1
|
Li Y, Wang Q, Zhang X, Zheng R, Li D, Wang Y. Characterization of D1R and D2R neuronal subpopulations in the globus pallidus interna: Implications for Parkinson's disease pathogenesis. Brain Res 2024; 1845:149174. [PMID: 39168263 DOI: 10.1016/j.brainres.2024.149174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Parkinson's disease (PD) ranks as the second most prevalent and rapidly growing neurodegenerative disorder. As a primary output nucleus within the basal ganglia (BG), the globus pallidus interna (GPi) is a key structure in BG information processing. It is also a key target for deep brain stimulation (DBS) to alleviate motor symptoms of PD. Previous studies have identifiedPD patients exhibiting abnormal neuronal activity in the GPi. On the other hand, various types of dopamine receptor (DR)-positive neurons have been identified within the GPi. However, the electrophysiological properties of specific DR-positive neurons within the GPi and their alterations in PD have not been addressed. In the present study, we used whole-cell patch-clamp recordings to identify two neuronal subpopulations within the GPi, dopamine D1 receptor (D1R)-positive, and dopamine D2 receptor (D2R)-positive neurons, which exhibited distinct electrophysiological properties. Additionally, significant alterations of electrophysiological properties of D2R-positive neurons within the GPi were observed in 6-hydroxydopamine (6-OHDA)-lesioned mice. These data suggest that the distinct electrophysiological properties of specific DR-positive neurons and their abnormal alteration in the GPi may be associated with PD's pathogenesis.
Collapse
Affiliation(s)
- Yaqian Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qianwen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xueping Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ruobing Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Derong Li
- Departments of Basic Medical Sciences, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Shanazz K, Xie K, Oliver T, Bogan J, Vale F, Sword J, Kirov SA, Terry A, O'Herron P, Blake DT. Cortical Acetylcholine Response to Deep Brain Stimulation of the Basal Forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605828. [PMID: 39131297 PMCID: PMC11312592 DOI: 10.1101/2024.07.30.605828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Background Deep brain stimulation (DBS), the direct electrical stimulation of neuronal tissue in the basal forebrain to enhance release of the neurotransmitter acetylcholine, is under consideration as a method to improve executive function in patients with dementia. While some small studies indicate a positive response in the clinical setting, the relationship between DBS and acetylcholine pharmacokinetics is incompletely understood. Objective We examined the cortical acetylcholine response to different stimulation parameters of the basal forebrain. Methods 2-photon imaging was combined with deep brain stimulation. Stimulating electrodes were implanted in the subpallidal basal forebrain, and the ipsilateral somatosensory cortex was imaged. Acetylcholine activity was determined using the GRABACh-3.0 muscarinic acetylcholine receptor sensor, and blood vessels were imaged with Texas red. Results Experiments manipulating pulse train frequency demonstrated that integrated acetylcholine induced fluorescence was insensitive to frequency, and that peak levels were achieved with frequencies from 60 to 130 Hz. Altering pulse train length indicated that longer stimulation resulted in higher peaks and more activation with sublinear summation. The acetylcholinesterase inhibitor donepezil increased the peak response to 10s of stimulation at 60Hz, and the integrated response increased 57% with the 2 mg/kg dose, and 126% with the 4 mg/kg dose. Acetylcholine levels returned to baseline with a time constant of 14 to 18 seconds in all experiments. Conclusions These data demonstrate that acetylcholine receptor activation is insensitive to frequency between 60 and 130 Hz. High peak responses are achieved with up to 900 pulses. Donepezil increases total acetylcholine receptor activation associated with DBS but did not change temporal kinetics. The long time constants observed in the cerebral cortex add to the evidence supporting volume in addition to synaptic transmission.
Collapse
Affiliation(s)
- Khadijah Shanazz
- Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Kun Xie
- Dept of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Tucker Oliver
- Dept of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jamal Bogan
- Dept of Science and Mathematics, Augusta University, Augusta, GA
| | - Fernando Vale
- Dept of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jeremy Sword
- Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Sergei A Kirov
- Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
- Dept of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Alvin Terry
- Dept of Pharmacology and Toxicology , Medical College of Georgia, Augusta University, Augusta, GA
| | - Philip O'Herron
- Dept of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - David T Blake
- Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
3
|
Spiliotis K, Starke J, Franz D, Richter A, Köhling R. Deep brain stimulation for movement disorder treatment: exploring frequency-dependent efficacy in a computational network model. BIOLOGICAL CYBERNETICS 2022; 116:93-116. [PMID: 34894291 PMCID: PMC8866393 DOI: 10.1007/s00422-021-00909-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/31/2021] [Indexed: 06/14/2023]
Abstract
A large-scale computational model of the basal ganglia network and thalamus is proposed to describe movement disorders and treatment effects of deep brain stimulation (DBS). The model of this complex network considers three areas of the basal ganglia region: the subthalamic nucleus (STN) as target area of DBS, the globus pallidus, both pars externa and pars interna (GPe-GPi), and the thalamus. Parkinsonian conditions are simulated by assuming reduced dopaminergic input and corresponding pronounced inhibitory or disinhibited projections to GPe and GPi. Macroscopic quantities are derived which correlate closely to thalamic responses and hence motor programme fidelity. It can be demonstrated that depending on different levels of striatal projections to the GPe and GPi, the dynamics of these macroscopic quantities (synchronisation index, mean synaptic activity and response efficacy) switch from normal to Parkinsonian conditions. Simulating DBS of the STN affects the dynamics of the entire network, increasing the thalamic activity to levels close to normal, while differing from both normal and Parkinsonian dynamics. Using the mentioned macroscopic quantities, the model proposes optimal DBS frequency ranges above 130 Hz.
Collapse
Affiliation(s)
| | - Jens Starke
- Institute of Mathematics, University of Rostock, 18057 Rostock, Germany
| | - Denise Franz
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Heerdegen M, Zwar M, Franz D, Hörnschemeyer MF, Neubert V, Plocksties F, Niemann C, Timmermann D, Bahls C, van Rienen U, Paap M, Perl S, Lüttig A, Richter A, Köhling R. Mechanisms of pallidal deep brain stimulation: Alteration of cortico-striatal synaptic communication in a dystonia animal model. Neurobiol Dis 2021; 154:105341. [PMID: 33753292 DOI: 10.1016/j.nbd.2021.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022] Open
Abstract
Pallidal deep brain stimulation (DBS) is an important option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the globus pallidus internus (GPi). The mechanisms of GPi-DBS are far from understood. Although a disturbance of striatal function is thought to play a key role in dystonia, the effects of DBS on cortico-striatal function are unknown. We hypothesised that DBS, via axonal backfiring, or indirectly via thalamic and cortical coupling, alters striatal function. We tested this hypothesis in the dtsz hamster, an animal model of inherited generalised, paroxysmal dystonia. Hamsters (dystonic and non-dystonic controls) were bilaterally implanted with stimulation electrodes in the GPi. DBS (130 Hz), and sham DBS, were performed in unanaesthetised animals for 3 h. Synaptic cortico-striatal field potentials, as well as miniature excitatory postsynaptic currents (mEPSC) and firing properties of medium spiny striatal neurones were recorded in brain slice preparations obtained immediately after EPN-DBS. The main findings were as follows: a. DBS increased cortico-striatal evoked responses in healthy, but not in dystonic tissue. b. Commensurate with this, DBS increased inhibitory control of these evoked responses in dystonic, and decreased inhibitory control in healthy tissue. c. Further, DBS reduced mEPSC frequency strongly in dystonic, and less prominently in healthy tissue, showing that also a modulation of presynaptic mechanisms is likely involved. d. Cellular properties of medium-spiny neurones remained unchanged. We conclude that DBS leads to dampening of cortico-striatal communication, and restores intrastriatal inhibitory tone.
Collapse
Affiliation(s)
- Marco Heerdegen
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | - Monique Zwar
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | - Denise Franz
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | | | - Valentin Neubert
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | - Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Christoph Niemann
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Christian Bahls
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany; Department Life, Light & Matter, University of Rostock, Germany
| | - Maria Paap
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Stefanie Perl
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Anika Lüttig
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany; Department of Ageing of Individuals and Society, University of Rostock, Germany.
| |
Collapse
|
5
|
Luo F, Kiss ZH. Cholinergics contribute to the cellular mechanisms of deep brain stimulation applied in rat infralimbic cortex but not white matter. Eur Neuropsychopharmacol 2021; 45:52-58. [PMID: 33771420 DOI: 10.1016/j.euroneuro.2021.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation (DBS) of the subcallosal cingulate gyrus (SCG) is a promising therapy for treatment-resistant depression. Pre-clinical models have been widely used to investigate the neural mechanisms underlying its antidepressant benefit. The ventral division of the medial prefrontal cortex (vmPFC), particularly the infralimbic cortex (IL), is the homologous region in rat and DBS applied to vmPFC shows antidepressant-like effects in the forced swim test. Therefore we investigated the cellular mechanisms of simulated DBS (sDBS) in layer 5 IL neurons, using in vitro whole-cell patch clamp recordings. sDBS in IL layer 5 induced a prolonged after-depolarization (ADP) in both pyramidal and fast spiking neurons, which was dependent on current amplitude and pulse width. In contrast, sDBS applied in the forebrain white matter fibers, although delivered at a higher intensity, failed to induce any persistent depolarization in layer 5 IL pyramidal neurons. Cholinergic blockade (atropine, 2.0 µM) decreased both the ADP amplitude and duration in pyramidal neurons, but left those in fast spiking neurons unchanged. These data suggest that: (i) sDBS in IL gray and white matter produced different cellular effects on pyramidal neurons; (ii) sDBS-induced ADP in pyramidal, but not fast spiking neurons, was mediated by acetylcholine; and (iii) different neuromodulators may contribute to sDBS-induced ADP in IL. In summary, cholinergic mediated ADP in pyramidal neurons may contribute to the antidepressant effects of DBS in IL.
Collapse
Affiliation(s)
- Feng Luo
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, AB Canada T2N 4N1
| | - Zelma Ht Kiss
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, AB Canada T2N 4N1.
| |
Collapse
|
6
|
Stefani A, Cerroni R, Pierantozzi M, D’Angelo V, Grandi L, Spanetta M, Galati S. Deep brain stimulation in Parkinson’s disease patients and routine 6‐OHDA rodent models: Synergies and pitfalls. Eur J Neurosci 2020; 53:2322-2343. [DOI: 10.1111/ejn.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Rocco Cerroni
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Mariangela Pierantozzi
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Vincenza D’Angelo
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Laura Grandi
- Center for Movement Disorders Neurocenter of Southern Switzerland Lugano Switzerland
| | - Matteo Spanetta
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Salvatore Galati
- Center for Movement Disorders Neurocenter of Southern Switzerland Lugano Switzerland
- Faculty of Biomedical Sciences Università della Svizzera Italiana Lugano Switzerland
| |
Collapse
|
7
|
Fu X, Ye H, Jia H, Wang X, Chomiak T, Luo F. Muscarinic acetylcholine receptor-dependent persistent activity of layer 5 intrinsic-bursting and regular-spiking neurons in primary auditory cortex. J Neurophysiol 2019; 122:2344-2353. [PMID: 31596630 DOI: 10.1152/jn.00184.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic signaling coupled to sensory-driven neuronal depolarization is essential for modulating lasting changes in deep-layer neural excitability and experience-dependent plasticity in the primary auditory cortex. However, the underlying cellular mechanism(s) associated with coincident cholinergic receptor activation and neuronal depolarization of deep-layer cortical neurons remains unknown. Using in vitro whole cell patch-clamp recordings targeted to neurons (n = 151) in isolated brain slices containing the primary auditory cortex (AI), we investigated the effects of cholinergic receptor activation and neuronal depolarization on the electrophysiological properties of AI layer 5 intrinsic-bursting and regular-spiking neurons. Bath application of carbachol (5 µM; cholinergic receptor agonist) paired with suprathreshold intracellular depolarization led to persistent activity in these neurons. Persistent activity may involve similar cellular mechanisms and be generated intrinsically in both intrinsic-bursting and regular-spiking neurons given that it 1) persisted under the blockade of ionotropic glutamatergic (kynurenic acid, 2 mM) and GABAergic receptors (picrotoxin, 100 µM), 2) was fully blocked by both atropine (10 µM; nonselective muscarinic antagonist) and flufenamic acid [100 µM; nonspecific Ca2+-sensitive cationic channel (CAN) blocker], and 3) was sensitive to the voltage-gated Ca2+ channel blocker nifedipine (50 µM) and Ca2+-free artificial cerebrospinal fluid. Together, our results support a model through which coincident activation of AI layer 5 neuron muscarinic receptors and suprathreshold activation can lead to sustained changes in layer 5 excitability, providing new insight into the possible role of a calcium-CAN-dependent cholinergic mechanism of AI cortical plasticity. These findings also indicate that distinct streams of auditory processing in layer 5 intrinsic-bursting and regular-spiking neurons may run in parallel during learning-induced auditory plasticity.NEW & NOTEWORTHY Cholinergic signaling coupled to sensory-driven neuronal depolarization is essential for modulating lasting changes in experience-dependent plasticity in the primary auditory cortex. Cholinergic activation together with cellular depolarization can lead to persistent activity in both intrinsic-bursting and regular-spiking layer 5 pyramidal neurons. A similar mechanism involving muscarinic acetylcholine receptor, voltage-gated Ca2+ channel, and possible Ca2+-sensitive nonspecific cationic channel activation provides new insight into our understanding of the cellular mechanisms that govern learning-induced auditory cortical and subcortical plasticity.
Collapse
Affiliation(s)
- Xin Fu
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Huan Ye
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Huijuan Jia
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xin Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Taylor Chomiak
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Feng Luo
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
8
|
Long-Lasting Electrophysiological After-Effects of High-Frequency Stimulation in the Globus Pallidus: Human and Rodent Slice Studies. J Neurosci 2018; 38:10734-10746. [PMID: 30373767 DOI: 10.1523/jneurosci.0785-18.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/28/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022] Open
Abstract
Deep-brain stimulation (DBS) of the globus pallidus pars interna (GPi) is a highly effective therapy for movement disorders, yet its mechanism of action remains controversial. Inhibition of local neurons because of release of GABA from afferents to the GPi is a proposed mechanism in patients. Yet, high-frequency stimulation (HFS) produces prolonged membrane depolarization mediated by cholinergic neurotransmission in endopeduncular nucleus (EP, GPi equivalent in rodent) neurons. We applied HFS while recording neuronal firing from an adjacent electrode during microelectrode mapping of GPi in awake patients (both male and female) with Parkinson disease (PD) and dystonia. Aside from after-suppression and no change in neuronal firing, high-frequency microstimulation induced after-facilitation in 38% (26/69) of GPi neurons. In neurons displaying after-facilitation, 10 s HFS led to an immediate decrease of bursting in PD, but not dystonia patients. Moreover, the changes of bursting patterns in neurons with after-suppression or no change after HFS, were similar in both patient groups. To explore the mechanisms responsible, we applied HFS in EP brain slices from rats of either sex. As in humans, HFS in EP induced two subtypes of after-excitation: excitation or excitation with late inhibition. Pharmacological experiments determined that the excitation subtype, induced by lower charge density, was dependent on glutamatergic transmission. HFS with higher charge density induced excitation with late inhibition, which involved cholinergic modulation. Therefore HFS with different charge density may affect the local neurons through multiple synaptic mechanisms. The cholinergic system plays a role in mediating the after-facilitatory effects in GPi neurons, and because of their modulatory nature, may provide a basis for both the immediate and delayed effects of GPi-DBS. We propose a new model to explain the mechanisms of DBS in GPi.SIGNIFICANCE STATEMENT Deep-brain stimulation (DBS) in the globus pallidus pars interna (GPi) improves Parkinson disease (PD) and dystonia, yet its mechanisms in GPi remain controversial. Inhibition has been previously described and thought to indicate activation of GABAergic synaptic terminals, which dominate in GPi. Here we report that 10 s high-frequency microstimulation induced after-facilitation of neural firing in a substantial proportion of GPi neurons in humans. The neurons with after-facilitation, also immediately reduced their bursting activities after high-frequency stimulation in PD, but not dystonia patients. Based on these data and further animal experiments, a mechanistic hypothesis involving glutamatergic, GABAergic, and cholinergic synaptic transmission is proposed to explain both short- and longer-term therapeutic effects of DBS in GPi.
Collapse
|
9
|
Hamann M, Plank J, Richter F, Bode C, Smiljanic S, Creed M, Nobrega JN, Richter A. Alterations of M1 and M4 acetylcholine receptors in the genetically dystonic (dt sz) hamster and moderate antidystonic efficacy of M1 and M4 anticholinergics. Neuroscience 2017; 357:84-98. [PMID: 28596119 DOI: 10.1016/j.neuroscience.2017.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/28/2017] [Accepted: 05/29/2017] [Indexed: 11/30/2022]
Abstract
Striatal cholinergic dysfunction has been suggested to play a critical role in the pathophysiology of dystonia. In the dtsz hamster, a phenotypic model of paroxysmal dystonia, M1 antagonists exerted moderate antidystonic efficacy after acute systemic administration. In the present study, we examined the effects of the M4 preferring antagonist tropicamid and whether long-term systemic or acute intrastriatal injections of the M1 preferring antagonist trihexyphenidyl are more effective in mutant hamsters. Furthermore, M1 and M4 receptors were analyzed by autoradiography and immunohistochemistry. Tropicamide retarded the onset of dystonic attacks, as previously observed after acute systemic administration of trihexyphenidyl. Combined systemic administration of trihexyphenidyl (30mg/kg) and tropicamide (15mg/kg) reduced the severity in acute trials and delayed the onset of dystonia during long-term treatment. In contrast, acute striatal microinjections of trihexyphenidyl, tropicamid or the positive allosteric M4 receptor modulator VU0152100 did not exert significant effects. Receptor analyses revealed changes of M1 receptors in the dorsomedial striatum, suggesting that the cholinergic system is involved in abnormal striatal plasticity in dtsz hamsters, but the pharmacological data argue against a crucial role on the phenotype in this animal model. However, antidystonic effects of tropicamide after systemic administration point to a novel therapeutic potential of M4 preferring anticholinergics for the treatment of dystonia.
Collapse
Affiliation(s)
- Melanie Hamann
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstrasse 81, BFS, 35392 Giessen, Germany.
| | - Jagoda Plank
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, Leipzig, Germany
| | - Christoph Bode
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, Leipzig, Germany
| | - Sinisa Smiljanic
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Meaghan Creed
- Neuroimaging Research Section, Centre for Addiction and Mental Health, Toronto, Canada
| | - José N Nobrega
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, Leipzig, Germany.
| |
Collapse
|