1
|
Goldammer J, Büschges A, Dürr V. Descending interneurons of the stick insect connecting brain neuropiles with the prothoracic ganglion. PLoS One 2023; 18:e0290359. [PMID: 37651417 PMCID: PMC10470933 DOI: 10.1371/journal.pone.0290359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Stick insects respond to visual or tactile stimuli with whole-body turning or directed reach-to-grasp movements. Such sensory-induced turning and reaching behaviour requires interneurons to convey information from sensory neuropils of the head ganglia to motor neuropils of the thoracic ganglia. To date, descending interneurons are largely unknown in stick insects. In particular, it is unclear whether the special role of the front legs in sensory-induced turning and reaching has a neuroanatomical correlate in terms of descending interneuron numbers. Here, we describe the population of descending interneurons with somata in the brain or gnathal ganglion in the stick insect Carausius morosus, providing a first map of soma cluster counts and locations. By comparison of interneuron populations with projections to the pro- and mesothoracic ganglia, we then estimate the fraction of descending interneurons that terminate in the prothoracic ganglion. With regard to short-latency, touch-mediated reach-to-grasp movements, we also locate likely sites of synaptic interactions between antennal proprioceptive afferents to the deutocerebrum and gnathal ganglion with descending or ascending interneuron fibres. To this end, we combine fluorescent dye stainings of thoracic connectives with stainings of antennal hair field sensilla. Backfills of neck connectives revealed up to 410 descending interneuron somata (brain: 205 in 19 clusters; gnathal ganglion: 205). In comparison, backfills of the prothorax-mesothorax connectives stained only up to 173 somata (brain: 83 in 16 clusters; gnathal ganglion: 90), suggesting that up to 60% of all descending interneurons may terminate in the prothoracic ganglion (estimated upper bound). Double stainings of connectives and antennal hair field sensilla revealed that ascending or descending fibres arborise in close proximity of afferent terminals in the deutocerebrum and in the middle part of the gnathal ganglia. We conclude that two cephalothoracic pathways may convey cues about antennal movement and pointing direction to thoracic motor centres via two synapses only.
Collapse
Affiliation(s)
- Jens Goldammer
- Department of Animal Physiology and Neurobiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology and Neurobiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Jaske B, Lepreux G, Dürr V. Input of hair field afferents to a descending interneuron. J Neurophysiol 2021; 126:398-412. [PMID: 34161139 DOI: 10.1152/jn.00169.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In insects the tactile sense is important for near-range orientation and is involved in various behaviors. Nocturnal insects, such as the stick insect Carausius morosus, continuously explore their surroundings by actively moving their antennae when walking. Upon antennal contact with objects, stick insects show a targeted front-leg movement. As this reaction occurs within 40 ms, descending transfer of information from the brain to the thorax needs to be fast. So far, a number of descending interneurons have been described that may be involved in this reach-to-grasp behavior. One of these is the contralateral ON-type velocity-sensitive neuron (cONv). cONv was found to encode antennal joint-angle velocity during passive movement. Here, we characterize the transient response properties of cONv, including its dependence on joint angle range and direction. As antennal hair field afferent terminals were shown to arborize close to cONv dendrites, we test whether antennal hair fields contribute to the joint-angle velocity encoding of cONv. To do so, we conducted bilateral extracellular recordings of both cONv interneurons per animal before and after hair field ablations. Our results show that cONv responses are highly transient, with velocity-dependent differences in delay and response magnitude. As yet, the steady state activity level was maintained until the stop of antennal movement, irrespective of movement velocity. Hair field ablation caused a moderate but significant reduction of movement-induced cONv firing rate by up to 40%. We conclude that antennal proprioceptive hair fields contribute to the velocity-tuning of cONv, though further antennal mechanoreceptors must be involved, too.NEW & NOTEWORTHY Active tactile exploration and tactually induced behaviors are important for many animals. They require descending information transfer about tactile sensor movement to thoracic networks. Here, we investigate response properties and afferent input to the identified descending interneuron cONv in stick insects. cONv may be involved in tactually induced reach-to-grasp movements. We show that cONv response delay, transient and steady state are velocity-dependent and that antennal proprioceptive hair fields contribute to the velocity encoding of cONv.
Collapse
Affiliation(s)
- Bianca Jaske
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Gaëtan Lepreux
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Center of Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Center of Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
3
|
Lepreux G, Haupt SS, Dürr V. Bimodal modulation of background activity in an identified descending interneuron. J Neurophysiol 2019; 122:2316-2330. [DOI: 10.1152/jn.00864.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the absence of any obvious input, sensory neurons and interneurons can display resting or spontaneous activity. This is often regarded as noise and removed through trial averaging, although it may reflect history-dependent modulation of tuning or fidelity and, thus, be of functional relevance to downstream interneurons. We investigated the history dependence of spontaneous activity in a pair of identified, bimodal descending interneurons of the stick insect, called contralateral ON-type velocity-sensitive interneurons (cONv). The bilateral pair of cONv conveys antennal mechanosensory information to the thoracic ganglia, where it arborizes in regions containing locomotor networks. Each cONv encodes the movement velocity of the contralateral antenna, but also substrate vibration as induced by discrete tapping events. Moreover, cONv display highly fluctuating spontaneous activity that can reach rates similar to those during antennal movement at moderate velocities. Hence, cONv offer a unique opportunity to study history-dependent effects on spontaneous activity and, thus, encoding fidelity in two modalities. In this work, we studied unimodal and cross-modal effects as well as unilateral and bilateral effects, using bilateral recordings of both cONv neurons, while moving one antenna and/or delivering taps to induce substrate vibration. Tapping could reduce spontaneous activity of both neurons, whereas antennal movement reduced spontaneous activity of the contralateral cONv neuron only. Combination of both modalities showed a cooperative effect for some parameter constellations, suggesting bimodal enhancement. Since both stimulus modalities could cause a reduction of spontaneous activity at stimulus intensities occurring during natural locomotion, we conclude that this should enhance neuronal response fidelity during locomotion. NEW & NOTEWORTHY The spontaneous activity in a pair of identified, descending insect interneurons is reduced depending on stimulus history. At rest, spontaneous activity levels are correlated in both interneurons, indicating a common drive from background activity. Whereas taps on the substrate affect both interneurons, antennal movement affects the contralateral interneuron only. Cross-modal interaction occurs, too. Since spontaneous activity is reduced at stimulus intensities encountered during natural locomotion, the mechanism could enhance neuronal response fidelity during locomotion.
Collapse
Affiliation(s)
- Gaëtan Lepreux
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology – Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Stephan Shuichi Haupt
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology – Center of Excellence, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Goldammer J, Dürr V. Proprioceptive input to a descending pathway conveying antennal postural information: Terminal organisation of antennal hair field afferents. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:465-481. [PMID: 30076912 DOI: 10.1016/j.asd.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/27/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Like several other arthropod species, stick insects use their antennae for tactile exploration of the near-range environment and for spatial localisation of touched objects. More specifically, Carausius morosus continuously moves its antennae during locomotion and reliably responds to antennal contact events with directed movements of a front leg. Here we investigate the afferent projection patterns of antennal hair fields (aHF), proprioceptors known to encode antennal posture and movement, and to be involved in antennal movement control. We show that afferents of all seven aHF of C. morosus have terminal arborisations in the dorsal lobe (DL) of the cerebral (=supraoesophageal) ganglion, and descending collaterals that terminate in a characteristic part of the gnathal (=suboesophageal) ganglion. Despite differences of functional roles among aHF, terminal arborisation patterns show no topological arrangement according to segment specificity or direction of movement. In the DL, antennal motoneuron neurites show arborizations in proximity to aHF afferent terminals. Despite the morphological similarity of single mechanoreceptors of aHF and adjacent tactile hairs on the pedicel and flagellum, we find a clear separation of proprioceptive and exteroceptive mechanosensory neuropils in the cerebral ganglion. Moreover, we also find this functional separation in the gnathal ganglion.
Collapse
Affiliation(s)
- Jens Goldammer
- Animal Physiology and Neurobiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| | - Volker Dürr
- Dept. Biological Cybernetics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
5
|
Pirschel F, Hilgen G, Kretzberg J. Effects of Touch Location and Intensity on Interneurons of the Leech Local Bend Network. Sci Rep 2018; 8:3046. [PMID: 29445203 PMCID: PMC5813025 DOI: 10.1038/s41598-018-21272-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/24/2018] [Indexed: 11/09/2022] Open
Abstract
Touch triggers highly precise behavioural responses in the leech. The underlying network of this so-called local bend reflex consists of three layers of individually characterised neurons. While the population of mechanosensory cells provide multiplexed information about the stimulus, not much is known about how interneurons process this information. Here, we analyse the responses of two local bend interneurons (cell 157 and 159) to a mechanical stimulation of the skin and show their response characteristics to naturalistic stimuli. Intracellular dye-fills combined with structural imaging revealed that these interneurons are synaptically coupled to all three types of mechanosensory cells (T, P, and N cells). Since tactile stimulation of the skin evokes spikes in one to two cells of each of the latter types, interneurons combine inputs from up to six mechanosensory cells. We find that properties of touch location and intensity can be estimated reliably and accurately based on the graded interneuron responses. Connections to several mechanosensory cell types and specific response characteristics of the interneuron types indicate specialised filter and integration properties within this small neuronal network, thus providing evidence for more complex signal processing than previously thought.
Collapse
Affiliation(s)
- Friederice Pirschel
- Computational Neuroscience, Department for Neuroscience, University of Oldenburg, Oldenburg, Germany. .,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
| | - Gerrit Hilgen
- Computational Neuroscience, Department for Neuroscience, University of Oldenburg, Oldenburg, Germany.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jutta Kretzberg
- Computational Neuroscience, Department for Neuroscience, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Hoke KL, Hebets EA, Shizuka D. Neural Circuitry for Target Selection and Action Selection in Animal Behavior. Integr Comp Biol 2017; 57:808-819. [DOI: 10.1093/icb/icx109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
7
|
Ache JM, Dürr V. A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing. PLoS Comput Biol 2015; 11:e1004263. [PMID: 26158851 PMCID: PMC4497639 DOI: 10.1371/journal.pcbi.1004263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/02/2015] [Indexed: 12/04/2022] Open
Abstract
Many animals, including humans, rely on active tactile sensing to explore the environment and negotiate obstacles, especially in the dark. Here, we model a descending neural pathway that mediates short-latency proprioceptive information from a tactile sensor on the head to thoracic neural networks. We studied the nocturnal stick insect Carausius morosus, a model organism for the study of adaptive locomotion, including tactually mediated reaching movements. Like mammals, insects need to move their tactile sensors for probing the environment. Cues about sensor position and motion are therefore crucial for the spatial localization of tactile contacts and the coordination of fast, adaptive motor responses. Our model explains how proprioceptive information about motion and position of the antennae, the main tactile sensors in insects, can be encoded by a single type of mechanosensory afferents. Moreover, it explains how this information is integrated and mediated to thoracic neural networks by a diverse population of descending interneurons (DINs). First, we quantified responses of a DIN population to changes in antennal position, motion and direction of movement. Using principal component (PC) analysis, we find that only two PCs account for a large fraction of the variance in the DIN response properties. We call the two-dimensional space spanned by these PCs ‘coding-space’ because it captures essential features of the entire DIN population. Second, we model the mechanoreceptive input elements of this descending pathway, a population of proprioceptive mechanosensory hairs monitoring deflection of the antennal joints. Finally, we propose a computational framework that can model the response properties of all important DIN types, using the hair field model as its only input. This DIN model is validated by comparison of tuning characteristics, and by mapping the modelled neurons into the two-dimensional coding-space of the real DIN population. This reveals the versatility of the framework for modelling a complete descending neural pathway. Many nocturnal and burrowing animals rely on their tactile sense to explore the surrounding space, and tactile cues are often used to adapt locomotion to a structurally complex environment. Most mammals use facial whiskers for active tactile exploration, while most insects use their antennae. Since whiskers and antennae are long, thin, cylindrical structures, they must be moved to probe the surrounding space. The nervous system therefore has to keep track of tactile sensor movement by encoding sensor position and motion in order to locate tactile contacts. Here, we model a descending neural pathway of the stick insect, which transfers information about tactile sensor movement to thoracic neural networks with short latency. We show that information about sensor position and motion can be derived from a single class of proprioceptors at the antennal joints, and present a computational model that explains the activity of four previously described groups of descending interneurons during antennal stimulation. Our model is validated against electrophysiological data on antennal mechanoreceptors and descending interneurons.
Collapse
Affiliation(s)
- Jan M. Ache
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology–Center of Excellence, Bielefeld University, Bielefeld, Germany
- * E-mail: (JMA); (VD)
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology–Center of Excellence, Bielefeld University, Bielefeld, Germany
- * E-mail: (JMA); (VD)
| |
Collapse
|
8
|
Abstract
Much like visually impaired humans use a white-cane, nocturnal insects and mammals use antennae or whiskers for near-range orientation. Stick insects, for example, rely heavily on antennal tactile cues to find footholds and detect obstacles. Antennal contacts can even induce aimed reaching movements. Because tactile sensors are essentially one-dimensional, they must be moved to probe the surrounding space. Sensor movement is thus an essential cue for tactile sensing, which needs to be integrated by thoracic networks for generating appropriate adaptive leg movements. Based on single and double recordings, we describe a descending neural pathway comprising three identified ON- and OFF-type neurons that convey complementary, unambiguous, and short-latency information about antennal movement to thoracic networks in the stick insect. The neurons are sensitive to the velocity of antennal movements across the entire range covered by natural movements, regardless of movement direction and joint angle. Intriguingly, none of them originates from the brain. Instead, they descend from the gnathal ganglion and receive input from antennal mechanoreceptors in this lower region of the CNS. From there, they convey information about antennal movement to the thorax. One of the descending neurons, which is additionally sensitive to substrate vibration, feeds this information back to the brain via an ascending branch. We conclude that descending interneurons with complementary tuning characteristics, gains, input and output regions convey detailed information about antennal movement to thoracic networks. This pathway bypasses higher processing centers in the brain and thus constitutes a shortcut between tactile sensors on the head and the thorax.
Collapse
|
9
|
Mongeau JM, Sponberg SN, Miller JP, Full RJ. Sensory processing within antenna enables rapid implementation of feedback control for high-speed running maneuvers. J Exp Biol 2015; 218:2344-54. [DOI: 10.1242/jeb.118604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/17/2015] [Indexed: 11/20/2022]
Abstract
Animals are remarkably stable during high-speed maneuvers. As the speed of locomotion increases, neural bandwidth and processing delays can limit the ability to achieve and maintain stable control. Processing the information of sensory stimuli into a control signal within the sensor itself could enable rapid implementation of whole-body feedback control during high-speed locomotion. Here, we show that processing in antennal afferents is sufficient to act as control signal for a fast sensorimotor loop. American cockroaches Periplaneta americana use their antennae to mediate escape running by tracking vertical surfaces such as walls. A control theoretic model of wall following predicts that stable control is possible if the animal can compute wall position (P) and velocity, its derivative, (D). Previous whole-nerve recordings from the antenna during simulated turning experiments demonstrated a population response consistent with P and D encoding, and suggested that the response was synchronized with the timing of a turn executed while wall following. Here, we record extracellularly from individual mechanoreceptors distributed along the antenna and show that these receptors encode D and have distinct latencies and filtering properties. When summed, receptors transform the stimulus into a control signal that could control rapid steering maneuvers. The D encoding within the antenna in addition to the temporal filtering properties and P dependence of the population of afferents support a sensory encoding hypothesis from control theory. Our findings support the hypothesis that peripheral sensory processing can enable rapid implementation of whole-body feedback control during rapid running maneuvers.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, CA 94720-3220, USA
| | - Simon N. Sponberg
- Department of Integrative Biology, University of California – Berkeley, Berkeley, CA 94720-3140, USA
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - John P. Miller
- Center for Computational Biology, Montana State University, Bozeman, MT 59717-3148, USA
| | - Robert J. Full
- Department of Integrative Biology, University of California – Berkeley, Berkeley, CA 94720-3140, USA
| |
Collapse
|
10
|
Theunissen LM, Vikram S, Dürr V. Spatial coordination of foot contacts in unrestrained climbing insects. J Exp Biol 2014; 217:3242-53. [DOI: 10.1242/jeb.108167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Animals that live in a spatially complex environment such as the canopy of a tree, constantly need to find reliable foothold in three-dimensional (3D) space. In multi-legged animals, spatial coordination among legs is thought to improve efficiency of finding foothold by avoiding searching-movements in trailing legs. In stick insects, a "targeting mechanism" has been described that guides foot-placement of hind and middle legs according to the position of their leading ipsilateral leg. So far, this mechanism was shown for standing and tethered walking animals on horizontal surfaces. Here, we investigate the efficiency of this mechanism in spatial limb coordination of unrestrained climbing animals. For this, we recorded whole-body kinematics of freely climbing stick insects and analyzed foot placement in 3D space. We found that touch-down positions of adjacent legs were highly correlated in all three spatial dimensions, revealing 3D coordinate transfer among legs. Furthermore, targeting precision depended on the position of the leading leg. A second objective was to test the importance of sensory information transfer between legs. For this, we ablated a proprioceptive hair field signaling the levation of the leg. After ablation, the operated leg swung higher and performed unexpected searching-movements. Furthermore, targeting of the ipsilateral trailing leg was less precise in antero-posterior and in dorso-ventral directions. Our results reveal that the targeting mechanism is used by unrestrained climbing stick insects in 3D space and that information from the trochanteral hair field is used in ipsilateral spatial coordination among legs.
Collapse
|