1
|
Ouchi T, Scholl LR, Rajeswaran P, Canfield RA, Smith LI, Orsborn AL. Mapping eye, arm, and reward information in frontal motor cortices using electrocorticography in non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607846. [PMID: 39185198 PMCID: PMC11343120 DOI: 10.1101/2024.08.13.607846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Goal-directed reaches give rise to dynamic neural activity across the brain as we move our eyes and arms, and process outcomes. High spatiotemporal resolution mapping of multiple cortical areas will improve our understanding of how these neural computations are spatially and temporally distributed across the brain. In this study, we used micro-electrocorticography (μECoG) recordings in two male monkeys performing visually guided reaches to map information related to eye movements, arm movements, and receiving rewards over a 1.37 cm2 area of frontal motor cortices (primary motor cortex, premotor cortex, frontal eye field, and dorsolateral pre-frontal cortex). Time-frequency and decoding analyses revealed that eye and arm movement information shifts across brain regions during a reach, likely reflecting shifts from planning to execution. We then used phase-based analyses to reveal potential overlaps of eye and arm information. We found that arm movement decoding performance was impacted by task-irrelevant eye movements, consistent with the presence of intermixed eye and arm information across much of motor cortices. Phase-based analyses also identified reward-related activity primarily around the principal sulcus in the pre-frontal cortex as well as near the arcuate sulcus in the premotor cortex. Our results demonstrate μECoG's strengths for functional mapping and provide further detail on the spatial distribution of eye, arm, and reward information processing distributed across frontal cortices during reaching. These insights advance our understanding of the overlapping neural computations underlying coordinated movements and reveal opportunities to leverage these signals to enhance future brain-computer interfaces.
Collapse
Affiliation(s)
- Tomohiro Ouchi
- University of Washington, Electrical and Computer Engineering, Seattle, 98115, USA
| | - Leo R Scholl
- University of Washington, Electrical and Computer Engineering, Seattle, 98115, USA
| | | | - Ryan A Canfield
- University of Washington, Bioengineering, Seattle, 98115, USA
| | - Lydia I Smith
- University of Washington, Electrical and Computer Engineering, Seattle, 98115, USA
| | - Amy L Orsborn
- University of Washington, Electrical and Computer Engineering, Seattle, 98115, USA
- University of Washington, Bioengineering, Seattle, 98115, USA
- Washington National Primate Research Center, Seattle, Washington, 98115, USA
| |
Collapse
|
2
|
Alterations in Corticocortical Vestibular Network Functional Connectivity Are Associated with Decreased Balance Ability in Elderly Individuals with Mild Cognitive Impairment. Brain Sci 2022; 13:brainsci13010063. [PMID: 36672045 PMCID: PMC9856347 DOI: 10.3390/brainsci13010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The corticocortical vestibular network (CVN) plays an important role in maintaining balance and stability. In order to clarify the specific relationship between the CVN and the balance ability of patients with mild cognitive impairment (MCI), we recruited 30 MCI patients in the community. According to age and sex, they were 1:1 matched to 30 older adults with normal cognitive function. We evaluated balance ability and performed MRI scanning in the two groups of participants. We analyzed functional connectivity within the CVN based on the region of interest. Then, we performed a Pearson correlation analysis between the functional connection and the Berg Balance Scale scores. The research results show that compared with the control group, there were three pairs of functional connections (hMST_R−Premotor_R, PFcm_R−SMA_L, and hMST_L−VIP_R) that were significantly decreased in the CVNs of the MCI group (p < 0.05). Further correlation analysis showed that there was a significant positive correlation between hMST_R−Premotor_R functional connectivity and BBS score (r = 0.364, p = 0.004). The decline in balance ability and increase in fall risk in patients with MCI may be closely related to the change in the internal connection mode of the corticocortical vestibular network.
Collapse
|
3
|
Lowe KA, Zinke W, Cosman JD, Schall JD. Frontal eye fields in macaque monkeys: prefrontal and premotor contributions to visually guided saccades. Cereb Cortex 2022; 32:5083-5107. [PMID: 35176752 PMCID: PMC9989351 DOI: 10.1093/cercor/bhab533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal spiking was sampled from the frontal eye field (FEF) and from the rostral part of area 6 that reaches to the superior limb of the arcuate sulcus, dorsal to the arcuate spur when present (F2vr) in macaque monkeys performing memory-guided saccades and visually guided saccades for visual search. Neuronal spiking modulation in F2vr resembled that in FEF in many but not all respects. A new consensus clustering algorithm of neuronal modulation patterns revealed that F2vr and FEF contain a greater variety of modulation patterns than previously reported. The areas differ in the proportions of visuomotor neuron types, the proportions of neurons discriminating a target from distractors during visual search, and the consistency of modulation patterns across tasks. However, between F2vr and FEF we found no difference in the magnitude of delay period activity, the timing of the peak discharge rate relative to saccades, or the time of search target selection. The observed similarities and differences between the 2 cortical regions contribute to other work establishing the organization of eye fields in the frontal lobe and may help explain why FEF in monkeys is identified within granular prefrontal area 8 but in humans is identified within agranular premotor area 6.
Collapse
Affiliation(s)
- Kaleb A Lowe
- Department of Psychology, Vanderbilt University, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center
| | - Wolf Zinke
- Department of Psychology, Vanderbilt University, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center
| | - Joshua D Cosman
- Department of Psychology, Vanderbilt University, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center
| | - Jeffrey D Schall
- Department of Psychology, Vanderbilt University, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center
| |
Collapse
|
4
|
Nakayama Y, Sugawara SK, Fukunaga M, Hamano YH, Sadato N, Nishimura Y. The dorsal premotor cortex encodes the step-by-step planning processes for goal-directed motor behavior in humans. Neuroimage 2022; 256:119221. [PMID: 35447355 DOI: 10.1016/j.neuroimage.2022.119221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022] Open
Abstract
The dorsal premotor cortex (PMd) plays an essential role in visually guided goal-directed motor behavior. Although there are several planning processes for achieving goal-directed behavior, the separate neural processes are largely unknown. Here, we created a new visuo-goal task to investigate the step-by-step planning processes for visuomotor and visuo-goal behavior in humans. Using functional magnetic resonance imaging, we found activation in different portions of the bilateral PMd during each processing step. In particular, the activated area for rule-based visuomotor and visuo-goal mapping was located at the ventrorostral portion of the bilateral PMd, that for action plan specification was at the dorsocaudal portion of the left PMd, that for transformation was at the rostral portion of the left PMd, and that for action preparation was at the caudal portion of the bilateral PMd. Thus, the left PMd was involved throughout all of the processes, but the right PMd was involved only in rule-based visuomotor and visuo-goal mapping and action preparation. The locations related to each process were generally spatially separated from each other, but they overlapped partially. These findings revealed that there are functional subregions in the bilateral PMd in humans and these subregions form a functional gradient to achieve goal-directed behavior.
Collapse
Affiliation(s)
- Yoshihisa Nakayama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya, Tokyo 156-8506, Japan; Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| | - Sho K Sugawara
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya, Tokyo 156-8506, Japan; Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yuki H Hamano
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
5
|
Unno S, Shinoda M, Soma K, Kubo A, Sessle BJ, Matsui T, Ando M, Asaka J, Otsuki K, Yonemoto H, Onose H, Sakanashi K, Iwata K. Properties of heat-sensitive neurons in the premotor cortex of conscious monkeys. J Oral Sci 2020; 62:382-386. [PMID: 32741851 DOI: 10.2334/josnusd.19-0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
To investigate neuronal activity involved in responses to noxious stimuli in conscious monkeys, the animals were subjected to a task that required them to detect a small change in facial skin temperature or light (second temperature: T2, second light: V2) relative to an initial condition (T1 or V1), and to detect changes in V2 along with a heat task. Recordings were obtained from 57 neurons in the ventral premotor cortex (PMv) during the heat or light detection task. T1 neurons and T2 neurons showed increased activity only during T1 or T2, and T1/T2 neurons were activated by both T1 and T2 stimuli. T1/T2 neurons showed an increase in firing at higher T1 temperatures, whereas T1 neurons did not. About half of the non-light/heat-sensitive T1/T2 neurons showed increased firing at higher T2 temperatures, whereas T2 neurons showed no such increase. The heat responses of heat-sensitive PMv neurons were significantly suppressed when monkeys shifted their attention from heat to light. The present findings suggest that heat-sensitive PMv neurons may be involved in motor responses to noxious heat, whereas light/heat-PMv neurons may be involved in emotional and motivational aspects of pain and inappropriate motor responses to allow escape from noxious stimuli.
Collapse
Affiliation(s)
- Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University
| | | | - Kumi Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry
| | - Barry J Sessle
- Faculty of Dentistry and Department of Physiology, Faculty of Medicine, University of Toronto
| | - Tomoyuki Matsui
- Department of Pediatric Dentistry, Nihon University School of Dentistry
| | - Masatoshi Ando
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | - Junichi Asaka
- Department of Physiology, Nihon University School of Dentistry
| | | | | | - Hiroki Onose
- Department of Physiology, Nihon University School of Dentistry
| | | | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
6
|
Battaglia-Mayer A. A Brief History of the Encoding of Hand Position by the Cerebral Cortex: Implications for Motor Control and Cognition. Cereb Cortex 2020; 29:716-731. [PMID: 29373634 DOI: 10.1093/cercor/bhx354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
Encoding hand position by the cerebral cortex is essential not only for the neural representation of the body image but also for different actions based on eye-hand coordination. These include reaching for visual objects as well as complex movement sequences, such as tea-making, tool use, and object construction, among many others. All these functions depend on a continuous refreshing of the hand position representation, relying on both predictive signaling and afferent information. The hand position influence on neural activity in the parietofrontal system, together with eye position signals, are the basic elements of an eye-hand matrix from which all the above functions can emerge and could be regarded as key features of a network with several entry points, command nodes and outflow pathways, as confirmed by the discovery of a direct parietospinal projection for the control of hand action. The integrity of this system is crucial for daily life, as testified by the consequences of cortical lesions, spanning from severe paralysis to complex forms of apraxia. In this review, I will sketch my personal understanding of the scientific and conceptual trajectory of a line of investigation with many unexpected influences on cortical function and disease, from motor behavior to cognition.
Collapse
|
7
|
Kurata K. Hierarchical Organization Within the Ventral Premotor Cortex of the Macaque Monkey. Neuroscience 2018; 382:127-143. [PMID: 29715510 DOI: 10.1016/j.neuroscience.2018.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022]
Abstract
Recent studies have revealed that the ventral premotor cortex (PMv) of nonhuman primates plays a pivotal role in various behaviors that require the transformation of sensory cues to appropriate actions. Examples include decision-making based on various sensory cues, preparation for upcoming motor behavior, adaptive sensorimotor transformation, and the generation of motor commands using rapid sensory feedback. Although the PMv has frequently been regarded as a single entity, it can be divided into at least five functionally distinct regions: F4, a dorsal convexity region immediately rostral to the primary motor cortex (M1); F5p, a cortical region immediately rostral to F4, lying within the arcuate sulcus; F5c, a ventral convexity region rostral to F4; and F5a, located in the caudal bank of the arcuate sulcus inferior limb lateral to F5p. Among these, F4 can be further divided into dorsal and ventral subregions (F4d and F4v), which are involved in forelimb and orofacial movements, respectively. F5p contains "mirror neurons" to understand others' actions based on visual and other types of information, and F4d and F5p work together as a functional complex involved in controlling forelimb and eye movements, most efficiently in the execution and completion of coordinated eye-hand movements for reaching and grasping under visual guidance. In contrast, F5c and F5a are hierarchically higher than the F4d, F5p, and F5v complexes, and play a role in decision-making based on various sensory discriminations. Hence, the PMv subregions form a hierarchically organized integral system from decision-making to eye-hand coordination under various behavioral circumstances.
Collapse
Affiliation(s)
- Kiyoshi Kurata
- Department of Physiology, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan.
| |
Collapse
|