. [PMID: 33547341 PMCID: PMC7864958 DOI: 10.1038/s41598-021-82775-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/20/2021] [Indexed: 01/27/2023] Open
Abstract
Homeostatic plasticity stabilizes neuronal networks by adjusting the responsiveness of neurons according to their global activity and the intensity of the synaptic inputs. We investigated the homeostatic regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) and T-type calcium (CaV3) channels in dissociated and organotypic slice cultures. After 48 h blocking of neuronal activity by tetrodotoxin (TTX), our patch-clamp experiments revealed an increase in the depolarizing voltage sag and post-inhibitory rebound mediated by HCN and CaV3 channels, respectively. All HCN subunits (HCN1 to 4) and T-type Ca-channel subunits (CaV3.1, 3.2 and 3.3) were expressed in both control and activity-deprived hippocampal cultures. Elevated expression levels of CaV3.1 mRNA and a selective increase in the expression of TRIP8b exon 4 isoforms, known to regulate HCN channel localization, were also detected in TTX-treated cultured hippocampal neurons. Immunohistochemical staining in TTX-treated organotypic slices verified a more proximal translocation of HCN1 channels in CA1 pyramidal neurons. Computational modeling also implied that HCN and T-type calcium channels have important role in the regulation of synchronized bursting evoked by previous activity-deprivation. Thus, our findings indicate that HCN and T-type Ca-channels contribute to the homeostatic regulation of excitability and integrative properties of hippocampal neurons.
Collapse
|
4
|
Alternative classifications of neurons based on physiological properties and synaptic responses, a computational study. Sci Rep 2019; 9:13096. [PMID: 31511545 PMCID: PMC6739481 DOI: 10.1038/s41598-019-49197-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/16/2019] [Indexed: 01/25/2023] Open
Abstract
One of the central goals of today's neuroscience is to achieve the conceivably most accurate classification of neuron types in the mammalian brain. As part of this research effort, electrophysiologists commonly utilize current clamp techniques to gain a detailed characterization of the neurons' physiological properties. While this approach has been useful, it is not well understood whether neurons that share physiological properties of a particular phenotype would also operate consistently under the action of natural synaptic inputs. We approached this problem by simulating a biophysically diverse population of model neurons based on 3 generic phenotypes. We exposed the model neurons to two types of stimulation to investigate their voltage responses under conventional current step protocols and under simulated synaptic bombardment. We extracted standard physiological parameters from the voltage responses elicited by current step stimulation and spike arrival times descriptive of the model's firing behavior under synaptic inputs. The biophysical phenotypes could be reliably identified using classification based on the 'static' physiological properties, but not the interspike interval-based parameters. However, the model neurons associated with the biophysically different phenotypes retained cell type specific features in the fine structure of their spike responses that allowed their accurate classification.
Collapse
|
5
|
Francesconi W, Szücs A, Berton F, Koob GF, Vendruscolo LF, Sanna PP. Opiate dependence induces cell type-specific plasticity of intrinsic membrane properties in the rat juxtacapsular bed nucleus of stria terminalis (jcBNST). Psychopharmacology (Berl) 2017; 234:3485-3498. [PMID: 28986608 PMCID: PMC5993421 DOI: 10.1007/s00213-017-4732-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/05/2017] [Indexed: 01/03/2023]
Abstract
RATIONALE Drugs of abuse can alter circuit dynamics by modifying synaptic efficacy and/or the intrinsic membrane properties of neurons. The juxtacapsular subdivision of the bed nucleus of stria terminalis (jcBNST) has unique connectivity that positions it to integrate cortical and amygdala inputs and provide feed-forward inhibition to the central nucleus of the amygdala (CeA), among other regions. In this study, we investigated changes in the synaptic and intrinsic properties of neurons in the rat jcBNST during protracted withdrawal from morphine dependence using a combination of conventional electrophysiological methods and the dynamic clamp technique. RESULTS A history of opiate dependence induced a form of cell type-specific plasticity characterized by reduced inward rectification associated with more depolarized resting membrane potentials and increased membrane resistance. This cell type also showed a lower rheobase when stimulated with direct current (DC) pulses as well as a decreased firing threshold under simulated synaptic bombardment with the dynamic clamp. Morphine dependence also decreased excitatory postsynaptic potential amplification, suggesting the downregulation of the persistent Na+ current (I NaP). CONCLUSION These findings show that a history of morphine dependence leads to persistent cell type-specific plasticity of the passive membrane properties of a jcBNST neuronal population, leading to an overall increased excitability of such neurons. By altering the activity of extended amygdala circuits where they are embedded, changes in the integration properties of jcBNST neurons may contribute to emotional dysregulation associated with drug dependence and withdrawal.
Collapse
Affiliation(s)
- Walter Francesconi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA and Department of Anatomy and Cell Biology, School of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Attila Szücs
- BioCircuits Institute, University of California San Diego, La Jolla, CA and MTA-ELTE NAP-B Neuronal Cell Biology Group, Eötvös Lóránd University, Budapest, Hungary
| | - Fulvia Berton
- Dipartimento di Biologia, Universita’ degli Studi di Pisa, Pisa, Italy and Department of Anatomy and Cell Biology, School of Medicine, University of Illinois at Chicago, Chicago, IL
| | - George F. Koob
- Department of Neuroscience, The Scripps Research Institute, La Jolla. Current address: National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD
| | - Leandro F. Vendruscolo
- Department of Neuroscience, The Scripps Research Institute, La Jolla. Current address: National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology and Department ofNeuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Szűcs A, Rátkai A, Schlett K, Huerta R. Frequency-dependent regulation of intrinsic excitability by voltage-activated membrane conductances, computational modeling and dynamic clamp. Eur J Neurosci 2017; 46:2429-2444. [PMID: 28921695 DOI: 10.1111/ejn.13708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/28/2022]
Abstract
As one of the most unique properties of nerve cells, their intrinsic excitability allows them to transform synaptic inputs into action potentials. This process reflects a complex interplay between the synaptic inputs and the voltage-dependent membrane currents of the postsynaptic neuron. While neurons in natural conditions mostly fire under the action of intense synaptic bombardment and receive fluctuating patterns of excitation and inhibition, conventional techniques to characterize intrinsic excitability mainly utilize static means of stimulation. Recently, we have shown that voltage-gated membrane currents regulate the firing responses under current step stimulation and under physiologically more realistic inputs in a differential manner. At the same time, a multitude of neuron types have been shown to exhibit some form of subthreshold resonance that potentially allows them to respond to synaptic inputs in a frequency-selective manner. In this study, we performed virtual experiments in computational models of neurons to examine how specific voltage-gated currents regulate their excitability under simulated frequency-modulated synaptic inputs. The model simulations and subsequent dynamic clamp experiments on mouse hippocampal pyramidal neurons revealed that the impact of voltage-gated currents in regulating the firing output is strongly frequency-dependent and mostly affecting the synaptic integration at theta frequencies. Notably, robust frequency-dependent regulation of intrinsic excitability was observed even when conventional analysis of membrane impedance suggested no such tendency. Consequently, plastic or homeostatic regulation of intrinsic membrane properties can tune the frequency selectivity of neuron populations in a way that is not readily expected from subthreshold impedance measurements.
Collapse
Affiliation(s)
- Attila Szűcs
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA.,MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Loránd University, 1/C Pázmány Péter Street, Budapest, H-1117, Hungary.,Balaton Limnological Institute of the Center for Ecological Research, Tihany, Hungary
| | - Anikó Rátkai
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Loránd University, 1/C Pázmány Péter Street, Budapest, H-1117, Hungary
| | - Katalin Schlett
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, Eötvös Loránd University, 1/C Pázmány Péter Street, Budapest, H-1117, Hungary
| | - Ramon Huerta
- BioCircuits Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|