1
|
Cetin M, Kokce M, Karaoglu A, Kalaoglu E, Kibar H, Sezikli S, Ozkan M, Turker KS, Karacan I. Enhancing motor performance through brief skin cooling: exploring the role of enhanced sympathetic tone and muscle spindle sensitivity. Eur J Appl Physiol 2025; 125:443-453. [PMID: 39307853 DOI: 10.1007/s00421-024-05597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/23/2024] [Indexed: 02/16/2025]
Abstract
BACKGROUND Although brief skin cooling (BSC) is widely used in sports medicine and rehabilitation for its positive effects on motor performance, the mechanism underlying this motor facilitation effect remains unclear. OBJECTIVES To explore the hypothesis that BSC enhances muscle force generation, with cold-induced sympathetic activation leading to heightened muscle spindle sensitivity, thereby contributing to this effect. METHODS The study involved two experiments. Experiment 1 included 14 healthy volunteers. Participants submerged their hand in ice water for 3 min. Sympathetic activity was measured via heart rate (HR), muscle force generation was assessed through plantar flexor strength during maximum voluntary contraction (MVC), and cortical contribution to force generation via the volitional wave (V-wave) with and without the cold pressor test (CPT). Experiment-2 involved 11 healthy volunteers and focused on muscle spindle sensitivity and Ia synapse efficacy, assessed using soleus T-reflex and H-reflex recordings before, during, and after CPT. RESULTS Experiment 1 showed significant increases in HR (7.8%), MVC force (14.1%), and V-wave amplitude (93.4%) during CPT compared to pre-CPT values (p = 0.001, p = 0.03, and p = 0.001, respectively). In Experiment-2, hand skin temperature significantly decreased during CPT and remained lower than pre-CPT after 15 min (p < 0.001). While H-reflex and background EMG amplitudes remained unchanged, T-reflex amplitude (113.7%) increased significantly during CPT and returned to pre-CPT values immediately afterward (p < 0.001). A strong correlation was also observed between HR and T-reflex amplitude (r = 0.916, p = 0.001). CONCLUSION BSC enhances muscle spindle sensitivity via the sympathetic nervous system, promoting more significant muscle force generation. The method used in this study can be safely applied in clinical practice.
Collapse
Affiliation(s)
- Mert Cetin
- İstanbul Physical Therapy Rehabilitation Training and Research Hospital, Adnan Kahveci Blv. No : 145, Bahçelievler, 34186, Istanbul, Turkey
| | - Mustafa Kokce
- İstanbul Physical Therapy Rehabilitation Training and Research Hospital, Adnan Kahveci Blv. No : 145, Bahçelievler, 34186, Istanbul, Turkey
| | - Ayse Karaoglu
- Faculty of Dentistry, Physiology Dept., Istanbul Gelisim University, Istanbul, Turkey
| | - Eser Kalaoglu
- İstanbul Physical Therapy Rehabilitation Training and Research Hospital, Adnan Kahveci Blv. No : 145, Bahçelievler, 34186, Istanbul, Turkey.
| | - Halime Kibar
- İstanbul Physical Therapy Rehabilitation Training and Research Hospital, Adnan Kahveci Blv. No : 145, Bahçelievler, 34186, Istanbul, Turkey
| | - Selim Sezikli
- İstanbul Physical Therapy Rehabilitation Training and Research Hospital, Adnan Kahveci Blv. No : 145, Bahçelievler, 34186, Istanbul, Turkey
| | - Mehmet Ozkan
- İstanbul Physical Therapy Rehabilitation Training and Research Hospital, Adnan Kahveci Blv. No : 145, Bahçelievler, 34186, Istanbul, Turkey
| | - Kemal Sitki Turker
- Faculty of Dentistry, Physiology Dept., Istanbul Gelisim University, Istanbul, Turkey
| | - Ilhan Karacan
- İstanbul Physical Therapy Rehabilitation Training and Research Hospital, Adnan Kahveci Blv. No : 145, Bahçelievler, 34186, Istanbul, Turkey
- Hamidiye Faculty of Medicine, Physical Medicine and Rehabilitation Dept., Health Sciences University, Istanbul, Turkey
| |
Collapse
|
2
|
Pineau A, Martin A, Lepers R, Papaiordanidou M. Impact of different muscle-lengthening amplitudes combined with electrical nerve stimulation on torque production. J Neurophysiol 2025; 133:222-231. [PMID: 39641923 DOI: 10.1152/jn.00383.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
This study investigated torque production resulting from the combined application of wide-pulse neuromuscular electrical stimulation (NMES), delivered over the posterior tibial nerve, and muscle lengthening at two distinct amplitudes. Wide-pulse NMES (pulse duration: 1 ms; stimulation intensity: 5-10% of maximal voluntary contraction) was delivered at both low- (20 Hz) and high- (100 Hz) stimulation frequencies, either alone (NMES condition) or combined with a muscle lengthening at two amplitudes (10 or 20° ankle joint rotation; NMES + LEN10 and NMES + LEN20 conditions, respectively). For each frequency, the torque-time integral (TTI) and the muscle activity following the cessation of stimulation trains (sustained EMG activity) were calculated. At 20 Hz, TTI was higher (P = 0.007) during NMES + LEN10 (233.2 ± 101.5 Nm·s) and NMES + LEN20 (229.2 ± 92.1 Nm·s) than during the NMES condition (187.5 ± 74.5 Nm·s), without any change in sustained EMG activity (P = 0.54). At 100 Hz, TTI was higher (P = 0.038) during NMES + LEN10 (226.6 ± 115.3 Nm·s) than during NMES + LEN20 (180.6 ± 84.0 Nm·s) and NMES (173.9 ± 94.9 Nm·s). This torque enhancement was accompanied by a higher sustained EMG activity (P = 0.045) in the NMES + LEN10 condition. These findings show that, for low-frequency NMES, significant torque increases were observed with both a 10- or a 20-degree lengthening amplitude, probably linked to increased afferents' activation. In contrast, with high-frequency NMES, a significant TTI enhancement was observed only with the 10-degree amplitude, accompanied by increased sustained EMG activity, suggesting neural mechanisms' involvement. When a greater lengthening amplitude was superimposed during high-frequency NMES, these mechanisms were probably inhibited, precluding torque enhancement.NEW & NOTEWORTHY This study demonstrates that combining wide-pulse low-frequency NMES and muscle lengthening can increase torque production compared with the sole application of NMES. Torque enhancement is most likely linked to the persistent firing of muscle afferents. Although muscle lengthening superimposition also permitted torque increases during wide-pulse high-frequency NMES, increasing the muscle lengthening amplitude did not allow further torque enhancements, probably due to presynaptic inhibitory mechanisms.
Collapse
Affiliation(s)
- Antoine Pineau
- INSERM UMR1093-CAPS, Université Bourgogne, UFR des Sciences du Sport, Dijon, France
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne, UFR des Sciences du Sport, Dijon, France
| | - Romuald Lepers
- INSERM UMR1093-CAPS, Université Bourgogne, UFR des Sciences du Sport, Dijon, France
| | - Maria Papaiordanidou
- INSERM UMR1093-CAPS, Université Bourgogne, UFR des Sciences du Sport, Dijon, France
| |
Collapse
|
3
|
Colard J, Jubeau M, Crouzier M, Duclay J, Cattagni T. Effect of muscle length on the modulation of H-reflex and inhibitory mechanisms of Ia afferent discharges during passive muscle lengthening. J Neurophysiol 2024; 132:890-905. [PMID: 39015079 DOI: 10.1152/jn.00142.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
The effectiveness of activated Ia afferents to discharge α-motoneurons is decreased during passive muscle lengthening compared with static and shortening muscle conditions. Evidence suggests that these regulations are explained by 1) greater postactivation depression induced by homosynaptic postactivation depression (HPAD) and 2) primary afferent depolarization (PAD). It remains uncertain whether muscle length impacts the muscle lengthening-related aspect of regulation of the effectiveness of activated Ia afferents to discharge α-motoneurons, HPAD, PAD, and heteronymous Ia facilitation (HF). We conducted a study involving 15 healthy young individuals. We recorded conditioned or nonconditioned soleus Hoffmann (H) reflex with electromyography (EMG) to estimate the effectiveness of activated Ia afferents to discharge α-motoneurons, HPAD, PAD, and HF during passive shortening, static, and lengthening muscle conditions at short, intermediate, and long lengths. Our results show that the decrease of effectiveness of activated Ia afferents to discharge α-motoneurons and increase of postactivation depression during passive muscle lengthening occur at all muscle lengths. For PAD and HF, we found that longer muscle length increases the magnitude of regulation related to muscle lengthening. To conclude, our findings support an inhibitory effect (resulting from increased postactivation depression) of muscle lengthening and longer muscle length on the effectiveness of activated Ia afferents to discharge α-motoneurons. The increase in postactivation depression associated with muscle lengthening can be attributed to the amplification of Ia afferents discharge.NEW & NOTEWORTHY Original results are that in response to passive muscle lengthening and increased muscle length, inhibition of the effectiveness of activated Ia afferents to discharge α-motoneurons increases, with primary afferent depolarization and homosynaptic postactivation depression mechanisms playing central roles in this regulatory process. Our findings highlight for the first time a cumulative inhibitory effect of muscle lengthening and increased muscle length on the effectiveness of activated Ia afferents to discharge α-motoneurons.
Collapse
Affiliation(s)
- Julian Colard
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| | - Marc Jubeau
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| | - Marion Crouzier
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Thomas Cattagni
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| |
Collapse
|
4
|
Thomas E, Scardina A, Nakamura M, Bellafiore M, Bianco A. Acute effects of different administration order of stretching exercises: effects on range of motion and cross-over effect. J Sports Med Phys Fitness 2024; 64:95-102. [PMID: 37902800 DOI: 10.23736/s0022-4707.23.15289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
BACKGROUND The aim of this manuscript is to investigate if stretching exercise administration order may influence outcomes pertinent to range of movement (ROM). METHODS A total sample of 108 participants was randomized into five groups. Eight sets of unilateral static stretching (SS) of 30s duration each with a 30s rest were administered to the right leg. One group underwent SS of the knee extensors (KE), another to the knee flexors (KF), another first to the KE and then to the KF, another first to the KF and then to the KE while the last group was used as control (CG). Each group was assessed for ROM of both lower limbs for either the KE and KF motion (passive hip extention [PHE] and passive straight leg raise [PSLR], respectively). Measures were assessed before (T0), immediately after (T1), and 15 minutes after the intervention (T2). RESULTS No differences were observed for time (T0 vs. T1 vs. T2) for all measures in the CG for both limbs. Time-x-group interactions were observed only in the intervention limb (P<0.0007 and 0.004, ES 0.73 and 0.55, for KE and KF, respectively). Within the intervention limb, a significant increase in the PHE was observed from T0 to T1 only in the KE and KF/KE groups. For measures of the PSLR, a significant increase was observed from T0 to T1 only in the KF and KE/KF groups. No differences neither for time or group were observed in the control limb. CONCLUSIONS Our results highlight that exercise administration order has an effect on ROM outcomes. Measures of ROM significantly increase only for the last stretched muscle in each intervention group. No crossover effect was observed in the contralateral limb.
Collapse
Affiliation(s)
- Ewan Thomas
- Sport and Exercise Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy -
| | - Antonino Scardina
- Sport and Exercise Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, Saga, Japan
| | - Marianna Bellafiore
- Sport and Exercise Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Anvar SH, Granacher U, Konrad A, Alizadeh S, Culleton R, Edwards C, Goudini R, Behm DG. Corticospinal excitability and reflex modulation in a contralateral non-stretched muscle following unilateral stretching. Eur J Appl Physiol 2023; 123:1837-1850. [PMID: 37072505 DOI: 10.1007/s00421-023-05200-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE Muscle stretching effect on the range of motion (ROM) and force deficit in non-stretched muscle, and the underlying mechanisms, is an ongoing issue. This study aimed to investigate crossover stretching effects and mechanisms on the plantar flexor muscles. METHODS Fourteen recreationally active females (n = 5) and males (n = 9) performed six sets of 45-s static stretching (SS) (15-s recovery) to the point of discomfort of the dominant leg (DL) plantar flexors or control (345-s rest). Participants were tested for a single 5-s pre- and post-test maximal voluntary isometric contraction (MVIC) with each plantar flexor muscle and were tested for DL and non-DL ROM. They were tested pre- and post-test (immediate, 10-s, 30-s) for the Hoffman (H)-reflex and motor-evoked potentials (MEP) from transcranial magnetic stimulation in the contralateral, non-stretched muscle. RESULTS Both the DL and non-DL-MVIC force had large magnitude, significant (↓10.87%, p = 0.027, pƞ2 = 0.4) and non-significant (↓9.53%, p = 0.15, pƞ2 = 0.19) decreases respectively with SS. The SS also significantly improved the DL (6.5%, p < 0.001) and non-DL (5.35%, p = 0.002) ROM. The non-DL MEP/MMax and HMax/MMax ratio did not change significantly. CONCLUSION Prolonged static stretching improved the stretched muscle's ROM. However, the stretched limb's force was negatively affected following the stretching protocol. The ROM improvement and large magnitude force impairment (statistically non-significant) were transferred to the contralateral muscles. The lack of significant changes in spinal and corticospinal excitability confirms that the afferent excitability of the spinal motoneurons and corticospinal excitability may not play a substantial role in non-local muscle's ROM or force output responses.
Collapse
Affiliation(s)
- Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Urs Granacher
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Andreas Konrad
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Robyn Culleton
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Chris Edwards
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Reza Goudini
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
6
|
Nevanperä S, Hu N, Walker S, Avela J, Piirainen JM. Modulation of H-reflex and V-wave responses during dynamic balance perturbations. Exp Brain Res 2023; 241:1599-1610. [PMID: 37142781 DOI: 10.1007/s00221-023-06625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Motoneuron excitability is possible to measure using H-reflex and V-wave responses. However, it is not known how the motor control is organized, how the H-reflex and V-wave responses modulate and how repeatable these are during dynamic balance perturbations. To assess the repeatability, 16 participants (8 men, 8 women) went through two, identical measurement sessions with ~ 48 h intervals, where maximal isometric plantar flexion (IMVC) and dynamic balance perturbations in horizontal, anterior-posterior direction were performed. Soleus muscle (SOL) neural modulation during balance perturbations were measured at 40, 70, 100 and 130 ms after ankle movement by using both H-reflex and V-wave methods. V-wave, which depicts the magnitude of efferent motoneuronal output (Bergmann et al. in JAMA 8:e77705, 2013), was significantly enhanced as early as 70 ms after the ankle movement. Both the ratio of M-wave-normalized V-wave (0.022-0.076, p < 0.001) and H-reflex (0.386-0.523, p < 0.001) increased significantly at the latency of 70 ms compared to the latency of 40 ms and remained at these levels at latter latencies. In addition, M-wave normalized V-wave/H-reflex ratio increased from 0.056 to 0.179 (p < 0.001). The repeatability of V-wave demonstrated moderate-to-substantial repeatability (ICC = 0.774-0.912) whereas the H-reflex was more variable showing fair-to-substantial repeatability (ICC = 0.581-0.855). As a conclusion, V-wave was enhanced already at 70 ms after the perturbation, which may indicate that increased activation of motoneurons occurred due to changes in descending drive. Since this is a short time-period for voluntary activity, some other, potentially subcortical responses might be involved for V-wave increment rather than voluntary drive. Our results addressed the usability and repeatability of V-wave method during dynamic conditions, which can be utilized in future studies.
Collapse
Affiliation(s)
- Samuli Nevanperä
- Sports Technology Program, Faculty of Sport and Health Sciences, University of Jyväskylä, Kidekuja 2, 88610, Vuokatti, Finland.
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland.
| | - Nijia Hu
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| | - Jarmo M Piirainen
- Sports Technology Program, Faculty of Sport and Health Sciences, University of Jyväskylä, Kidekuja 2, 88610, Vuokatti, Finland
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| |
Collapse
|
7
|
Glories D, Soulhol M, Amarantini D, Duclay J. Combined effect of contraction type and intensity on corticomuscular coherence during isokinetic plantar flexions. Eur J Appl Physiol 2023; 123:609-621. [PMID: 36352055 DOI: 10.1007/s00421-022-05087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
During isometric contractions, corticomuscular coherence (CMC) may be modulated along with the contraction intensity. Furthermore, CMC may also vary between contraction types due to the contribution of spinal inhibitory mechanisms. However, the interaction between the effect of the contraction intensity and of the contraction type on CMC remains hitherto unknown. Therefore, CMC and spinal excitability modulations were compared during submaximal isometric, shortening and lengthening contractions of plantar flexor muscles at 25, 50, and 70% of the maximal soleus (SOL) EMG activity. CMC was computed in the time-frequency domain between the Cz EEG electrode signal and the SOL or medial gastrocnemius (MG) EMG signals. The results indicated that beta-band CMC was decreased in the SOL only between 25 and 50-70% contractions for both isometric and anisometric contractions, but remained similar for all contraction intensities in the MG. Spinal excitability was similar for all contraction intensities in both muscles. Meanwhile a divergence of the EEG and the EMG signals mean frequency was observed only in the SOL and only between 25 and 50-70% contractions, independently from the contraction type. Collectively, these findings confirm an effect of the contraction intensity on beta-band CMC, although it was only measured in the SOL, between low-level and high-level contraction intensities. Furthermore, the current findings provide new evidence that the observed modulations of beta-band CMC with the contraction intensity does not depend on the contraction type or on spinal excitability variations.
Collapse
Affiliation(s)
- Dorian Glories
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 118 Route de Narbonne, 3062, Toulouse Cedex 9, France
| | - Mathias Soulhol
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 118 Route de Narbonne, 3062, Toulouse Cedex 9, France
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 118 Route de Narbonne, 3062, Toulouse Cedex 9, France
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, 118 Route de Narbonne, 3062, Toulouse Cedex 9, France.
| |
Collapse
|
8
|
Colard J, Jubeau M, Duclay J, Cattagni T. Regulation of primary afferent depolarization and homosynaptic post-activation depression during passive and active lengthening, shortening and isometric conditions. Eur J Appl Physiol 2023; 123:1257-1269. [PMID: 36781424 DOI: 10.1007/s00421-023-05147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE This study aimed to determine whether the modulation of primary afferent depolarization (PAD) and homosynaptic post-activation depression (HPAD) are involved in the lower efficacy of Ia-afferent-α-motoneuron transmission commonly observed during lengthening compared to isometric and shortening conditions. METHODS 15 healthy young individuals participated in two experimental sessions dedicated to measurement in passive and active muscle states, respectively. In each session, PAD, HPAD and the efficacy of Ia-afferent-α-motoneuron transmission were evaluated during lengthening, shortening and isometric conditions. PAD was evaluated with D1 inhibition technique. Posterior tibial nerve stimulation was used to study HPAD and the efficacy of the Ia-afferent-α-motoneuron transmission through the recording of the soleus Hoffmann reflex (H reflex). RESULTS PAD was increased in lengthening than shortening (11.2%) and isometric (12.3%) conditions regardless of muscle state (P < 0.001). HPAD was increased in lengthening than shortening (5.1%) and isometric (4.2%) conditions in the passive muscle state (P < 0.05), while no difference was observed in the active muscle state. H reflex was lower in lengthening than shortening (- 13.2%) and isometric (- 9.4%) conditions in both muscle states (P < 0.001). CONCLUSION These results highlight the specific regulation of PAD and HPAD during lengthening conditions. However, the differences observed during passive lengthening compared to shortening and isometric conditions seem to result from an increase in Ia-afferent discharge, while the variations highlighted during active lengthening might come from polysynaptic descending pathways involving supraspinal centres that could regulate PAD mechanism.
Collapse
Affiliation(s)
- Julian Colard
- Nantes University, Movement-Interactions-Performance, MIP, 25 Bis Boulevard Guy Mollet-BP 72206, UR 4334, 44322, Nantes, France
| | - Marc Jubeau
- Nantes University, Movement-Interactions-Performance, MIP, 25 Bis Boulevard Guy Mollet-BP 72206, UR 4334, 44322, Nantes, France.
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Thomas Cattagni
- Nantes University, Movement-Interactions-Performance, MIP, 25 Bis Boulevard Guy Mollet-BP 72206, UR 4334, 44322, Nantes, France
| |
Collapse
|
9
|
Papitsa A, Paizis C, Papaiordanidou M, Martin A. Specific modulation of presynaptic and recurrent inhibition of the soleus muscle during lengthening and shortening submaximal and maximal contractions. J Appl Physiol (1985) 2022; 133:1327-1340. [PMID: 36356258 DOI: 10.1152/japplphysiol.00065.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The study analyzed neural mechanisms mediating spinal excitability modulation during eccentric (ECC) movement (passive muscle lengthening, submaximal, and maximal ECC contractions) as compared with concentric (CON) conditions. Twenty-two healthy subjects participated in three experiments. Experiment A (n = 13) examined D1 presynaptic inhibition (D1 PI) and recurrent inhibition (RI) modulation during passive muscle lengthening and shortening, by conditioning the soleus (SOL) H-reflex with common peroneal nerve submaximal and tibial nerve maximal stimulation, respectively. Experiment B (n = 13) analyzed the effect of passive muscle lengthening on D1 PI and heteronymous Ia facilitation (HF, conditioning the SOL H-reflex by femoral stimulation). Experiment C (n = 13) focused on the effect of muscle contraction level (20%, 50%, and 100% of maximal voluntary contraction) on D1 PI and RI. Results showed a significantly higher level of D1 PI during passive muscle lengthening than shortening (P < 0.01), whereas RI and HF were not affected by passive muscle movement. D1 PI and RI were both higher during ECC as compared with CON contractions (P < 0.001). However, the amount of D1 PI was independent of the torque level, whereas RI was reduced as the torque level increased (P < 0.05). The decreased spinal excitability induced by muscle lengthening during both passive and active conditions is mainly attributed to D1 PI, whereas RI also plays a role in the control of the specific motoneuron output during ECC contractions. Both inhibitory mechanisms are centrally controlled, but the fact that they evolve differently with torque increases, suggests a distinct supraspinal control.NEW & NOTEWORTHY Presynaptic (PI) and recurrent inhibitions (RI) were studied during passive muscle lengthening and eccentric contractions. Results indicate that the increased PI during passive muscle lengthening accounts for the decreased spinal excitability at rest. During eccentric contraction both mechanisms contribute to spinal excitability modulation. The same amount of PI was observed during eccentric contractions, while RI decreased as developed torque increased. This distinct modulation according to torque level suggests a distinct supraspinal control of these mechanisms.
Collapse
Affiliation(s)
- Athina Papitsa
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Christos Paizis
- Faculty of Sport Sciences, CAPS, INSERM U1093, University of Bourgogne Franche-Comté, Dijon, France.,Faculty of Sport Sciences, Centre for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne Franche-Comté, Dijon, France
| | - Maria Papaiordanidou
- Faculty of Sport Sciences, CAPS, INSERM U1093, University of Bourgogne Franche-Comté, Dijon, France
| | - Alain Martin
- Faculty of Sport Sciences, CAPS, INSERM U1093, University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
10
|
Billot M, Duclay J, Rigoard P, David R, Martin A. Antagonist muscle torque at the ankle interfere with maximal voluntary contraction under isometric and anisometric conditions. Sci Rep 2022; 12:20238. [PMID: 36424457 PMCID: PMC9691747 DOI: 10.1038/s41598-022-24752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
While resultant maximal voluntary contraction (MVC) is commonly used to assess muscular performance, the simultaneous activation of antagonist muscles may dramatically underestimate the strength of the agonist muscles. Although quantification of antagonist torque has been performed in isometric conditions, it has yet to be determined in anisometric conditions. The aim of the study was to compare the mechanical impact of antagonist torque between eccentric, isometric and concentric contractions in PF and DF MVCs. The MVCs in dorsiflexion (DF) and plantar-flexion (PF) were measured in isometric, concentric and eccentric conditions (10° s-1) in nine healthy men (26.1 ± 2.7 years; 1.78 ± 0.05 m; 73.4 ± 6.5 kg) through two sessions. Electromyographic (EMG) activities from the soleus, gastrocnemius medialis and lateralis, and tibialis anterior muscles were simultaneously recorded. The EMG biofeedback method was used to quantify antagonist torque. Resultant torque significantly underestimated agonist torque in DF MVC (30-65%) and to a lesser extent in PF MVC (3%). Triceps surae antagonist torque was significantly modified with muscle contraction type, showing higher antagonist torque in isometric (29 Nm) than in eccentric (23 Nm, p < 0.001) and concentric (14 Nm, p < 0.001) conditions and resulting in modification of the DF MVC torque-velocity shape. Estimation of the antagonist torque in isometric or anisometric conditions provides new relevant insights to improve neuromuscular performance assessment and to better design strength training and rehabilitation programs related to the torque applied by agonist and antagonist muscles.
Collapse
Affiliation(s)
- Maxime Billot
- grid.411162.10000 0000 9336 4276PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 2 Rue de La Milétrie, Poitiers, France
| | - Julien Duclay
- grid.15781.3a0000 0001 0723 035XToulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Philippe Rigoard
- grid.411162.10000 0000 9336 4276PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 2 Rue de La Milétrie, Poitiers, France ,grid.411162.10000 0000 9336 4276Department of Spine Surgery and Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France ,grid.11166.310000 0001 2160 6368ISAE-ENSMA, Pprime Institute UPR 3346, CNRS, University of Poitiers, 86360 Chasseneuil-du-Poitou, France
| | - Romain David
- grid.411162.10000 0000 9336 4276PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 2 Rue de La Milétrie, Poitiers, France
| | - Alain Martin
- grid.5613.10000 0001 2298 9313Laboratoire INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, Université de Bourgogne - UFR STAPS, Dijon, France
| |
Collapse
|
11
|
Tøien T, Haglo H, Nyberg SK, Rao SV, Stunes AK, Mosti MP, Wang E. Maximal strength training-induced increase in efferent neural drive is not reflected in relative protein expression of SERCA. Eur J Appl Physiol 2021; 121:3421-3430. [PMID: 34498135 PMCID: PMC8571128 DOI: 10.1007/s00421-021-04807-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/01/2021] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Maximal strength training (MST), performed with heavy loads (~ 90% of one repetition maximum; 1RM) and few repetitions, yields large improvements in efferent neural drive, skeletal muscle force production, and skeletal muscle efficiency. However, it is elusive whether neural adaptations following such high intensity strength training may be accompanied by alterations in energy-demanding muscular factors. METHODS Sixteen healthy young males (24 ± 4 years) were randomized to MST 3 times per week for 8 weeks (n = 8), or a control group (CG; n = 8). Measurements included 1RM and rate of force development (RFD), and evoked potentials recordings (V-wave and H-reflex normalized to M-wave (M) in the soleus muscle) applied to assess efferent neural drive to maximally contracting skeletal muscle. Biopsies were obtained from vastus lateralis and analyzed by western blots and real-time PCR to investigate the relative protein expression and mRNA expression of Sarcoplasmic Reticulum Ca2+ ATPase (SERCA) 1 and SERCA2. RESULTS Significant improvements in 1RM (17 ± 9%; p < 0.001) and early (0-100 ms), late (0-200 ms) and maximal RFD (31-53%; p < 0.01) were observed after MST, accompanied by increased maximal Vmax/Msup-ratio (9 ± 14%; p = 0.046), with no change in H-reflex to M-wave ratio. No changes were observed in the CG. No pre- to post-training differences were found in mRNA or protein expressions of SERCA1 and SERCA2 in either group. CONCLUSION MST increased efferent neural drive to maximally contracting skeletal muscle, causing improved force production. No change was observed in SERCA expression, indicating that responses to high intensity strength training may predominantly be governed by neural adaptations.
Collapse
Affiliation(s)
- Tiril Tøien
- Department of Health and Social Sciences, Molde University College, Britvegen 2, 6410, Molde, Norway.
| | - Håvard Haglo
- Department of Health and Social Sciences, Molde University College, Britvegen 2, 6410, Molde, Norway.,Myworkout, Medical Rehabilitation Clinic, Trondheim, Norway
| | - Stian Kwak Nyberg
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Shalini Vasudev Rao
- Cambridge Institute, University of Cambridge, Cambridge, UK.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Astrid Kamilla Stunes
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Medical Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Mats Peder Mosti
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Medical Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Eivind Wang
- Department of Health and Social Sciences, Molde University College, Britvegen 2, 6410, Molde, Norway.,Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Department of Østmarka, Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
12
|
Fidan M, Bayrak A, Karli U. A novel adaptable isometric strength analysis and exercise development system design. Proc Inst Mech Eng H 2021; 235:913-926. [PMID: 33971770 DOI: 10.1177/09544119211015562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a low-cost and adaptable isometric strength measurement and exercise development system are described. The implemented system consists of mechanical structure, force measurement sensor, electronic circuit, and computer software. Isometric-isotonic (via spring resistance) strength analysis and various exercise programs can be applied with the system. The developed system has a lower cost compared to its counterparts in the literature and has a structure that can be adapted to different machines and measuring methods. The operability and reliability of the isometric strength measurement and exercise development system have been proven by calibration tests.
Collapse
Affiliation(s)
- Murat Fidan
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Alper Bayrak
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Umid Karli
- Department of Coaching Education, Faculty of Sports Sciences, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
13
|
Cè E, Coratella G, Doria C, Rampichini S, Borrelli M, Longo S, Esposito F. No effect of passive stretching on neuromuscular function and maximum force-generating capacity in the antagonist muscle. Eur J Appl Physiol 2021; 121:1955-1965. [PMID: 33770238 PMCID: PMC8192325 DOI: 10.1007/s00421-021-04646-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/14/2021] [Indexed: 11/25/2022]
Abstract
Purpose The present study investigated whether or not passive stretching increases the force-generating capacity of the antagonist muscle, and the possible neuromuscular mechanisms behind. Methods To this purpose, the neuromuscular function accompanying the force-generating capacity was assessed in 26 healthy male volunteers after passive stretching and in a control session. Before and after passive intermittent static stretching of the plantar flexors consisting of five sets × 45 s + 15 s-rest, maximum voluntary isometric contraction (MVC) and surface electromyographic root mean square (sEMG RMS) were measured in the tibialis anterior (the antagonist muscle). Additionally, evoked V wave, H-reflex, and M wave were elicited by nerve stimulation at rest and during MVC. Ankle range of motion (ROM) and plantar flexors MVC and EMG RMS were measured to check for the effectiveness of the stretching manoeuvre. Results No change in MVC [p = 0.670; effect size (ES) − 0.03] and sEMG RMS/M wave during MVC (p = 0.231; ES − 0.09) was observed in the antagonist muscle after passive stretching. Similarly, no change in V wave (p = 0.531; ES 0.16), H-reflex at rest and during MVC (p = 0.656 and 0.597; ES 0.11 and 0.23, respectively) and M wave at rest and during MVC (p = 0.355 and 0.554; ES 0.04 and 0.01, respectively) was observed. An increase in ankle ROM (p < 0.001; ES 0.55) and a decrease in plantar flexors MVC (p < 0.001; ES − 1.05) and EMG RMS (p < 0.05; ES − 1.72 to − 0.13 in all muscles) indicated the effectiveness of stretching protocol. Conclusion No change in the force-generating capacity and neuromuscular function of the antagonist muscle after passive stretching was observed.
Collapse
Affiliation(s)
- Emiliano Cè
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy
- IRCSS Galeazzi Orthopaedic Institute, Milano, Italy
| | - Giuseppe Coratella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy.
| | - Christian Doria
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy
| | - Marta Borrelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy
| | - Stefano Longo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy
- IRCSS Galeazzi Orthopaedic Institute, Milano, Italy
| |
Collapse
|
14
|
Carbonaro M, Seynnes O, Maffiuletti NA, Busso C, Minetto MA, Botter A. Architectural Changes in Superficial and Deep Compartments of the Tibialis Anterior During Electrical Stimulation Over Different Sites. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2557-2565. [PMID: 32986557 DOI: 10.1109/tnsre.2020.3027037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electrical stimulation is widely used in rehabilitation to prevent muscle weakness and to assist the functional recovery of neural deficits. Its application is however limited by the rapid development of muscle fatigue due to the non-physiological motor unit (MU) recruitment. This issue can be mitigated by interleaving muscle belly (mStim) and nerve stimulation (nStim) to distribute the temporal recruitment among different MU groups. To be effective, this approach requires the two stimulation modalities to activate minimally-overlapped groups of MUs. In this manuscript, we investigated spatial differences between mStim and nStim MU recruitment through the study of architectural changes of superficial and deep compartments of tibialis anterior (TA). We used ultrasound imaging to measure variations in muscle thickness, pennation angle, and fiber length during mStim, nStim, and voluntary (Vol) contractions at 15% and 25% of the maximal force. For both contraction levels, architectural changes induced by nStim in the deep and superficial compartments were similar to those observed during Vol. Instead, during mStim superficial fascicles underwent a greater change compared to those observed during nStim and Vol, both in absolute magnitude and in their relative differences between compartments. These observations suggest that nStim results in a distributed MU recruitment over the entire muscle volume, similarly to Vol, whereas mStim preferentially activates the superficial muscle layer. The diversity between spatial recruitment of nStim and mStim suggests the involvement of different MU populations, which justifies strategies based on interleaved nerve/muscle stimulation to reduce muscle fatigue during electrically-induced contractions of TA.
Collapse
|
15
|
Ema R, Kanda A, Shoji M, Iida N, Akagi R. Age-Related Differences in the Effect of Prolonged Vibration on Maximal and Rapid Force Production and Balance Ability. Front Physiol 2020; 11:598996. [PMID: 33192615 PMCID: PMC7659521 DOI: 10.3389/fphys.2020.598996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
We tested the hypothesis that older adults would not likely experience deficits in maximal and explosive plantar flexion strength and standing balance performance induced by prolonged Achilles tendon vibration compared with young adults. Fifteen older men (OM, 73 ± 5 years) and 15 young men (YM, 24 ± 4 years) participated in two interventions on different days: lying in a quiet supine position for 30 min with or without prolonged vibration to the Achilles tendon. Before and after the interventions, maximal voluntary contraction (MVC) torque during plantar flexion, rate of torque development (RTD), and center of pressure (COP) speed during single-leg standing were measured. The root mean square of the electromyogram (RMS-EMG) during performance and V-wave and voluntary activation during MVC were assessed. The MVC torque (7 ± 7%) and RTD (16 ± 15%) of YM but not OM significantly decreased after vibration. In addition, the relative changes observed in YM positively correlated with changes in RMS-EMG of the medial gastrocnemius (MG) (MVC torque and RTD) and in MG V-wave and voluntary activation (MVC torque). COP speed significantly increased (16 ± 20%) in YM only after vibration and was accompanied by increased activation of the lateral gastrocnemius. This is the first study to show that the effects of prolonged Achilles tendon vibration on strength and balance performances were apparent in young adults only. The differences between the age groups may be related to the attenuated gastrocnemius neuromuscular function in older adults.
Collapse
Affiliation(s)
- Ryoichi Ema
- School of Management, Shizuoka Sangyo University, Iwata, Japan
| | - Akihiro Kanda
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- Mizuno Corporation, Osaka, Japan
| | - Mikio Shoji
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Natsuki Iida
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Ryota Akagi
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
16
|
Opplert J, Paizis C, Papitsa A, Blazevich AJ, Cometti C, Babault N. Static stretch and dynamic muscle activity induce acute similar increase in corticospinal excitability. PLoS One 2020; 15:e0230388. [PMID: 32191755 PMCID: PMC7082006 DOI: 10.1371/journal.pone.0230388] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/28/2020] [Indexed: 01/31/2023] Open
Abstract
Even though the acute effects of pre-exercise static stretching and dynamic muscle activity on muscular and functional performance have been largely investigated, their effects on the corticospinal pathway are still unclear. For that reason, this study examined the acute effects of 5×20 s of static stretching, dynamic muscle activity and a control condition on spinal excitability, corticospinal excitability and plantar flexor neuromuscular properties. Fifteen volunteers were randomly tested on separate days. Transcranial magnetic stimulation was applied to investigate corticospinal excitability by recording the amplitude of the motor-evoked potential (MEP) and the duration of the cortical silent period (cSP). Peripheral nerve stimulation was applied to investigate (i) spinal excitability using the Hoffmann reflex (Hmax), and (ii) neuromuscular properties using the amplitude of the maximal M-wave (Mmax) and corresponding peak twitch torque. These measurements were performed with a background 30% of maximal voluntary isometric contraction. Finally, the maximal voluntary isometric contraction torque and the corresponding electromyography (EMG) from soleus, gastrocnemius medialis and gastrocnemius lateralis were recorded. These parameters were measured immediately before and 10 s after each conditioning activity of plantar flexors. Corticospinal excitability (MEP/Mmax) was significantly enhanced after static stretching in soleus (P = 0.001; ES = 0.54) and gastrocnemius lateralis (P<0.001; ES = 0.64), and after dynamic muscle activity in gastrocnemius lateralis (P = 0.003; ES = 0.53) only. On the other hand, spinal excitability (Hmax/Mmax), cSP duration, muscle activation (EMG/Mmax) as well as maximal voluntary and evoked torque remained unaltered after all pre-exercise interventions. These findings indicate the presence of facilitation of the corticospinal pathway without change in muscle function after both static stretching (particularly) and dynamic muscle activity.
Collapse
Affiliation(s)
- Jules Opplert
- INSERM UMR1093-CAPS, University of Burgundy Franche-Comté, Faculty of Sport Sciences, Dijon, France
- Performance Expertise Center, University of Burgundy Franche-Comté, Faculty of Sport Sciences, Dijon, France
- * E-mail:
| | - Christos Paizis
- INSERM UMR1093-CAPS, University of Burgundy Franche-Comté, Faculty of Sport Sciences, Dijon, France
- Performance Expertise Center, University of Burgundy Franche-Comté, Faculty of Sport Sciences, Dijon, France
| | - Athina Papitsa
- INSERM UMR1093-CAPS, University of Burgundy Franche-Comté, Faculty of Sport Sciences, Dijon, France
- Performance Expertise Center, University of Burgundy Franche-Comté, Faculty of Sport Sciences, Dijon, France
| | - Anthony J. Blazevich
- School of Medical and Health Sciences and Centre for Exercise and Sports Science Research, Edith Cowan University, Perth, Australia
| | - Carole Cometti
- INSERM UMR1093-CAPS, University of Burgundy Franche-Comté, Faculty of Sport Sciences, Dijon, France
- Performance Expertise Center, University of Burgundy Franche-Comté, Faculty of Sport Sciences, Dijon, France
| | - Nicolas Babault
- INSERM UMR1093-CAPS, University of Burgundy Franche-Comté, Faculty of Sport Sciences, Dijon, France
- Performance Expertise Center, University of Burgundy Franche-Comté, Faculty of Sport Sciences, Dijon, France
| |
Collapse
|
17
|
Kenville R, Maudrich T, Vidaurre C, Maudrich D, Villringer A, Nikulin VV, Ragert P. Corticomuscular interactions during different movement periods in a multi-joint compound movement. Sci Rep 2020; 10:5021. [PMID: 32193492 PMCID: PMC7081206 DOI: 10.1038/s41598-020-61909-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 11/25/2022] Open
Abstract
While much is known about motor control during simple movements, corticomuscular communication profiles during compound movement control remain largely unexplored. Here, we aimed at examining frequency band related interactions between brain and muscles during different movement periods of a bipedal squat (BpS) task utilizing regression corticomuscular coherence (rCMC), as well as partial directed coherence (PDC) analyses. Participants performed 40 squats, divided into three successive movement periods (Eccentric (ECC), Isometric (ISO) and Concentric (CON)) in a standardized manner. EEG was recorded from 32 channels specifically-tailored to cover bilateral sensorimotor areas while bilateral EMG was recorded from four main muscles of BpS. We found both significant CMC and PDC (in beta and gamma bands) during BpS execution, where CMC was significantly elevated during ECC and CON when compared to ISO. Further, the dominant direction of information flow (DIF) was most prominent in EEG-EMG direction for CON and EMG-EEG direction for ECC. Collectively, we provide novel evidence that motor control during BpS is potentially achieved through central motor commands driven by a combination of directed inputs spanning across multiple frequency bands. These results serve as an important step toward a better understanding of brain-muscle relationships during multi joint compound movements.
Collapse
Affiliation(s)
- Rouven Kenville
- Institute for General Kinesiology and Exercise Science, Faculty of Sports Science, University of Leipzig, D-04109, Leipzig, Germany. .,Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, D-04103, Leipzig, Germany.
| | - Tom Maudrich
- Institute for General Kinesiology and Exercise Science, Faculty of Sports Science, University of Leipzig, D-04109, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, D-04103, Leipzig, Germany
| | - Carmen Vidaurre
- Dpt. of Statistics, Informatics and Mathematics, Public University of Navarre, Pamplona, 31006, Spain.,Machine Learning Group, Faculty of EE and Computer Science, TU Berlin, Berlin, 10587, Germany
| | - Dennis Maudrich
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, D-04103, Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, D-04103, Leipzig, Germany.,MindBrainBody Institute at Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Berlin, 10099, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, D-04103, Leipzig, Germany
| | - Vadim V Nikulin
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, D-04103, Leipzig, Germany.,Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, 101000, Russian Federation.,Neurophysics Group, Department of Neurology, Charité-University Medicine Berlin, Campus Benjamin Franklin, Berlin, 10117, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sports Science, University of Leipzig, D-04109, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, D-04103, Leipzig, Germany
| |
Collapse
|
18
|
GROSPRÊTRE SIDNEY, PAPAXANTHIS CHARALAMBOS, MARTIN ALAIN. Corticospinal Modulations during Motor Imagery of Concentric, Eccentric, and Isometric Actions. Med Sci Sports Exerc 2019; 52:1031-1040. [DOI: 10.1249/mss.0000000000002218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Hoque M, Borich M, Sabatier M, Backus D, Kesar T. Effects of downslope walking on Soleus H-reflexes and walking function in individuals with multiple sclerosis: A preliminary study. NeuroRehabilitation 2019; 44:587-597. [PMID: 31256089 DOI: 10.3233/nre-192701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Downslope walking (DSW) is an eccentric-based exercise intervention that promotes neuroplasticity of spinal reflex circuitry by inducing depression of Soleus Hoffman (H)-reflexes in young, neurologically unimpaired adults. OBJECTIVE The objective of the study was to evaluate the effects of DSW on spinal excitability (SE) and walking function (WF) in people with multiple sclerosis (PwMS). METHODS Our study comprised two experiments on 12 PwMS (11 women; 45.3±11.8 years). Experiment 1 evaluated acute effects of a single 20-minute session of treadmill walking at three different walking grades on SE, 0% or level walking (LW), - 7.5% DSW, and - 15% DSW. Experiment 2 evaluated the effects of 6 sessions of DSW, at - 7.5% DSW (with second session being - 15% DSW) on SE and WF. RESULTS Experiment 1 showed significantly greater acute % H-reflex depression following - 15% DSW compared to LW (p = 0.02) and - 7.5% DSW (p = 0.05). Experiment 2 demonstrated significant improvements in WF. PwMS who showed greater acute H-reflex depression during the - 15% DSW session also demonstrated greater physical activity, long-distance WF, and the ability to have greater H-reflex depression after DSW training. Significant changes were not observed in regards to SE. CONCLUSIONS Though significant changes were not observed in SE after DSW training, we observed an improvement in WF which merits further investigation of DSW in PwMS.
Collapse
Affiliation(s)
- Maruf Hoque
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Borich
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Manning Sabatier
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah Backus
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA.,Shepherd Center, Atlanta, GA, USA
| | - Trisha Kesar
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
20
|
Tallent J, Goodall S, Kidgell DJ, Durbaba R, Howatson G. Compound maximal motor unit response is modulated by contraction intensity, but not contraction type in tibialis anterior. Physiol Rep 2019; 7:e14201. [PMID: 31496129 PMCID: PMC6732500 DOI: 10.14814/phy2.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 11/24/2022] Open
Abstract
Determining a single compound maximal motor response (MMAX ) or an average superimposed MMAX response (MSUP ) are commonly used reference values in experiments eliciting raw electromyographic, motor evoked potentials, H-reflexes, and V-waves. However, existing literature is limited in detailing the most appropriate method to normalize these electrophysiological measures. Due to the accessibility of assessment from a cortical and spinal perspective, the tibialis anterior is increasingly used in literature and hence investigated in this study. The aims of the present study were to examine the differences and level of agreement in MMAX /MSUP under different muscle actions and contraction intensities. Following a familiarization session, 22 males visited the laboratory on a single occasion. MMAX was recorded under 10% isometric and 25% and 100% shortening and lengthening maximal voluntary contractions (MVC) at an angular velocity of 15° sec-1 . MSUP was also recorded during 100% shortening and lengthening with an average of five responses recorded. There were no differences in MMAX or MSUP between contraction types. All variables showed large, positive correlations (P < 0.001, r2 ≥ 0.64). MMAX amplitude was larger (P < 0.001) at 100% shortening and lengthening intensity compared to MMAX amplitude at 10% isometric and 25% lengthening MVC. Bland-Altman plots revealed a bias toward higher MMAX at the higher contraction intensities. Despite MSUP being significantly smaller than MMAX (P < 0.001) at 100% MVC, MSUP showed a large positive correlation (P < 0.001, r2 ≥ 0.64) with all variables. It is our recommendation that MMAX should be recorded at specific contraction intensity but not necessarily a specific contraction type.
Collapse
Affiliation(s)
- Jamie Tallent
- School of Sport Health and Applied ScienceSt Mary's UniversityTwickenhamUnited Kingdom
- Faculty of Health and Life SciencesNorthumbria UniversityNewcastle‐upon‐TyneUnited Kingdom
| | - Stuart Goodall
- Faculty of Health and Life SciencesNorthumbria UniversityNewcastle‐upon‐TyneUnited Kingdom
| | - Dawson J. Kidgell
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health SciencesMonash UniversityMelbourneAustralia
| | - Rade Durbaba
- Faculty of Health and Life SciencesNorthumbria UniversityNewcastle‐upon‐TyneUnited Kingdom
| | - Glyn Howatson
- Faculty of Health and Life SciencesNorthumbria UniversityNewcastle‐upon‐TyneUnited Kingdom
- Water Research Group, School of Biological SciencesNorth West UniversityPotchefstroomSouth Africa
| |
Collapse
|
21
|
Silva-Batista C, Lira JLDO, David FJ, Corcos DM, Mattos ECT, Boari Coelho D, de Lima-Pardini AC, Torriani-Pasin C, de Freitas TB, Ugrinowitsch C. Short-term resistance training with instability reduces impairment in V wave and H reflex in individuals with Parkinson's disease. J Appl Physiol (1985) 2019; 127:89-97. [PMID: 31306047 DOI: 10.1152/japplphysiol.00902.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study had two objectives: 1) to compare the effects of 3 wk of resistance training (RT) and resistance training with instability (RTI) on evoked reflex responses at rest and during maximal voluntary isometric contraction (MVIC) of individuals with Parkinson's disease (PD) and 2) to determine the effectiveness of RT and RTI in moving values of evoked reflex responses of individuals with PD toward values of age-matched healthy control subjects (HCs) (z-score analysis). Ten individuals in the RT group and 10 in the RTI group performed resistance exercises twice a week for 3 wk, but only the RTI group included unstable devices. The HC group (n = 10) were assessed at pretest only. Evoked reflex responses at rest (H reflex and M wave) and during MVIC [supramaximal M-wave amplitude (Msup) and supramaximal V-wave amplitude (Vsup)] of the plantar flexors were assessed before and after the experimental protocol. From pretraining to posttraining, only RTI increased ratio of maximal H-reflex amplitude to maximal M-wave amplitude at rest (Hmax/Mmax), Msup, Vsup/Msup, and peak torque of the plantar flexors (P < 0.05). At posttraining, RTI was more effective than RT in increasing resting Hmax and Vsup and in moving these values to those observed in HCs (P < 0.05). We conclude that short-term RTI is more effective than short-term RT in modulating H-reflex excitability and in increasing efferent neural drive, approaching average values of HCs. Thus short-term RTI may cause positive changes at the spinal and supraspinal levels in individuals with PD. NEW & NOTEWORTHY Maximal H-reflex amplitude (Hmax) at rest and efferent neural drive [i.e., supramaximal V-wave amplitude (Vsup)] to skeletal muscles during maximal contraction are impaired in individuals with Parkinson's disease. Short-term resistance training with instability was more effective than short-term resistance training alone in increasing Hmax and Vsup of individuals with Parkinson's disease, reaching the average values of healthy control subjects.
Collapse
Affiliation(s)
- Carla Silva-Batista
- Exercise Neuroscience Research Group, School of Arts, Sciences and Humanities, University of São Paulo , São Paulo , Brazil.,Laboratory of Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo at São Paulo , São Paulo , Brazil
| | | | - Fabian J David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University , Chicago, Illinois
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University , Chicago, Illinois.,Department of Neurological Sciences, Rush University Medical Center , Chicago, Illinois
| | - Eugenia Casella Tavares Mattos
- Exercise Neuroscience Research Group, School of Arts, Sciences and Humanities, University of São Paulo , São Paulo , Brazil
| | - Daniel Boari Coelho
- Biomedical Engineering, Federal University of ABC , São Bernardo do Campo, São Paulo , Brazil.,Department of Neuroscience, Federal University of ABC , São Paulo , Brazil
| | - Andrea C de Lima-Pardini
- Laboratory of Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo at São Paulo , São Paulo , Brazil.,Department of Neuroscience, Federal University of ABC , São Paulo , Brazil
| | - Camila Torriani-Pasin
- Department of Pedagogy of the Human Body, Laboratory of Motor Behavior, School of Physical Education and Sports, University of São Paulo , São Paulo , Brazil
| | - Tatiana Beline de Freitas
- Department of Pedagogy of the Human Body, Laboratory of Motor Behavior, School of Physical Education and Sports, University of São Paulo , São Paulo , Brazil
| | - Carlos Ugrinowitsch
- Laboratory of Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo at São Paulo , São Paulo , Brazil
| |
Collapse
|
22
|
Grosprêtre S, Bouguetoch A, Martin A. Cortical and spinal excitabilities are differently balanced in power athletes. Eur J Sport Sci 2019; 20:415-425. [PMID: 31203789 DOI: 10.1080/17461391.2019.1633414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It is recognised that power-sport practices have a particular effect on lower-limb neuromuscular parameters. Less is known about corticospinal network adaptation, however, or whether these adaptations are specific to the lower limb. In the present study, the corticospinal and spinal excitabilities of upper and lower limbs have been examined in a group of untrained participants (UT, n = 10) and compared to those of a group of well-trained athletes practicing parkour (PK, n = 10). This activity, consisting of overcoming obstacles offered by the urban environment, was chosen as a model of power activity. The motor evoked potentials (MEPs) induced by transcranial magnetic stimulations and H-reflexes and maximal M-waves evoked by peripheral nerve stimulations were elicited in both upper- (flexor carpi radialis [FCR]) and lower-limb muscles (soleus [SOL] and gastrocnemius medialis [GM]). The results tended toward an overall greater corticospinal excitability in PK than in UT (as evidenced by greater MEP/Mmax ratio) and lower spinal excitability (lower Hmax/Mmax). H/MMAX ratio was lower for PK (0.32) than for UT (0.41) in SOL (p = 0.02), while MEP/MMAX was greater for PK than for UT in FCR (PK: 0.12; UT: 0.06; P = 0.04) and in GM (PK: 0.05, UT: 0.03, P = 0.02). In both limbs, the decrease of spinal excitability induced by parkour practice was counterbalanced by an increase in cortical excitability. Finally, the present study indicates that such long-term power practice leads to similar corticospinal plasticity in upper and lower limbs, explained by the similar solicitation of those muscles.
Collapse
Affiliation(s)
- Sidney Grosprêtre
- EA4660, C3S Culture Sport Health Society, University of Bourgogne Franche-Comté, Besançon, France
| | - Amandine Bouguetoch
- Cognition, Action and Sensorimotor Plasticity (CAPS), INSERM UMR1093, University of Bourgogne Franche-Comté, Dijon, France
| | - Alain Martin
- Cognition, Action and Sensorimotor Plasticity (CAPS), INSERM UMR1093, University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
23
|
Škarabot J, Ansdell P, Brownstein CG, Hicks KM, Howatson G, Goodall S, Durbaba R. Corticospinal excitability of tibialis anterior and soleus differs during passive ankle movement. Exp Brain Res 2019; 237:2239-2254. [PMID: 31243484 PMCID: PMC6675771 DOI: 10.1007/s00221-019-05590-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to assess corticospinal excitability of soleus (SOL) and tibialis anterior (TA) at a segmental level during passive ankle movement. Four experimental components were performed to assess the effects of passive ankle movement and muscle length on corticospinal excitability (MEP/Mmax) at different muscle lengths, subcortical excitability at the level of lumbar spinal segments (LEP/Mmax), intracortical inhibition (SICI) and facilitation (ICF), and H-reflex in SOL and TA. In addition, the degree of fascicle length changes between SOL and TA was assessed in a subpopulation during passive ankle movement. Fascicles shortened and lengthened with joint movement during passive shortening and lengthening of SOL and TA to a similar degree (p < 0.001). Resting motor threshold was greater in SOL compared to TA (p ≤ 0.014). MEP/Mmax was facilitated in TA during passive shortening relative to the static position (p ≤ 0.023) and passive lengthening (p ≤ 0.001), but remained similar during passive ankle movement in SOL (p ≥ 0.497), regardless of muscle length at the point of stimulus (p = 0.922). LEP/Mmax (SOL: p = 0.075, TA: p = 0.071), SICI (SOL: p = 0.427, TA: p = 0.540), and ICF (SOL: p = 0.177, TA: p = 0.777) remained similar during passive ankle movement. H-reflex was not different across conditions in TA (p = 0.258), but was reduced during passive lengthening compared to shortening in SOL (p = 0.048). These results suggest a differential modulation of corticospinal excitability between plantar and dorsiflexors during passive movement. The corticospinal behaviour observed might be mediated by an increase in corticospinal drive as a result of reduced afferent input during muscle shortening and appears to be flexor-biased.
Collapse
Affiliation(s)
- Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, NE1 8ST, UK
| | - Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, NE1 8ST, UK
| | - Callum G Brownstein
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, NE1 8ST, UK.,Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, 42023, Saint-Étienne, France
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, NE1 8ST, UK
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, NE1 8ST, UK.,Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, NE1 8ST, UK
| | - Rade Durbaba
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England, NE1 8ST, UK.
| |
Collapse
|
24
|
Barrué-Belou S, Marque P, Duclay J. Supraspinal Control of Recurrent Inhibition during Anisometric Contractions. Med Sci Sports Exerc 2019; 51:2357-2365. [PMID: 31107836 DOI: 10.1249/mss.0000000000002042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Increase in recurrent inhibition was observed during eccentric compared with isometric and concentric maximal voluntary contractions but the neural mechanisms involved in this specific control of the Renshaw cell activity are unknown. This study was designed to investigate the supraspinal control of the recurrent inhibition during anisometric contractions of the plantar flexor muscles. METHODS To that purpose, the paired Hoffmann-reflex (H-reflex) technique permitted to assess changes in homonymous recurrent pathway by comparing the modulations of test and conditioning H-reflexes (H' and H1, respectively) in the soleus (SOL) muscle during maximal and submaximal isometric, concentric and eccentric contractions. Submaximal contraction intensity was set at 50% of the SOL electromyographic activity recorded during maximal isometric contraction. Fourteen volunteer subjects participated in an experimental session designed to assess the activity of the recurrent inhibition pathway. RESULTS The results indicate that the amplitude of H1 normalized to the maximal M-wave were similar (P > 0.05) regardless of the muscle contraction type and intensity. Whatever the contraction intensity, the ratio between H' and H1 amplitudes was significantly decreased (P < 0.05) during eccentric compared with isometric and concentric contractions. Furthermore, this ratio was significantly smaller (P < 0.05) during submaximal compared with maximal contractions whatever the muscle contraction type. CONCLUSION Together, the current results confirm the supraspinal control of the Renshaw cell activity when muscle contraction intensity is modulated and show that this control remains similar for isometric, concentric and eccentric contractions. Data further suggest that recurrent inhibition pathway may serve as variable gain regulator at motoneuronal level to improve resolution in the control of motor output for the SOL during eccentric contractions.
Collapse
Affiliation(s)
- Simon Barrué-Belou
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, FRANCE
| | - Philippe Marque
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, FRANCE.,Service de Médecine Physique et Réadaptation, CHU Toulouse Rangueil, Toulouse, FRANCE
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, FRANCE
| |
Collapse
|
25
|
Clos P, Laroche D, Stapley PJ, Lepers R. Neuromuscular and Perceptual Responses to Sub-Maximal Eccentric Cycling. Front Physiol 2019; 10:354. [PMID: 30984032 PMCID: PMC6447677 DOI: 10.3389/fphys.2019.00354] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Objective Eccentric (ECC) cycle-ergometers have recently become commercially-available, offering a novel method for rehabilitation training. Many studies have reported that ECC cycling enables the development of higher levels of muscular force at lower cardiorespiratory and metabolic loads, leading to greater force enhancements after a training period. However, fewer studies have focused on the specific perceptual and neuromuscular changes. As the two latter aspects are of major interest in clinical settings, this review aimed to present an overview of the current literature centered on the neuromuscular and perceptual responses to submaximal ECC cycling in comparison to concentric (CON) cycling. Design Narrative review of the literature. Results At a given mechanical workload, muscle activation is lower in ECC than in CON while the characteristics of the musculo-articular system (i.e., muscle-tendon unit, fascicle, and tendinous tissue length) are quite similar. At a given heart rate or oxygen consumption, ECC cycling training results in greater muscular hypertrophy and strength gains than CON cycling. On the contrary, CON cycling training seems to enhance more markers of muscle aerobic metabolism than ECC cycling performed at the same heart rate intensity. Data concerning perceptual responses, and neuromuscular mechanisms leading to a lower muscle activation (i.e., neural commands from cortex to muscular system) at a given mechanical workload are scarce. Conclusion Even though ECC cycling appears to be a very useful tool for rehabilitation purposes the perceptual and neural commands from cortex to muscular system during exercise need to be further studied.
Collapse
Affiliation(s)
- Pierre Clos
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bourgogne-Franche Comté, Dijon, France
| | - Davy Laroche
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bourgogne-Franche Comté, Dijon, France.,INSERM CIC 1432, Plateforme d'Investigation Technologique, University Hospital of Dijon, Dijon, France
| | - Paul J Stapley
- Neural Control of Movement Group, Faculty of Science, Medicine and Health, School of Medicine, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Romuald Lepers
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
26
|
Škarabot J, Ansdell P, Brownstein CG, Hicks KM, Howatson G, Goodall S, Durbaba R. Reduced corticospinal responses in older compared with younger adults during submaximal isometric, shortening, and lengthening contractions. J Appl Physiol (1985) 2019; 126:1015-1031. [PMID: 30730812 DOI: 10.1152/japplphysiol.00987.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess differences in motor performance, as well as corticospinal and spinal responses to transcranial magnetic and percutaneous nerve stimulation, respectively, during submaximal isometric, shortening, and lengthening contractions between younger and older adults. Fifteen younger [26 yr (SD 4); 7 women, 8 men] and 14 older [64 yr (SD 3); 5 women, 9 men] adults performed isometric and shortening and lengthening dorsiflexion on an isokinetic dynamometer (5°/s) at 25% and 50% of contraction type-specific maximums. Motor evoked potentials (MEPs) and H reflexes were recorded at anatomical zero. Maximal dorsiflexor torque was greater during lengthening compared with shortening and isometric contractions ( P < 0.001) but was not age dependent ( P = 0.158). However, torque variability was greater in older compared with young adults ( P < 0.001). Background electromyographic (EMG) activity was greater in older compared with younger adults ( P < 0.005) and was contraction type dependent ( P < 0.001). As evoked responses are influenced by both the maximal level of excitation and background EMG activity, the responses were additionally normalized {[MEP/maximum M wave (Mmax)]/root-mean-square EMG activity (RMS) and [H reflex (H)/Mmax]/RMS}. (MEP/Mmax)/RMS and (H/Mmax)/RMS were similar across contraction types but were greater in young compared with older adults ( P < 0.001). Peripheral motor conduction times were prolonged in older adults ( P = 0.003), whereas peripheral sensory conduction times and central motor conduction times were not age dependent ( P ≥ 0.356). These data suggest that age-related changes throughout the central nervous system serve to accommodate contraction type-specific motor control. Moreover, a reduction in corticospinal responses and increased torque variability seem to occur without a significant reduction in maximal torque-producing capacity during older age. NEW & NOTEWORTHY This is the first study to have explored corticospinal and spinal responses with aging during submaximal contractions of different types (isometric, shortening, and lengthening) in lower limb musculature. It is demonstrated that despite preserved maximal torque production capacity corticospinal responses are reduced in older compared with younger adults across contraction types along with increased torque variability during dynamic contractions. This suggests that the age-related corticospinal changes serve to accommodate contraction type-specific motor control.
Collapse
Affiliation(s)
- Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Callum G Brownstein
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom.,Université Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom.,Water Research Group, School of Environmental Sciences and Development, Northwest University , Potchefstroom , South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Rade Durbaba
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| |
Collapse
|
27
|
Latella C, Goodwill AM, Muthalib M, Hendy AM, Major B, Nosaka K, Teo WP. Effects of eccentric versus concentric contractions of the biceps brachii on intracortical inhibition and facilitation. Scand J Med Sci Sports 2018; 29:369-379. [DOI: 10.1111/sms.13334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 10/28/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Christopher Latella
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences; Edith Cowan University; Joondalup Western Australia Australia
| | - Alicia M. Goodwill
- Centre for Research and Development in Learning (CRADLE); Nanyang Technological University; Singapore
| | - Makii Muthalib
- Silverline Research; Brisbane Queensland Australia
- Cognitive Neuroscience Unit (CNU), School of Psychology; Deakin University, Deakin University; Geelong Victoria Australia
| | - Ashlee M. Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences; Deakin University; Geelong Victoria Australia
| | - Brendan Major
- Cognitive Neuroscience Unit (CNU), School of Psychology; Deakin University, Deakin University; Geelong Victoria Australia
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences; Edith Cowan University; Joondalup Western Australia Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences; Deakin University; Geelong Victoria Australia
| |
Collapse
|
28
|
Tøien T, Pedersen Haglo H, Unhjem R, Hoff J, Wang E. Maximal strength training: the impact of eccentric overload. J Neurophysiol 2018; 120:2868-2876. [PMID: 30332319 DOI: 10.1152/jn.00609.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The search for the most potent strength training intervention is continuous. Maximal strength training (MST) yields large improvements in force-generating capacity (FGC), largely attributed to efferent neural drive enhancement. However, it remains elusive whether eccentric overload, before the concentric phase, may augment training-induced neuromuscular adaptations. A total of 53 23 ± 3 (SD)-yr-old untrained males were randomized to either a nontraining control group (CG) or one of two training groups performing leg press strength training with linear progression, three times per week for 8 wk. The first training group carried out MST with four sets of four repetitions at ~90% one-repetition maximum (1RM) in both action phases. The second group performed MST with an augmented eccentric load of 150% 1RM (eMST). Measurements were taken of 1RM and rate of force development (RFD), countermovement jump (CMJ) performance, and evoked potentials recordings [V-wave (V) and H-reflex (H) normalized to M-wave (M) in musculus soleus]. 1RM increased from 133 ± 16 to 157 ± 23 kg and 123 ± 18 to 149 ± 22 kg and CMJ by 2.3 ± 3.6 and 2.2 ± 3.7cm for MST and eMST, respectively (all P < 0.05). Early, late, and maximal RFD increased in both groups [634-1,501 N/s (MST); 644-2,111 N/s (eMST); P < 0.05]. These functional improvements were accompanied by increased V/M-ratio (MST: 0.34 ± 0.11 to 0.42 ± 14; eMST: .36 ± 0.14 to 0.43 ± 13; P < 0.05). Resting H/M-ratio remained unchanged. Training-induced improvements did not differ. All increases, except for CMJ, were different from the CG. MST is an enterprise for large gains in FGC and functional performance. Eccentric overload did not induce additional improvements, suggesting firing frequency and motor unit recruitment during MST may be maximal. NEW & NOTEWORTHY This is the first study to apply evoked potential recordings to investigate effects on efferent neural drive following high-intensity strength training with and without eccentric overload in a functionally relevant lower extremity exercise. We document that eccentric overload does not augment improvements in efferent neural drive or muscle force-generating capacity, suggesting that high-intensity concentric loads may maximally tax firing frequency and motor unit recruitment.
Collapse
Affiliation(s)
- Tiril Tøien
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway
| | - Håvard Pedersen Haglo
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway
| | - Runar Unhjem
- Faculty of Professional Studies, Nord University , Bodø , Norway
| | - Jan Hoff
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway.,Department of Physical Medicine and Rehabilitation, St. Olav's University Hospital , Trondheim , Norway
| | - Eivind Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology , Trondheim , Norway.,Department of Health and Social Sciences, Molde University College , Norway.,Department of Medicine, University of Utah , Salt Lake City, Utah
| |
Collapse
|
29
|
Leung H, Latella C, Lamon S, Hendy AM. The Reliability of Neurological Measurement in the Vastus Medialis: Implications for Research and Practice. Front Psychol 2018; 9:1857. [PMID: 30327634 PMCID: PMC6174212 DOI: 10.3389/fpsyg.2018.01857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 11/21/2022] Open
Abstract
The integrity of the corticomotor pathway is paramount in the optimal functioning of skeletal muscle. However, variability of neurophysiological assessment via peripheral nerve and transcranial magnetic stimulation can render interpretation difficult. Seldom evidence exists regarding the reliability of such measurements in the leg extensors, which have important locomotive and functional roles. This study aimed to assess the test-retest reliability of peripheral, corticospinal and intracortical responses in the vastus medialis. Transcranial magnetic and direct current electrical nerve stimulation were delivered to sixteen healthy young adults (8M and 8F) on two separate occasions. The Hoffmann reflex, maximal compound wave, motor evoked potential, corticospinal silent period, intracortical facilitation, and short-interval intracortical inhibition were recorded from the vastus medialis at rest, and during controlled submaximal voluntary contraction. Relative reliability was quantified using intra-class correlation coefficient (ICC2,1). Absolute reliability was quantified using standard error of measurement (SEm) and minimal detectable change (MDC). Corticospinal silent period, corticospinal silent period/motor evoked potential ratio, active motor evoked potential, maximal Hoffman reflex, and passive short-interval intracortical inhibition demonstrated “good to excellent” relative reliability (ICC ≥ 0.643). Intracortical facilitation demonstrated the lowest relative reliability (ICC = 0.420–0.908). Corticospinal silent period displayed the lowest absolute reliability (SEm ≤ 18.68%). Good reliability of the maximal compound wave, Hoffman reflex, motor evoked potential, and corticospinal silent period allow for reliable neurological evaluation of peripheral and corticospinal pathways in the vastus medialis. Future research should investigate reliability of the intracortical (short-interval intracortical inhibition and intracortical facilitation) measures by using different paired-pulse stimulus parameters. These findings hold important implications for neurophysiological assessment conducted in the leg extensor group.
Collapse
Affiliation(s)
- Hans Leung
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Christopher Latella
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Ashlee M Hendy
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| |
Collapse
|
30
|
Barrué-Belou S, Marque P, Duclay J. Recurrent inhibition is higher in eccentric compared to isometric and concentric maximal voluntary contractions. Acta Physiol (Oxf) 2018; 223:e13064. [PMID: 29575639 DOI: 10.1111/apha.13064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 11/30/2022]
Abstract
AIM This study was designed to investigate the influence of muscle contraction type on spinal recurrent inhibition during maximal voluntary contractions (MVC) of the plantar flexor muscles. METHODS To that purpose, the paired Hoffmann-reflex (H-reflex) technique permitted to assess changes in recurrent pathway by comparing the modulations of test, reference and conditioning H-reflexes (H', Href and H1 respectively) in the soleus muscle during isometric, concentric and eccentric MVC. Twenty-five subjects participated in an experimental session designed to assess the activity of the recurrent inhibition pathway. RESULTS The results indicate that both the electromyographic activity and the amplitude of H1 normalized to the maximal M-wave (Mmax ) were similar regardless of the muscle contraction type while the ratio between H' and H1 amplitudes was significantly smaller during eccentric compared with isometric and concentric MVC. Furthermore, Href and H' amplitudes did not differ significantly during both isometric and concentric MVCs while H' amplitude was significantly lower than Href amplitude during eccentric MVC. In addition, the V/Mmax ratio was similar for all muscle contraction type and greater H' amplitude was significantly correlated with greater V-wave amplitude regardless of the muscle contraction type. CONCLUSION Together, the current results indicate that recurrent inhibition is elevated for the soleus muscle during eccentric compared to isometric and concentric MVC. Data further suggest that the Renshaw cell activity is specifically controlled by the descending neural drive and/or peripheral neural mechanisms during eccentric MVC.
Collapse
Affiliation(s)
- S. Barrué-Belou
- Toulouse NeuroImaging Center; Université de Toulouse, Inserm, UPS; Toulouse France
| | - P. Marque
- Toulouse NeuroImaging Center; Université de Toulouse, Inserm, UPS; Toulouse France
- Service de Médecine Physique et Réadaptation; CHU Toulouse Rangueil; Toulouse France
| | - J. Duclay
- Toulouse NeuroImaging Center; Université de Toulouse, Inserm, UPS; Toulouse France
| |
Collapse
|
31
|
Aagaard P. Autogenic recurrent Renshaw inhibition is elevated in human spinal motor neurones during maximal eccentric muscle contraction in vivo. Acta Physiol (Oxf) 2018; 223:e13107. [PMID: 29855148 DOI: 10.1111/apha.13107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P. Aagaard
- Department of Sports Science and Clinical Biomechanics; Research Unit for Muscle Physiology and Biomechanics; University of Southern Denmark; Odense Denmark
| |
Collapse
|
32
|
Budini F, Christova M, Gallasch E, Rafolt D, Tilp M. Soleus H-Reflex Inhibition Decreases During 30 s Static Stretching of Plantar Flexors, Showing Two Recovery Steps. Front Physiol 2018; 9:935. [PMID: 30061844 PMCID: PMC6054967 DOI: 10.3389/fphys.2018.00935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/25/2018] [Indexed: 11/22/2022] Open
Abstract
During the period when the ankle joint is kept in a dorsiflexed position, the soleus (SOL) H-reflex is inhibited. The nature of this inhibition is not fully understood. One hypothesis is that the decrease in spinal excitability could be attributed to post-activation depression of muscle spindle afferents due to their higher firing rate during the stretch-and-hold procedure. As the static stretching position is maintained though, a partial restoration of the neurotransmitter is expected and should mirror a decrease in H-reflex inhibition. In the present study, we explored the time course of spinal excitability during a period of stretching. SOL H-reflex was elicited during a passive dorsiflexion movement, at 3, 6, 9, 12, 18, 21, and 25 s during maximal ankle dorsiflexion, during plantar flexion (PF) and after stretching, in 12 healthy young individuals. Measurements during passive dorsiflexion, PF and after stretching were all performed with the ankle at 100° angle; measurements during static stretching were performed at individual maximal dorsiflexion. H-reflex was strongly inhibited during the dorsiflexion movement and at maximal dorsiflexion (p < 0.0001) but recovered during PF and after stretching. During stretching H-reflex showed a recovery pattern (r = 0.836, P = 0.019) with two distinct recovery steps at 6 and 21 s into stretching. It is hypothesized that the H-reflex inhibition observed until 18 s into stretching is the result of post-activation depression of Ia afferent caused by the passive dorsiflexion movement needed to move the ankle into testing position. From 21 s into stretching, the lower inhibition could be caused by a weaker post-activation depression, inhibition from secondary afferents or post-synaptic inhibitions.
Collapse
Affiliation(s)
- Francesco Budini
- Institute of Sport Sciences, University of Graz, Graz, Austria.,Institute of Physiotherapy, FH Joanneum - University of Applied Sciences, Graz, Austria
| | - Monica Christova
- Institute of Physiotherapy, FH Joanneum - University of Applied Sciences, Graz, Austria.,Otto Loewi Research Center, Physiology Section, Medical University of Graz, Graz, Austria
| | - Eugen Gallasch
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Graz, Austria
| | - Dietmar Rafolt
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Markus Tilp
- Institute of Sport Sciences, University of Graz, Graz, Austria
| |
Collapse
|
33
|
Aagaard P. Spinal and supraspinal control of motor function during maximal eccentric muscle contraction: Effects of resistance training. JOURNAL OF SPORT AND HEALTH SCIENCE 2018; 7:282-293. [PMID: 30356634 PMCID: PMC6189238 DOI: 10.1016/j.jshs.2018.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
Neuromuscular activity is suppressed during maximal eccentric (ECC) muscle contraction in untrained subjects owing to attenuated levels of central activation and reduced spinal motor neuron (MN) excitability indicated by reduced electromyography signal amplitude, diminished evoked H-reflex responses, increased autogenic MN inhibition, and decreased excitability in descending corticospinal motor pathways. Maximum ECC muscle force recorded during maximal voluntary contraction can be increased by superimposed electrical muscle stimulation only in untrained individuals and not in trained strength athletes, indicating that the suppression in MN activation is modifiable by resistance training. In support of this notion, maximum ECC muscle strength can be increased by use of heavy-load resistance training owing to a removed or diminished suppression in neuromuscular activity. Prolonged (weeks to months) of heavy-load resistance training results in increased H-reflex and V-wave responses during maximal ECC muscle actions along with marked gains in maximal ECC muscle strength, indicating increased excitability of spinal MNs, decreased presynaptic and/or postsynaptic MN inhibition, and elevated descending motor drive. Notably, the use of supramaximal ECC resistance training can lead to selectively elevated V-wave responses during maximal ECC contraction, demonstrating that adaptive changes in spinal circuitry function and/or gains in descending motor drive can be achieved during maximal ECC contraction in response to heavy-load resistance training.
Collapse
|
34
|
Hahn D. Stretching the limits of maximal voluntary eccentric force production in vivo. JOURNAL OF SPORT AND HEALTH SCIENCE 2018; 7:275-281. [PMID: 30356655 PMCID: PMC6189274 DOI: 10.1016/j.jshs.2018.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/02/2018] [Accepted: 03/26/2018] [Indexed: 05/20/2023]
Abstract
During eccentric contractions, muscular force production capacity is enhanced compared to isometric contractions. Although this is well accepted in terms of muscle mechanics, maximal voluntary eccentric contractions are associated with neural inhibition that prevents increased force production of in vivo human muscles. However, because it was shown that maximal voluntary eccentric forces can exceed maximum isometric forces by a factor of 1.2-1.4, this review focuses on the question of whether the absent eccentric force enhancement, as observed in many studies, can unambiguously be attributed to an inherent neural inhibition. First, we demonstrate that participant familiarization, preload, and fascicle behavior are crucial factors influencing maximal voluntary eccentric force production. Second, we show that muscle mechanics such as muscle length, lengthening velocity, and stretch amplitude interact when it comes to maximal voluntary eccentric force production. Finally, we discuss the diverging findings on neural inhibition during maximal voluntary eccentric contractions. Because there was no inhibition of the major motor pathways in the presence of enhanced maximal voluntary eccentric forces, further research is needed to test the concept of neural inhibition and to understand why maximal voluntary force production is reduced compared to the force capacity of isolated muscle preparations.
Collapse
Affiliation(s)
- Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr-University Bochum, 44801 Bochum, Germany
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
35
|
Abstract
It is well known that prolonged passive muscle stretch reduces maximal muscle force production. There is a growing body of evidence suggesting that adaptations occurring within the nervous system play a major role in this stretch-induced force reduction. This article reviews the existing literature, and some new evidence, regarding acute neurophysiological changes in response to passive muscle stretching. We discuss the possible contribution of supra-spinal and spinal structures to the force reduction after passive muscle stretch. In summary, based on the recent evidence reviewed we propose a new hypothesis that a disfacilitation occurring at the motoneuronal level after passive muscle stretch is a major factor affecting the neural efferent drive to the muscle and, subsequently, its ability to produce maximal force.
Collapse
|
36
|
WITHDRAWN: Maximal motor unit response is modulated by contraction intensity, but not contraction type. eNeurologicalSci 2018. [DOI: 10.1016/j.ensci.2018.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Changes in central and peripheral neuromuscular fatigue indices after concentric versus eccentric contractions of the knee extensors. Eur J Appl Physiol 2018; 118:805-816. [PMID: 29411127 DOI: 10.1007/s00421-018-3816-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE To better understand neuromuscular characteristics of eccentric exercise-induced muscle damage, this study compared between concentric (CONC) and eccentric (ECC) exercises of knee extensor muscles, and the first (ECC1) and second bouts of the eccentric exercise (ECC2) for central and peripheral parameters associated with neuromuscular fatigue. METHODS Twelve young men performed three exercise bouts separated by at least 1 week between CONC and ECC1, and 2 weeks between ECC1 and ECC2. In each exercise, maximal voluntary concentric or eccentric contractions of the knee extensors were performed until a reduction in maximal voluntary isometric contraction (MVC) torque of at least 40% MVC was achieved immediately post-exercise. MVC torque, central (voluntary activation and normalised electromyographic activity), and peripheral neuromuscular indices (evoked torque and M-wave amplitude), and muscle soreness were assessed before (PRE), immediately after (POST), 1 h (1H), and 1-4 days after exercise (D1, D2, D3, and D4). RESULTS MVC torque decreased at only POST for CONC (- 52.8%), but remained below the baseline at POST (- 48.6%), 1H (- 34.1%), and D1-D4 (- 34.1 to - 18.2%) after ECC1, and at POST (- 45.2%), 1H (- 24.4%) and D1 (- 13.4%) after ECC2 (p < 0.05). Voluntary activation decreased immediately after ECC1 (- 21.6%) and ECC2 (- 21.1%), but not after CONC. Electrically evoked torques decreased similarly at POST and 1H for the three conditions, but remained below the baseline at D1 only post-ECC1. CONCLUSION These results showed that both central and peripheral factors contributed to the MVC decrease after ECC1 and ECC2, but the decrease was mainly due to peripheral factors after CONC.
Collapse
|
38
|
Valadão P, Kurokawa S, Finni T, Avela J. Effects of muscle action type on corticospinal excitability and triceps surae muscle-tendon mechanics. J Neurophysiol 2018; 119:563-572. [PMID: 29118191 DOI: 10.1152/jn.00079.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study investigated whether the specific motor control strategy reported for eccentric muscle actions is dependent on muscle mechanical behavior. Motor evoked potentials, Hoffman reflex (H-reflex), fascicle length, pennation angle, and fascicle velocity of soleus muscle were compared between isometric and two eccentric conditions. Ten volunteers performed maximal plantarflexion trials in isometric, slow eccentric (25°/s), and fast eccentric (100°/s) conditions, each in a different randomized testing session. H-reflex normalized by the preceding M wave (H/M) was depressed in both eccentric conditions compared with isometric ( P < 0.001), while no differences in fascicle length and pennation angle were found among conditions. Furthermore, although the fast eccentric condition had greater fascicle velocity than slow eccentric ( P = 0.001), there were no differences in H/M. There were no differences in motor evoked potential size between conditions, and silent period was shorter for both eccentric conditions compared with isometric ( P = 0.009). Taken together, the present results corroborate the hypothesis that the central nervous system has an unique activation strategy during eccentric muscle actions and suggest that sensory feedback does not play an important role in modulating these muscle actions. NEW & NOTEWORTHY The present study provides new insight into the motor control of eccentric muscle actions. It was demonstrated that task-dependent corticospinal excitability modulation does not seem to depend on sensory information processing. These findings support the hypothesis that the central nervous system has a unique activation strategy during eccentric muscle actions.
Collapse
Affiliation(s)
- P Valadão
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä , Jyväskylä , Finland
| | - S Kurokawa
- Center for Liberal Arts, Meiji Gakuin University , Yokohama , Japan
| | - T Finni
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä , Jyväskylä , Finland
| | - J Avela
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä , Jyväskylä , Finland
| |
Collapse
|
39
|
Budini F, Tilp M. Changes in H-reflex amplitude to muscle stretch and lengthening in humans. Rev Neurosci 2018; 27:511-22. [PMID: 27089411 DOI: 10.1515/revneuro-2016-0001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/10/2016] [Indexed: 11/15/2022]
Abstract
Spinal reflex excitability is traditionally assessed to investigate neural adjustments that occur during human movement. Different experimental procedures are known to condition spinal reflex excitability. Among these, lengthening movements and static stretching the human triceps have been investigated over the last 50 years. The purpose of this review is to shed light on several apparent incongruities in terms of magnitude and duration of the reported results. In the present review dissimilarities in neuro-spinal changes are examined in relation to the methodologies applied to condition and measure them. Literature that investigated three different conditioning procedures was reviewed: passive dorsiflexion, active dorsiflexion through antagonists shortening and eccentric plantar-flexors contractions. Measurements were obtained before, during and after lengthening or stretching. Stimulation intensities and time delays between conditioning procedures and stimuli varied considerably. H-reflex decreases immediately as static stretching is applied and in proportion to the stretch degree. During dorsiflexions the inhibition is stronger with greater dorsiflexion angular velocity and at lower nerve stimulation intensities, while it is weaker if any concomitant muscle contraction is performed. Within 2 s after a single passive dorsiflexion movement, H-reflex is strongly inhibited, and this effect disappears within 15 s. Dorsiflexions repeated over 1 h and prolonged static stretching training induce long-lasting inhibition. This review highlights that the apparent disagreement between studies is ascribable to small methodological differences. Lengthening movements and stretching can strongly influence spinal neural pathways. Results interpretation, however, needs careful consideration of the methodology applied.
Collapse
|
40
|
Corticospinal and Spinal Excitabilities Are Modulated during Motor Imagery Associated with Somatosensory Electrical Nerve Stimulation. Neural Plast 2018; 2018:8265427. [PMID: 29849569 PMCID: PMC5937430 DOI: 10.1155/2018/8265427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 11/21/2022] Open
Abstract
Motor imagery (MI), the mental simulation of an action, influences the cortical, corticospinal, and spinal levels, despite the lack of somatosensory afferent feedbacks. The aim of this study was to analyze the effect of MI associated with somatosensory stimulation (SS) on the corticospinal and spinal excitabilities. We used transcranial magnetic stimulation and peripheral nerve stimulation to induce motor-evoked potentials (MEP) and H-reflexes, respectively, in soleus and medialis gastrocnemius (MG) muscles of the right leg. Twelve participants performed three tasks: (1) MI of submaximal plantar flexion, (2) SS at 65 Hz on the posterior tibial nerve with an intensity below the motor threshold, and (3) MI + SS. MEP and H-reflex amplitudes were recorded before, during, and after the tasks. Our results confirmed that MI increased corticospinal excitability in a time-specific manner. We found that MI + SS tended to potentiate MEP amplitude of the MG muscle compared to MI alone. We confirmed that SS decreased spinal excitability, and this decrease was partially compensated when combined with MI, especially for the MG muscle. The increase of CSE could be explained by a modulation of the spinal inhibitions induced by SS, depending on the amount of afferent feedbacks.
Collapse
|
41
|
Doguet V, Nosaka K, Guével A, Thickbroom G, Ishimura K, Jubeau M. Muscle length effect on corticospinal excitability during maximal concentric, isometric and eccentric contractions of the knee extensors. Exp Physiol 2017; 102:1513-1523. [DOI: 10.1113/ep086480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/09/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Valentin Doguet
- Laboratory ‘Movement, Interactions, Performance’, EA 4334, Faculty of Sport Sciences; University of Nantes; Nantes France
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences; Edith Cowan University; Joondalup Western Australia Australia
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences; Edith Cowan University; Joondalup Western Australia Australia
| | - Arnaud Guével
- Laboratory ‘Movement, Interactions, Performance’, EA 4334, Faculty of Sport Sciences; University of Nantes; Nantes France
| | - Gary Thickbroom
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences; Edith Cowan University; Joondalup Western Australia Australia
| | - Kazuhiro Ishimura
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences; Edith Cowan University; Joondalup Western Australia Australia
| | - Marc Jubeau
- Laboratory ‘Movement, Interactions, Performance’, EA 4334, Faculty of Sport Sciences; University of Nantes; Nantes France
| |
Collapse
|
42
|
Peñailillo L, Blazevich AJ, Nosaka K. Factors contributing to lower metabolic demand of eccentric compared with concentric cycling. J Appl Physiol (1985) 2017; 123:884-893. [PMID: 28663378 DOI: 10.1152/japplphysiol.00536.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 06/12/2017] [Accepted: 06/26/2017] [Indexed: 11/22/2022] Open
Abstract
This study compared muscle-tendon behavior, muscle oxygenation, and muscle activity between eccentric and concentric cycling exercise at the same work output to investigate why metabolic demand is lower during eccentric cycling than with concentric cycling. Eleven untrained men (27.1 ± 7.0 y) performed concentric cycling (CONC) and eccentric cycling (ECC) for 10 min (60 rpm) at 65% of the maximal concentric cycling power output (191 ± 45 W) 4 wk apart. During cycling, oxygen consumption (V̇o2), heart rate (HR), vastus lateralis (VL) tissue total hemoglobin (tHb), and oxygenation index (TOI) were recorded, and muscle-tendon behavior was assessed using ultrasonography. The surface electromyogram (EMG) was recorded from VL, vastus medialis (VM), rectus femoris (RF), and biceps femoris (BF) muscles, and cycling torque and knee joint angle during each revolution were also recorded. Average V̇o2 (-65 ± 7%) and HR (-35 ± 9%) were lower and average TOI was greater (16 ± 1%) during ECC than CONC, but tHb was similar between bouts. Positive and negative cycling peak crank torques were greater (32 ± 21 and 48 ± 24%, respectively) during ECC than CONC, but muscle-tendon unit and fascicle and tendinous tissue length changes during pedal revolutions were similar between CONC and ECC. VL, VM, RF, and BF peak EMG amplitudes were smaller (24 ± 15, 22 ± 18, 16 ± 17, and 18 ± 9%, respectively) during ECC than CONC. These results suggest that the lower metabolic cost of eccentric compared with concentric cycling was due mainly to a lower level of muscle activation per torque output.NEW & NOTEWORTHY This study shows that lower oxygen consumption of eccentric compared with concentric cycling at the same workload is explained by lower muscle activity of agonist and antagonist muscles during eccentric compared with during concentric cycling.
Collapse
Affiliation(s)
- Luis Peñailillo
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile; and
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
43
|
Abstract
Context: Neuromuscular alterations are a major causal factor of primary and secondary injuries. Though injury prevention programs have experienced some success, rates of injuries have not declined, and after injury, individuals often return to activity with functionality below clinical recommendations. Considering alternative therapies to the conventional concentric exercise approach, such as one that can target neuromuscular injury risk and postinjury alterations, may provide for more effective injury prevention and rehabilitation protocols. Evidence Acquisition: Peer-reviewed sources available on the Web of Science and MEDLINE databases from 2000 through 2016 were gathered using searches associated with the keywords eccentric exercise, injury prevention, and neuromuscular control. Hypothesis: Eccentric exercise will reduce injury risk by targeting specific neural and morphologic alterations that precipitate neuromuscular dysfunction. Study Design: Clinical review. Level of Evidence: Level 4. Results: Neuromuscular control is influenced by alterations in muscle morphology and neural activity. Eccentric exercise beneficially modifies several underlying factors of muscle morphology (fiber typing, cross-sectional area, working range, and pennation angle), and emerging evidence indicates that eccentric exercise is also beneficial to peripheral and central neural activity (alpha motorneuron recruitment/firing, sarcolemma activity, corticospinal excitability, and brain activation). Conclusion: There is mounting evidence that eccentric exercise is not only a therapeutic intervention influencing muscle morphology but also targets unique alterations in neuromuscular control, influencing injury risk.
Collapse
Affiliation(s)
- Lindsey K Lepley
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Adam S Lepley
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - James A Onate
- School of Health and Rehabilitative Sciences, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dustin R Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio
| |
Collapse
|
44
|
Cattagni T, Merlet AN, Cornu C, Jubeau M. H-reflex and M-wave recordings: effect of pressure application to the stimulation electrode on the assessment of evoked potentials and subject's discomfort. Clin Physiol Funct Imaging 2017; 38:416-424. [PMID: 28444940 DOI: 10.1111/cpf.12431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/03/2017] [Indexed: 11/26/2022]
Abstract
This study aimed to compare the effect of different types of pressure applied to the stimulation electrode on assessing the efficiency of Ia-α-motoneuron transmission of the soleus muscle and the associated discomfort using electrical nerve stimulation. Twelve healthy young adults participated in three experimental sessions (one for each knee angle). The amplitudes of the maximal Hoffmann reflex (Hmax ) and motor potential (Mmax ) were recorded from the soleus muscle at 0°, 30° and 90° knee angles (0° full extension) through three pressure applications to the stimulation electrode: no pressure, pressure with manual application and pressure using adhesive tape. The soleus Hmax /Mmax were calculated to assess the efficiency of Ia-α-motoneuron transmission during varied knee angles and pressure application to the stimulation electrode. At the stimulation intensity evoking soleus Hmax and Mmax , subjects were asked to orally provide a value between 'no discomfort' (0) and 'worst possible discomfort' (10). The application of pressure on the stimulation electrode, particularly using adhesive tape, decreased both the stimulation intensity needed to evoke an electrophysiological response and the associated self-reported discomfort (P<0·05), while the Hmax /Mmax remained constant. At the stimulation intensity evoking Mmax , the electrical stimulation appeared to be more painful at 0° knee angle compared with 30° and 90° angles (P<0·01). To conclude, this study showed that a knee flexion and a pressure application to the stimulation electrode, especially using tape pressure, are recommended in the objective to reduce the patient/subjects' discomfort when eliciting evoked potentials on soleus muscle.
Collapse
Affiliation(s)
- Thomas Cattagni
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Angèle N Merlet
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Christophe Cornu
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Marc Jubeau
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| |
Collapse
|
45
|
Tallent J, Goodall S, Gibbon KC, Hortobágyi T, Howatson G. Enhanced Corticospinal Excitability and Volitional Drive in Response to Shortening and Lengthening Strength Training and Changes Following Detraining. Front Physiol 2017; 8:57. [PMID: 28223941 PMCID: PMC5293799 DOI: 10.3389/fphys.2017.00057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/23/2017] [Indexed: 01/05/2023] Open
Abstract
There is a limited understanding of the neurological adaptations responsible for changes in strength following shortening and lengthening resistance training and subsequent detraining. The aim of the study was to investigate differences in corticospinal and spinal responses to resistance training of the tibialis anterior muscle between shortening or lengthening muscle contractions for 4 weeks and after 2 weeks of detraining. Thirty-one untrained individuals were assigned to either shortening or lengthening isokinetic resistance training (4 weeks, 3 days/weeks) or a non-training control group. Transcranial magnetic stimulation and peripheral nerve stimulation (PNS) were used to assess corticospinal and spinal changes, respectively, at pre-, mid-, post-resistance training and post detraining. Greater increases changes (P < 0.01) in MVC were found from the respective muscle contraction training. Motor evoked potentials (expressed relative to background EMG) significantly increased in lengthening resistance training group under contraction intensities ranging from 25 to 80% of the shortening and lengthening contraction intensity (P < 0.01). In the shortening resistance training group increases were only seen at 50 and 80% of both contraction type. Volitional drive (V-wave) showed a greater increase following lengthening resistance training (57%) during maximal lengthening contractions compared to maximal shortening contractions following shortening resistance training (23%; P < 0.001). During the detraining period MVC and V-wave did not change (P > 0.05), although MEP amplitude decreased during the detraining period (P < 0.01). No changes in H-reflex were found pre to post resistance training or post detraining. Modulation in V-wave appeared to be contraction specific, whereby greatest increases occurred following lengthening resistance training. Strength and volitional drive is maintained following 2 weeks detraining, however corticospinal excitability appears to decrease when the training stimulus is withdrawn.
Collapse
Affiliation(s)
- Jamie Tallent
- Department of Sport, Exercise and Rehabilitation, Northumbria UniversityNewcastle-upon-Tyne, UK; School of Sport, Health and Applied Science, St Mary's UniversityTwickenham, UK
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University Newcastle-upon-Tyne, UK
| | - Karl C Gibbon
- Department of Advanced Health Science, Buckinghamshire New University High Wycombe, UK
| | - Tibor Hortobágyi
- Department of Sport, Exercise and Rehabilitation, Northumbria UniversityNewcastle-upon-Tyne, UK; Faculty of Medical Sciences, University of GroningenGroningen, Netherlands
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria UniversityNewcastle-upon-Tyne, UK; Water Research Group, School of Environmental Sciences and Development, Northwest UniversityPotchefstroom, South Africa
| |
Collapse
|
46
|
Yao WX, Jiang Z, Li J, Jiang C, Franlin CG, Lancaster JL, Huang Y, Yue GH. Brain Functional Connectivity Is Different during Voluntary Concentric and Eccentric Muscle Contraction. Front Physiol 2016; 7:521. [PMID: 27895590 PMCID: PMC5108928 DOI: 10.3389/fphys.2016.00521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
Previous studies report greater activation in the cortical motor network in controlling eccentric contraction (EC) than concentric contraction (CC) of human skeletal muscles despite lower activation level of the muscle associated with EC. It is unknown, however, whether the strength of functional coupling between the primary motor cortex (M1) and other involved areas in the brain differs as voluntary movements are controlled by a network of regions in the primary, secondary and association cortices. Examining fMRI-based functional connectivity (FC) offers an opportunity to measure strength of such coupling. To address the question, we examined functional MRI (fMRI) data acquired during EC and CC (20 contractions each with similar movement distance and speed) of the right first dorsal interosseous (FDI) muscle in 11 young (20-32 years) and healthy individuals and estimated FC between the M1 and a number of cortical regions in the motor control network. The major findings from the mechanical and fMRI-based FC analysis were that (1) no significant differences were seen in movement distance, speed and stability between the EC and CC; (2) significantly stronger mean FC was found for CC than EC. Our finding provides novel insights for a better understanding of the control mechanisms underlying voluntary movements produced by EC and CC. The finding is potentially helpful for guiding the development of targeted sport training and/or therapeutic programs for performance enhancement and injury prevention.
Collapse
Affiliation(s)
- Wan X Yao
- Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio San Antonio, TX, USA
| | - Zhiguo Jiang
- Human Performance and Engineering Research, Kessler Foundation West Orange, NJ, USA
| | - Jinqi Li
- Research Imaging Center, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Changhao Jiang
- Beijing Key Lab of Physical Fitness Evaluation and Tech Analysis, Capital University of Physical Education and Sports Beijing, China
| | - Crystal G Franlin
- Research Imaging Center, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Jack L Lancaster
- Research Imaging Center, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Yufei Huang
- Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio San Antonio, TX, USA
| | - Guang H Yue
- Human Performance and Engineering Research, Kessler Foundation West Orange, NJ, USA
| |
Collapse
|
47
|
Garnier YM, Lepers R, Stapley PJ, Papaxanthis C, Paizis C. Changes in cortico-spinal excitability following uphill versus downhill treadmill exercise. Behav Brain Res 2016; 317:242-250. [PMID: 27671075 DOI: 10.1016/j.bbr.2016.09.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022]
Abstract
An acute bout of aerobic exercise induces neuroplasticity in the motor cortex. Moreover, paired associative stimulation (PAS) is known to induce neuroplasticity in M1. However, the possible influence of the type of exercise on the neuroplastic changes remains unknown. The present study investigated the effects of two different modes of muscle contraction produced during locomotor exercise on changes in corticospinal (CS) excitability. Subjects performed two 30-min treadmill exercises at an intensity corresponding to 60% of their maximal heart rate with either a +10% (uphill) or -10% (downhill) slope. These exercises were followed or not by paired associative stimulation method (PAS25) which consisted of 200 paired stimuli (0.25Hz, 15min) of median nerve electrical stimulation followed by transcranial magnetic stimulation of the hand M1 area (ISI 25ms). Motor evoked potentials (MEP), assessed through abductor pollicis brevis (APB) activity were obtained before exercise, at 5min, 15min and 30min after exercise. A significant (P<0.05) increase of the MEP amplitude was observed 30min after both exercises but was not different between the two modes of locomotion. On the contrary, MEP amplitude with PAS25 increased only 30min after downhill exercise. We conclude that sub-maximal treadmill exercise increases CS excitability within a period of 30min. However, the predominant mode of muscle contraction during uphill versus downhill locomotion does not influence CS excitability when assessed using a non-exercised muscle. However, results from PAS25 suggest that specific neuroplastic changes occur likely due to homeostatic mechanisms induced by exercise plus a PAS protocol.
Collapse
Affiliation(s)
- Yoann M Garnier
- INSERM CAPS UMR 1093, F-21000 Dijon, France; University Bourgogne-Franche Comté, CAPS UMR 1093, F-21000 Dijon, France.
| | - Romuald Lepers
- INSERM CAPS UMR 1093, F-21000 Dijon, France; University Bourgogne-Franche Comté, CAPS UMR 1093, F-21000 Dijon, France.
| | - Paul J Stapley
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| | - Charalambos Papaxanthis
- INSERM CAPS UMR 1093, F-21000 Dijon, France; University Bourgogne-Franche Comté, CAPS UMR 1093, F-21000 Dijon, France.
| | - Christos Paizis
- INSERM CAPS UMR 1093, F-21000 Dijon, France; University Bourgogne-Franche Comté, CAPS UMR 1093, F-21000 Dijon, France; Centre for Performance Expertise, UFR STAPS, Université de Bourgogne Dijon, France.
| |
Collapse
|
48
|
Douglas J, Pearson S, Ross A, McGuigan M. Eccentric Exercise: Physiological Characteristics and Acute Responses. Sports Med 2016; 47:663-675. [DOI: 10.1007/s40279-016-0624-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Unhjem R, Nygård M, van den Hoven LT, Sidhu SK, Hoff J, Wang E. Lifelong strength training mitigates the age-related decline in efferent drive. J Appl Physiol (1985) 2016; 121:415-23. [DOI: 10.1152/japplphysiol.00117.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/17/2016] [Indexed: 12/31/2022] Open
Abstract
Recently, we documented age-related attenuation of efferent drive to contracting skeletal muscle. It remains elusive if this indication of reduced muscle strength is present with lifelong strength training. For this purpose, we examined evoked potentials in the calf muscles of 11 [71 ± 4 (SD) yr] strength-trained master athletes (MA) contrasted with 10 (71 ± 4 yr) sedentary (SO) and 11 (73 ± 6 yr) recreationally active (AO) old subjects, as well as 9 (22 ± 2 yr) young controls. As expected, MA had higher leg press maximal strength (MA, 185 ± 32 kg; AO, 128 ± 15 kg; SO, 106 ± 11 kg; young, 147 ± 22 kg, P < 0.01) and rate of force development (MA, 5,588 ± 2,488 N/s; AO, 2,156 ± 1,100 N/s; SO, 2,011 ± 825 N/s; young, 3,663 ± 1,140 N/s, P < 0.05) than the other groups. MA also exhibited higher musculus soleus normalized V waves during maximal voluntary contractions (MVC) [maximal V wave amplitude/maximal M wave during MVC (Vsup/Msup); 0.28 ± 0.15] than AO (0.13 ± 0.06, P < 0.01) and SO (0.11 ± 0.05, P < 0.01), yet lower than young (0.45 ± 0.12, P < 0.01). No differences were apparent between the old groups in H reflex recorded at rest or during MVC [maximal H reflex amplitude/maximal M wave during rest (Hmax/Mmax); maximal H reflex amplitude during MVC/maximal M wave during MVC (Hsup/Msup)], and all were lower ( P < 0.01) than young. MA (34.4 ± 2.1 ms) had shorter ( P < 0.05) H reflex latency compared with AO (36.4 ± 3.7 ms) and SO (37.3 ± 3.2 ms), but longer ( P < 0.01) than young (30.7 ± 2.0 ms). Using interpolated twitch analysis, MA (89 ± 7%) had plantar flexion voluntary activation similar to young (90 ± 6%), and this was higher ( P < 0.05), or tended to be higher ( P = 0.06–0.09), than SO (83 ± 10%) and AO (84 ± 5%). These observations suggest that lifelong strength training has a protective effect against age-related attenuation of efferent drive. In contrast, no beneficial effect seems to derive from habitual recreational activity, indicating that strength training may be particularly beneficial for counteracting age-related loss of neuromuscular function.
Collapse
Affiliation(s)
- Runar Unhjem
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mona Nygård
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lene T. van den Hoven
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Simranjit K. Sidhu
- Discipline of Physiology, School of Medicine, The University of Adelaide, Adelaide, Australia
| | - Jan Hoff
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olav's University Hospital, Trondheim, Norway
| | - Eivind Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Development, St. Olav's University Hospital, Trondheim, Norway; and
- Department of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
50
|
Terada M, Bowker S, Hiller CE, Thomas AC, Pietrosimone B, Gribble PA. Quantifying levels of function between different subgroups of chronic ankle instability. Scand J Med Sci Sports 2016; 27:650-660. [DOI: 10.1111/sms.12712] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Affiliation(s)
- M. Terada
- College of Sport and Health Science; Ritsumeikan University; Shiga Japan
| | - S. Bowker
- Kent State University; Kent Ohio USA
| | - C. E. Hiller
- Faculty of Health Sciences University of Sydney; Lidcombe New South Wales Australia
| | - A. C. Thomas
- Department of Kinesiology; University of North Carolina at Charlotte; Charlotte North Carolina USA
| | - B. Pietrosimone
- Department of Exercise and Sport Science; University of North Carolina at Chapel Hill; Chapel Hill North Carolina USA
| | - P. A. Gribble
- Department of Rehabilitation Science; University of Kentucky; Lexington Kentucky USA
| |
Collapse
|