1
|
Roshanaei M, Bahmani Z, Clark K, Daliri MR, Noudoost B. Working memory expedites the processing of visual signals within the extrastriate cortex. iScience 2024; 27:110489. [PMID: 39100691 PMCID: PMC11295472 DOI: 10.1016/j.isci.2024.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Working memory is the ability to maintain information in the absence of sensory input. In this study, we investigated how working memory benefits processing in visual areas. Using a measure of phase consistency to detect the arrival time of visual signals to the middle temporal (MT) area, we assessed the impact of working memory on the speed of sensory processing. We recorded from MT neurons in two monkeys during a spatial working memory task with visual probes. When the memorized location closely matches the receptive field center of the recording site, visual input arrives sooner, but if the memorized location does not match the receptive field center then the arrival of visual information is delayed. Thus, working memory expedites the arrival of visual input in MT. These results reveal that even in the absence of firing rate changes, working memory can still benefit the processing of information within sensory areas.
Collapse
Affiliation(s)
- Majid Roshanaei
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Zahra Bahmani
- Department of Electrical & Computer Engineering, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Mohammad Reza Daliri
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
2
|
Mozumder R, Chung S, Li S, Constantinidis C. Contributions of narrow- and broad-spiking prefrontal and parietal neurons on working memory tasks. Front Syst Neurosci 2024; 18:1365622. [PMID: 38577690 PMCID: PMC10991738 DOI: 10.3389/fnsys.2024.1365622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Neurons that generate persistent activity in the primate dorsolateral prefrontal and posterior parietal cortex have been shown to be predictive of behavior in working memory tasks, though subtle differences between them have been observed in how information is represented. The role of different neuron types in each of these areas has not been investigated at depth. We thus compared the activity of neurons classified as narrow-spiking, putative interneurons, and broad-spiking, putative pyramidal neurons, recorded from the dorsolateral prefrontal and posterior parietal cortex of male monkeys, to analyze their role in the maintenance of working memory. Our results demonstrate that narrow-spiking neurons are active during a range of tasks and generate persistent activity during the delay period over which stimuli need to be maintained in memory. Furthermore, the activity of narrow-spiking neurons was predictive of the subject's recall no less than that of broad-spiking neurons, which are exclusively projection neurons in the cortex. Our results show that putative interneurons play an active role during the maintenance of working memory and shed light onto the fundamental neural circuits that determine subjects' memories and judgments.
Collapse
Affiliation(s)
- Rana Mozumder
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Sophia Chung
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
| | - Sihai Li
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Singh B, Wang Z, Madiah LM, Gatti SE, Fulton JN, Johnson GW, Li R, Dawant BM, Englot DJ, Bick SK, Roberson SW, Constantinidis C. Brain-wide human oscillatory local field potential activity during visual working memory. iScience 2024; 27:109130. [PMID: 38380249 PMCID: PMC10877957 DOI: 10.1016/j.isci.2024.109130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Oscillatory activity in the local field potential (LFP) is thought to be a marker of cognitive processes. To understand how it differentiates tasks and brain areas in humans, we recorded LFPs in 15 adults with intracranial depth electrodes, as they performed visual-spatial and shape working memory tasks. Stimulus appearance produced widespread, broad-band activation, including in occipital, parietal, temporal, insular, and prefrontal cortex, and the amygdala and hippocampus. Occipital cortex was characterized by most elevated power in the high-gamma (100-150 Hz) range during the visual stimulus presentation. The most consistent feature of the delay period was a systematic pattern of modulation in the beta frequency (16-40 Hz), which included a decrease in power of variable timing across areas, and rebound during the delay period. These results reveal the widespread nature of oscillatory activity across a broad brain network and region-specific signatures of oscillatory processes associated with visual working memory.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Leen M. Madiah
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - S. Elizabeth Gatti
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jenna N. Fulton
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Graham W. Johnson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rui Li
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Benoit M. Dawant
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah K. Bick
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shawniqua Williams Roberson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|