1
|
Dingwell JB, Render AC, Desmet DM, Cusumano JP. Generalizing stepping concepts to non-straight walking. J Biomech 2023; 161:111840. [PMID: 37897990 PMCID: PMC10880122 DOI: 10.1016/j.jbiomech.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
People rarely walk in straight lines. Instead, we make frequent turns or other maneuvers. Spatiotemporal parameters fundamentally characterize gait. For straight walking, these parameters are well-defined for the task of walking on a straight path. Generalizing these concepts to non-straight walking, however, is not straightforward. People follow non-straight paths imposed by their environment (sidewalk, windy hiking trail, etc.) or choose readily-predictable, stereotypical paths of their own. People actively maintain lateral position to stay on their path and readily adapt their stepping when their path changes. We therefore propose a conceptually coherent convention that defines step lengths and widths relative to predefined walking paths. Our convention simply re-aligns lab-based coordinates to be tangent to a walker's path at the mid-point between the two footsteps that define each step. We hypothesized this would yield results both more correct and more consistent with notions from straight walking. We defined several common non-straight walking tasks: single turns, lateral lane changes, walking on circular paths, and walking on arbitrary curvilinear paths. For each, we simulated idealized step sequences denoting "perfect" performance with known constant step lengths and widths. We compared results to path-independent alternatives. For each, we directly quantified accuracy relative to known true values. Results strongly confirmed our hypothesis. Our convention returned vastly smaller errors and introduced no artificial stepping asymmetries across all tasks. All results for our convention rationally generalized concepts from straight walking. Taking walking paths explicitly into account as important task goals themselves thus resolves conceptual ambiguities of prior approaches.
Collapse
Affiliation(s)
- Jonathan B Dingwell
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Anna C Render
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David M Desmet
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph P Cusumano
- Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Implications of Optimal Feedback Control Theory for Sport Coaching and Motor Learning: A Systematic Review. Motor Control 2021; 26:144-167. [PMID: 34920414 DOI: 10.1123/mc.2021-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
Best practice in skill acquisition has been informed by motor control theories. The main aim of this study is to screen existing literature on a relatively novel theory, Optimal Feedback Control Theory (OFCT), and to assess how OFCT concepts can be applied in sports and motor learning research. Based on 51 included studies with on average a high methodological quality, we found that different types of training seem to appeal to different control processes within OFCT. The minimum intervention principle (founded in OFCT) was used in many of the reviewed studies, and further investigation might lead to further improvements in sport skill acquisition. However, considering the homogenous nature of the tasks included in the reviewed studies, these ideas and their generalizability should be tested in future studies.
Collapse
|
3
|
Abstract
OBJECTIVES Multiple studies have found evidence of task non-specific slow drift rate in ADHD, and slow drift rate has rapidly become one of the most visible cognitive hallmarks of the disorder. In this study, we use the diffusion model to determine whether atypicalities in visuospatial cognitive processing exist independently of slow drift rate. METHODS Eight- to twelve-year-old children with (n = 207) and without ADHD (n = 99) completed a 144-trial mental rotation task. RESULTS Performance of children with ADHD was less accurate and more variable than non-ADHD controls, but there were no group differences in mean response time. Drift rate was slower, but nondecision time was faster for children with ADHD. A Rotation × ADHD interaction for boundary separation was also found in which children with ADHD did not strategically adjust their response thresholds to the same degree as non-ADHD controls. However, the Rotation × ADHD interaction was not significant for nondecision time, which would have been the primary indicator of a specific deficit in mental rotation per se. CONCLUSIONS Poorer performance on the mental rotation task was due to slow rate of evidence accumulation, as well as relative inflexibility in adjusting boundary separation, but not to impaired visuospatial processing specifically. We discuss the implications of these findings for future cognitive research in ADHD.
Collapse
|
4
|
Bucklin MA, Wu M, Brown G, Gordon KE. American Society of Biomechanics Journal of Biomechanics Award 2018: Adaptive motor planning of center-of-mass trajectory during goal-directed walking in novel environments. J Biomech 2019; 94:5-12. [PMID: 31416592 DOI: 10.1016/j.jbiomech.2019.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 11/27/2022]
Abstract
To aid in the successful execution of goal-directed walking (discrete movement from a start location to an end target) the central nervous system forms a predictive motor plan. For the motor plan to be effective, it must be adapted in response to environmental changes. Despite motor planning being inherent to goal-directed walking, it is not understood how the nervous system adapts these plans to interact with changing environments. Our objective was to understand how people adapt motor plans of center of mass (COM) trajectory during goal-directed walking in response to a consistent change in environmental dynamics. Participants preformed a series of goal-directed walking trials in a novel environment created by a cable robot that applied a lateral force field to their COM. We hypothesized that participants would adapt to the environment by forming an internal model of their COM trajectory within the force field. Our findings support this hypothesis. Initially, we found COM trajectory significantly deviated in the same direction as the applied field, relative to baseline (no field) (p = 0.002). However, with practice in the field, COM trajectory adapted back to the baseline (p = 0.6). When we unexpectedly removed the field, participants demonstrated after-effects, COM trajectory deviated in the direction opposite of the field relative to baseline (p < 0.001). Our findings suggest that when performing a goal-directed walking task, people adapt a motor plan that predicts the COM trajectory that will emerge from the interaction between a specific set of motor commands and the external environment.
Collapse
Affiliation(s)
- Mary A Bucklin
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - Mengnan/Mary Wu
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Geoffrey Brown
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Keith E Gordon
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
5
|
Authié CN, Berthoz A, Sahel JA, Safran AB. Adaptive Gaze Strategies for Locomotion with Constricted Visual Field. Front Hum Neurosci 2017; 11:387. [PMID: 28798674 PMCID: PMC5529417 DOI: 10.3389/fnhum.2017.00387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/12/2017] [Indexed: 11/13/2022] Open
Abstract
In retinitis pigmentosa (RP), loss of peripheral visual field accounts for most difficulties encountered in visuo-motor coordination during locomotion. The purpose of this study was to accurately assess the impact of peripheral visual field loss on gaze strategies during locomotion, and identify compensatory mechanisms. Nine RP subjects presenting a central visual field limited to 10-25° in diameter, and nine healthy subjects were asked to walk in one of three directions-straight ahead to a visual target, leftward and rightward through a door frame, with or without obstacle on the way. Whole body kinematics were recorded by motion capture, and gaze direction in space was reconstructed using an eye-tracker. Changes in gaze strategies were identified in RP subjects, including extensive exploration prior to walking, frequent fixations of the ground (even knowing no obstacle was present), of door edges, essentially of the proximal one, of obstacle edge/corner, and alternating door edges fixations when approaching the door. This was associated with more frequent, sometimes larger rapid-eye-movements, larger movements, and forward tilting of the head. Despite the visual handicap, the trajectory geometry was identical between groups, with a small decrease in walking speed in RPs. These findings identify the adaptive changes in sensory-motor coordination, in order to ensure visual awareness of the surrounding, detect changes in spatial configuration, collect information for self-motion, update the postural reference frame, and update egocentric distances to environmental objects. They are of crucial importance for the design of optimized rehabilitation procedures.
Collapse
Affiliation(s)
- Colas N Authié
- UPMC Université Paris 06, UMR S968, Institut de la Vision, Sorbonne UniversitésParis, France.,Institut National de la Santé et de la Recherche Médicale, U968, Institut de la VisionParis, France.,Centre National de la Recherche Scientifique, UMR 7210, Institut de la VisionParis, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Institut National de la Santé et de la Recherche Médicale-DHOS CIC 1423Paris, France
| | - Alain Berthoz
- Equipe Pr Alain Berthoz Professeur Emérite au Collège de FranceParis, France
| | - José-Alain Sahel
- UPMC Université Paris 06, UMR S968, Institut de la Vision, Sorbonne UniversitésParis, France.,Institut National de la Santé et de la Recherche Médicale, U968, Institut de la VisionParis, France.,Centre National de la Recherche Scientifique, UMR 7210, Institut de la VisionParis, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Institut National de la Santé et de la Recherche Médicale-DHOS CIC 1423Paris, France.,Institute of Ophthalmology, University College LondonLondon, United Kingdom.,Fondation Ophtalmologique Adolphe de RothschildParis, France.,Department of Ophthalmology, School of Medicine, University of PittsburghPittsburgh, PA, United States
| | - Avinoam B Safran
- UPMC Université Paris 06, UMR S968, Institut de la Vision, Sorbonne UniversitésParis, France.,Institut National de la Santé et de la Recherche Médicale, U968, Institut de la VisionParis, France.,Centre National de la Recherche Scientifique, UMR 7210, Institut de la VisionParis, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Institut National de la Santé et de la Recherche Médicale-DHOS CIC 1423Paris, France.,Département des Neurosciences, Université de GenèveGeneva, Switzerland
| |
Collapse
|
6
|
Carton D, Nitsch V, Meinzer D, Wollherr D. Towards Assessing the Human Trajectory Planning Horizon. PLoS One 2016; 11:e0167021. [PMID: 27936015 PMCID: PMC5147863 DOI: 10.1371/journal.pone.0167021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/08/2016] [Indexed: 12/02/2022] Open
Abstract
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models.
Collapse
Affiliation(s)
- Daniel Carton
- Chair of Automatic Control Engineering, Technical University of Munich, Theresienstr. 90, 80333 Munich, Germany
- * E-mail:
| | - Verena Nitsch
- Human Factors Institute, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Dominik Meinzer
- Chair of Automatic Control Engineering, Technical University of Munich, Theresienstr. 90, 80333 Munich, Germany
| | - Dirk Wollherr
- Chair of Automatic Control Engineering, Technical University of Munich, Theresienstr. 90, 80333 Munich, Germany
| |
Collapse
|
7
|
Hicheur H, Boujon C, Wong C, Pham QC, Annoni JM, Bihl T. Planning of spatially-oriented locomotion following focal brain damage in humans: A pilot study. Behav Brain Res 2016; 301:33-42. [DOI: 10.1016/j.bbr.2015.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023]
|
8
|
Belmonti V, Cioni G, Berthoz A. Anticipatory control and spatial cognition in locomotion and navigation through typical development and in cerebral palsy. Dev Med Child Neurol 2016; 58 Suppl 4:22-7. [PMID: 27027604 DOI: 10.1111/dmcn.13044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 11/30/2022]
Abstract
Behavioural evidence, summarized in this narrative review, supports a developmental model of locomotor control based on increasing neural integration of spatial reference frames. Two consistent adult locomotor behaviours are head stabilization and head anticipation: the head is stabilized to gravity and leads walking direction. This cephalocaudal orienting organization aligns gaze and vestibula with a reference frame centred on the upcoming walking direction, allowing anticipatory control on body kinematics, but is not fully developed until adolescence. Walking trajectories and those of hand movements share many aspects, including power laws coupling velocity to curvature, and minimized spatial variability. In fact, the adult brain can code trajectory geometry in an allocentric reference frame, irrespective of the end effector, regulating body kinematics thereafter. Locomotor trajectory formation, like head anticipation, matures in early adolescence, indicating common neurocomputational substrates. These late-developing control mechanisms can be distinguished from biomechanical problems in children with cerebral palsy (CP). Children's performance on a novel navigation test, the Magic Carpet, indicates that typical navigation development consists of the increasing integration of egocentric and allocentric reference frames. In CP, right-brain impairment seems to reduce navigation performance due to a maladaptive left-brain sequential egocentric strategy. Spatial integration should be considered more in rehabilitation.
Collapse
Affiliation(s)
- Vittorio Belmonti
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa (Calambrone), Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa (Calambrone), Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
9
|
Sreenivasa M, Mombaur K, Laumond JP. Walking paths to and from a goal differ: on the role of bearing angle in the formation of human locomotion paths. PLoS One 2015; 10:e0121714. [PMID: 25860941 PMCID: PMC4393262 DOI: 10.1371/journal.pone.0121714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/14/2015] [Indexed: 12/04/2022] Open
Abstract
The path that humans take while walking to a goal is the result of a cognitive process modulated by the perception of the environment and physiological constraints. The path shape and timing implicitly embeds aspects of the architecture behind this process. Here, locomotion paths were investigated during a simple task of walking to and from a goal, by looking at the evolution of the position of the human on a horizontal (x,y) plane. We found that the path while walking to a goal was not the same as that while returning from it. Forward-return paths were systematically separated by 0.5-1.9m, or about 5% of the goal distance. We show that this path separation occurs as a consequence of anticipating the desired body orientation at the goal while keeping the target in view. The magnitude of this separation was strongly influenced by the bearing angle (difference between body orientation and angle to goal) and the final orientation imposed at the goal. This phenomenon highlights the impact of a trade-off between a directional perceptual apparatus—eyes in the head on the shoulders—and and physiological limitations, in the formation of human locomotion paths. Our results give an insight into the influence of environmental and perceptual variables on human locomotion and provide a basis for further mathematical study of these mechanisms.
Collapse
Affiliation(s)
- Manish Sreenivasa
- Optimization in Robotics and Biomechanics, Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Katja Mombaur
- Optimization in Robotics and Biomechanics, Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
10
|
Belmonti V, Cioni G, Berthoz A. Switching from reaching to navigation: differential cognitive strategies for spatial memory in children and adults. Dev Sci 2014; 18:569-86. [DOI: 10.1111/desc.12240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Vittorio Belmonti
- Department of Developmental Neuroscience; IRCCS Fondazione Stella Maris; Pisa (Calambrone) Italy
- Department of Clinical and Experimental Medicine; University of Pisa; Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience; IRCCS Fondazione Stella Maris; Pisa (Calambrone) Italy
- Department of Clinical and Experimental Medicine; University of Pisa; Italy
| | - Alain Berthoz
- Laboratoire de Physiologie de la Perception et de l'Action; UMR7152 CNRS-Collège de France Paris France
| |
Collapse
|
11
|
Ernst M, Götze M, Müller R, Blickhan R. Vertical adaptation of the center of mass in human running on uneven ground. Hum Mov Sci 2014; 38:293-304. [PMID: 25457426 DOI: 10.1016/j.humov.2014.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 03/31/2014] [Accepted: 05/15/2014] [Indexed: 11/18/2022]
Abstract
In running we are frequently confronted with different kinds of disturbances. Some require quick reactions and adaptations while others, like moderate changes in ground level, can be compensated passively. Monitoring the kinematics of the runner's center of mass (CoM) in such situations can reveal what global locomotion control strategies humans use and can help to distinguish between active and passive compensation methods. In this study single and permanent upward steps of 10 cm as well as drops of the same height were used as mechanical disturbances and the adaptations in the vertical oscillation of the runners CoM were analyzed. We found that runners visually perceiving uneven ground ahead substantially adapted their CoM in preparation by lifting it about 50% of step height or lowering it by about 40% of drop height, respectively. After contact on the changed ground level different adaptations depending on the situation occur. For persisting changes the adaptation to the elevated ground is completed after the first step on the new level. For single steps part of the adaptation takes place while returning to the ground. The consistent adaptations for the different situations support the idea that controlling the CoM by adapting leg parameters is a general control principle in running.
Collapse
Affiliation(s)
- M Ernst
- Motion Science, Institute of Sport Science, Friedrich Schiller University Jena, Seidelstrasse 20, 07749 Jena, Germany; Institute of Solid Mechanics, Faculty of Mechanical Engineering, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany.
| | - M Götze
- Motion Science, Institute of Sport Science, Friedrich Schiller University Jena, Seidelstrasse 20, 07749 Jena, Germany
| | - R Müller
- Motion Science, Institute of Sport Science, Friedrich Schiller University Jena, Seidelstrasse 20, 07749 Jena, Germany
| | - R Blickhan
- Motion Science, Institute of Sport Science, Friedrich Schiller University Jena, Seidelstrasse 20, 07749 Jena, Germany
| |
Collapse
|
12
|
Huber M, Su YH, Krüger M, Faschian K, Glasauer S, Hermsdörfer J. Adjustments of speed and path when avoiding collisions with another pedestrian. PLoS One 2014; 9:e89589. [PMID: 24586895 PMCID: PMC3935867 DOI: 10.1371/journal.pone.0089589] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
When walking in open space, collision avoidance with other pedestrians is a process that successfully takes place many times. To pass another pedestrian (an interferer) walking direction, walking speed or both can be adjusted. Currently, the literature is not yet conclusive of how humans adjust these two parameters in the presence of an interferer. This impedes the development of models predicting general obstacle avoidance strategies in humans’ walking behavior. The aim of this study was to investigate the adjustments of path and speed when a pedestrian is crossing a non-reactive human interferer at different angles and speeds, and to compare the results to general model predictions. To do so, we designed an experiment where a pedestrian walked a 12 m distance to reach a goal position. The task was designed in such a way that collision with an interferer would always occur if the pedestrian would not apply a correction of movement path or speed. Results revealed a strong dependence of path and speed adjustments on crossing angle and walking speed, suggesting local planning of the collision avoidance strategy. Crossing at acute angles (i.e. 45° and 90°) seems to require more complex collision avoidance strategies involving both path and speed adjustments than crossing at obtuse angles, where only path adjustments were observed. Overall, the results were incompatible with predictions from existing models of locomotor collision avoidance. The observed initiations of both adjustments suggest a collision avoidance strategy that is temporally controlled. The present study provides a comprehensive picture of human collision avoidance strategies in walking, which can be used to evaluate and adjust existing pedestrian dynamics models, or serve as an empirical basis to develop new models.
Collapse
Affiliation(s)
- Markus Huber
- Center for Sensorimotor Research, Institute for Clinical Neuroscience, Ludwig-Maximilians-University, Munich, Germany
| | - Yi-Huang Su
- Institute of Movement Science, Technical University of Munich, Munich, Germany
| | - Melanie Krüger
- Institute of Movement Science, Technical University of Munich, Munich, Germany
- Munich Center for Neurosciences – Brain and Mind, Ludwig-Maximilians-University, Munich, Germany
| | - Katrin Faschian
- Institute of Movement Science, Technical University of Munich, Munich, Germany
| | - Stefan Glasauer
- Center for Sensorimotor Research, Institute for Clinical Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Munich, Germany
- Bernstein Center for Computational Neuroscience Munich, Munich, Germany
- * E-mail:
| | - Joachim Hermsdörfer
- Institute of Movement Science, Technical University of Munich, Munich, Germany
| |
Collapse
|
13
|
Kannape OA, Barré A, Aminian K, Blanke O. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment. PLoS One 2014; 9:e85560. [PMID: 24465601 PMCID: PMC3897484 DOI: 10.1371/journal.pone.0085560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 11/29/2013] [Indexed: 11/19/2022] Open
Abstract
The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.
Collapse
Affiliation(s)
- Oliver Alan Kannape
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arnaud Barré
- Laboratory of Movement Analysis and Measurement, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Neuroprosthetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Neurology, University Hospital, Geneva, Switzerland
| |
Collapse
|
14
|
Development of anticipatory orienting strategies and trajectory formation in goal-oriented locomotion. Exp Brain Res 2013; 227:131-47. [DOI: 10.1007/s00221-013-3495-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/17/2013] [Indexed: 10/27/2022]
|
15
|
Basili P, Sağlam M, Kruse T, Huber M, Kirsch A, Glasauer S. Strategies of locomotor collision avoidance. Gait Posture 2013; 37:385-90. [PMID: 22975461 DOI: 10.1016/j.gaitpost.2012.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 06/12/2012] [Accepted: 08/07/2012] [Indexed: 02/02/2023]
Abstract
Collision avoidance during locomotion can be achieved by a variety of strategies. While in some situations only a single trajectory will successfully avoid impact, in many cases several different strategies are possible. Locomotor experiments in the presence of static boundary conditions have suggested that the choice of an appropriate trajectory is based on a maximum-smoothness strategy. Here we analyzed locomotor trajectories of subjects avoiding collision with another human crossing their path orthogonally. In such a case, changing walking direction while keeping speed or keeping walking direction while changing speed would be two extremes of solving the problem. Our participants clearly favored changing their walking speed while keeping the path on a straight line between start and goal. To interpret this result, we calculated the costs of the chosen trajectories in terms of a smoothness-maximization criterion and simulated the trajectories with a computational model. Data analysis together with model simulation showed that the experimentally chosen trajectory to avoid collision with a moving human is not the optimally smooth solution. However, even though the trajectory is not globally smooth, it was still locally smooth. Modeling further confirmed that, in presence of the moving human, there is always a trajectory that would be smoother but would deviate from the straight line. We therefore conclude that the maximum smoothness strategy previously suggested for static environments no longer holds for locomotor path planning and execution in dynamically changing environments such as the one tested here.
Collapse
Affiliation(s)
- Patrizia Basili
- Center for Sensorimotor Research, Ludwig-Maximilian University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
When shifting gaze to foveate a new target, humans mostly choose a unique set of eye and head movements from an infinite number of possible combinations. This stereotypy suggests that a general principle governs the movement choice. Here, we show that minimizing the impact of uncertainty, i.e., noise affecting motor performance, can account for the choice of combined eye-head movements. This optimization criterion predicts all major features of natural eye-head movements-including the part where gaze is already on target and the eye counter-rotates-such as movement durations, relative eye-head contributions, velocity profiles, and the dependency of gaze shifts on initial eye position. As a critical test of this principle, we show that it also correctly predicts changes in eye and head movement imposed by an experimental increase in the head moment of inertia. This suggests that minimizing the impact of noise is a simple and powerful principle that explains the choice of a unique set of movement profiles and segment coordination in goal-directed action.
Collapse
|
17
|
Berret B, Chiovetto E, Nori F, Pozzo T. Manifold reaching paradigm: how do we handle target redundancy? J Neurophysiol 2011; 106:2086-102. [PMID: 21734107 DOI: 10.1152/jn.01063.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
How the central nervous system coordinates the many intrinsic degrees of freedom of the musculoskeletal system is a recurrent question in motor control. Numerous studies addressed it by considering redundant reaching tasks such as point-to-point arm movements, for which many joint trajectories and muscle activations are usually compatible with a single goal. There exists, however, a different, extrinsic kind of redundancy that is target redundancy. Many times, indeed, the final point to reach is neither specified nor unique. In this study, we aim to understand how the central nervous system tackles such an extrinsic redundancy by considering a reaching-to-a-manifold paradigm, more specifically an arm pointing to a long vertical bar. In this case, the endpoint is not defined a priori and, therefore, subjects are free to choose any point on the bar to successfully achieve the task. We investigated the strategies used by subjects to handle this presented choice. Our results indicate both intersubject and intertrial consistency with respect to the freedom provided by the task. However, the subjects' behavior is found to be more variable than during classical point-to-point reaches. Interestingly, the average arm trajectories to the bar and the structure of intertrial endpoint variations could be explained via stochastic optimal control with an energy/smoothness expected cost and signal-dependent motor noise. We conclude that target redundancy is first overcome during movement planning and then exploited during movement execution, in agreement with stochastic optimal feedback control principles, which illustrates how the complementary problems of goal and movement selection may be resolved at once.
Collapse
Affiliation(s)
- Bastien Berret
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy.
| | | | | | | |
Collapse
|
18
|
Paquette C, Franzén E, Jones GM, Horak FB. Walking in circles: navigation deficits from Parkinson's disease but not from cerebellar ataxia. Neuroscience 2011; 190:177-83. [PMID: 21704129 DOI: 10.1016/j.neuroscience.2011.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
Little is known on the role of neuronal structures for spatial navigation. Our goal was to examine how Parkinson's disease (PD) and cerebellar ataxia, as human lesion models of the basal ganglia and cerebellum, affect spatial navigation round a circular walking path, blindfolded. Twelve subjects with idiopathic PD (ON and OFF medication), eight subjects with cerebellar ataxia and a control group of 20 age-matched healthy subjects participated. All groups performed well when walking around the circle with eyes open. In the eyes-closed condition, control subjects overshot the outlined trajectory but returned to their initial position, thus walking a further distance with eyes closed than with eyes open. When OFF medication, PD subjects navigated a larger radius than controls with eyes closed. When ON levodopa, PD subjects walked a similar distance as controls but with even larger errors in endpoint. Surprisingly, cerebellar patients navigated the circular walking task in the eyes closed condition with even more accuracy (i.e. following the outlined circle) than control and PD subjects. We conclude that blindfolded navigation around a previously seen circle requires intact basal ganglia, but not cerebellar input.
Collapse
Affiliation(s)
- C Paquette
- Department of Neurology, Oregon Health and Science University, 505 NW 185 Avenue, Beaverton, Portland, OR 97006, USA.
| | | | | | | |
Collapse
|
19
|
Marigold DS, Drew T. Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption. J Neurophysiol 2011; 105:2457-70. [DOI: 10.1152/jn.00992.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we determined whether cells in the posterior parietal cortex (PPC) may contribute to the planning of voluntary gait modifications in the absence of visual input. In two cats we recorded the responses of 41 neurons in layer V of the PPC that discharged in advance of the gait modification to a 900-ms interruption of visual information (visual occlusion). The cats continued to walk without interruption during the occlusion, which produced only minimal changes in step cycle duration and paw placement. Visual occlusion applied during the period of cell discharge was without significant effect on discharge frequency in 57% of cells. In the other cells, the visual occlusion produced either significant decreases (18%) or increases (21%) of discharge activity (in 1 cell there was both an increase and a decrease). The mean latency of the changes was 356 ms for decreases and 252 ms for increases. In most neurons, discharge frequency, when modified, returned to the same levels as during unoccluded locomotion when vision was restored. In some cells, there were significant changes in discharge activity after the restoration of vision; these were associated with corrections of gait. These results suggest that the PPC is more involved in the visuomotor transformations necessary to plan gait modifications than in continual sensory processing of visual information. We further propose that cells in the PPC contribute both to the planning of gait modifications on the basis of only intermittent visual sampling and to visually guided online corrections of gait.
Collapse
Affiliation(s)
- Daniel S. Marigold
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Trevor Drew
- Groupe de Recherche sur le Système Nerveux Central (GRSNC), Département de Physiologie, Université de Montréal, Montréal, Québec; and
| |
Collapse
|
20
|
Ronsse R, Sternad D. Bouncing between model and data: stability, passivity, and optimality in hybrid dynamics. J Mot Behav 2011; 42:389-99. [PMID: 21184357 DOI: 10.1080/00222895.2010.526451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rhythmically bouncing a ball with a racket is a seemingly simple task, but it poses all the challenges critical for coordinative behavior: perceiving the ball's trajectory to adapt position and velocity of the racket for the next ball contact. To gain insight into the underlying control strategies, the authors conducted a series of studies that tested models with experimental data, with an emphasis on deriving model-based hypotheses and trying to falsify them. Starting with a simple dynamical model of the racket and ball interactions, stability analyses showed that open-loop dynamics affords dynamical stability, such that small perturbations do not require corrections. To obtain this passive stability, the ball has to be impacted with negative acceleration--a strategy that subjects adopted in a variety of conditions at steady state. However, experimental tests that applied perturbations revealed that after perturbations, subjects applied active perceptually guided corrections to reestablish steady state faster than by relying on the passive model's relaxation alone. Hence, the authors derived a model with active control based on optimality principles that considered each impact as a separate reaching-like movement. This model captured some additional features of the racket trajectory but failed to predict more fine-grained aspects of performance. The authors proceed to present a new model that accounts not only for fine-grained behavior but also reconciles passive and active control approaches with new predictions that will be put to test in the next set of experiments.
Collapse
Affiliation(s)
- Renaud Ronsse
- Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | | |
Collapse
|
21
|
Pham QC, Berthoz A, Hicheur H. Invariance of locomotor trajectories across visual and gait direction conditions. Exp Brain Res 2011; 210:207-15. [PMID: 21437633 DOI: 10.1007/s00221-011-2619-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/24/2011] [Indexed: 11/24/2022]
Abstract
We studied the influence of vision (walking with or without vision) and of gait direction (walking forward or backward) on goal-oriented locomotion in humans. Subjects had to walk, in a free environment, from a given position and orientation towards a distant arrow which constrained their final position and orientation. We found that the average trajectories were mostly similar across the tested conditions, which suggests that locomotor trajectories are generated at a high cognitive level and, to some extent, independently of the detailed sensory and motor implementation levels. The variability profiles around the average trajectories were similar across the gait direction conditions but differed greatly across the visual conditions, indicating the existence of motor-independent and vision-dependent control mechanisms. Taken together, our observations argue further in favour of a top-down implementation of goal-oriented locomotion, where the control of locomotion is specified at the level of whole-body trajectories and then implemented through specific motor strategies.
Collapse
Affiliation(s)
- Quang-Cuong Pham
- Laboratoire de Physiologie de la Perception et de l'Action, Collège de France CNRS, UMR 7152, 11 place Marcelin Berthelot, 75005, Paris, France.
| | | | | |
Collapse
|