1
|
Dideriksen J, Del Vecchio A. Adaptations in motor unit properties underlying changes in recruitment, rate coding, and maximum force. J Neurophysiol 2023; 129:235-246. [PMID: 36515411 DOI: 10.1152/jn.00222.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Changes in the discharge characteristics of motor units as well as in the maximum force-producing capacity of the muscle are observed following training, aging, and fatiguability. The ability to measure the adaptations in the neuromuscular properties underlying these changes experimentally, however, is limited. In this study we used a computational model to systematically investigate the effects of various neural and muscular adaptations on motor unit recruitment thresholds, average motor unit discharge rates in submaximal contractions, and maximum force. The primary focus was to identify candidate adaptations that can explain experimentally observed changes in motor unit discharge characteristics after 4 wk of strength training (Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, Felici F, Farina D. J Physiol 597: 1873-1887, 2019). The simulation results indicated that multiple combinations of adaptations, likely involving an increase in maximum discharge rate across motor units, may occur after such training. On a more general level, we found that the magnitude of the adaptations scales linearly with the change in recruitment thresholds, discharge rates, and maximum force. In addition, the combination of multiple adaptations can be predicted as the linear sum of their individual effects. Together, this implies that the outcomes of the simulations can be generalized to predict the effect of any combination of neural and muscular adaptations. In this way, the study provides a tool for estimating potential underlying adaptations in neural and muscular properties to explain any change in commonly used measures of rate coding, recruitment, and maximum force.NEW & NOTEWORTHY Our ability to measure adaptations in neuromuscular properties in vivo is limited. Using a computational model, we quantify the effect of multiple neuromuscular adaptations on common measures of motor unit recruitment, rate coding, and force-producing capacity. Scaling and combining adaptations had a near-linear effect on these measures, indicating that the results can explain and predict neuromuscular adaptations in a wide range of conditions, including, but not limited to, strength training.
Collapse
Affiliation(s)
- Jakob Dideriksen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Yunoki K, Watanabe T, Matsumoto T, Kuwabara T, Horinouchi T, Ito K, Ishida H, Kirimoto H. Cutaneous information processing differs with load type during isometric finger abduction. PLoS One 2022; 17:e0279477. [PMID: 36548285 PMCID: PMC9778995 DOI: 10.1371/journal.pone.0279477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
During submaximal isometric contraction, there are two different load types: maintenance of a constant limb angle while supporting an inertial load (position task) and maintenance of a constant force by pushing against a rigid restraint (force task). Previous studies demonstrated that performing the position task requires more proprioceptive information. The purpose of this study was to investigate whether there would be a difference in cutaneous information processing between the position and force tasks by assessing the gating effect, which is reduction of amplitude of somatosensory evoked potentials (SEPs), and cutaneomuscular reflex (CMR). Eighteen healthy adults participated in this study. They contracted their right first dorsal interosseous muscle by abducting their index finger to produce a constant force against a rigid restraint that was 20% maximum voluntary contraction (force task), or to maintain a target position corresponding to 10° abduction of the metacarpophalangeal joint while supporting a load equivalent to 20% maximum voluntary contraction (position task). During each task, electrical stimulation was applied to the digital nerves of the right index finger, and SEPs and CMR were recorded from C3' of the International 10-20 system and the right first dorsal interosseous muscle, respectively. Reduction of the amplitude of N33 component of SEPs was significantly larger during the force than position task. In addition, the E2 amplitude of CMR was significantly greater for the force than position task. These findings suggest that cutaneous information processing differs with load type during static muscle contraction.
Collapse
Affiliation(s)
- Keisuke Yunoki
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Takuya Matsumoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Japan
| | - Takayuki Kuwabara
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Rehabilitation, Uonuma Kikan Hospital, Minamiuonuma, Niigata, Japan
| | - Takayuki Horinouchi
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kanami Ito
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruki Ishida
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
3
|
Kunugi S, Holobar A, Kodera T, Toyoda H, Watanabe K. Motor unit firing patterns on increasing force during force and position tasks. J Neurophysiol 2021; 126:1653-1659. [PMID: 34669517 DOI: 10.1152/jn.00299.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Different neurophysiological strategies are used to perform angle adjustments during motor tasks such as car driving and force-control tasks using a fixed-rigid pedal. However, the difference in motor unit behavior in response to an increasing exerted force between tasks is unknown. This study aimed to investigate the difference in motor unit responsiveness on increasing force between force and position tasks. Twelve healthy participants performed ramp and hold contractions during ankle plantarflexion at 20% and 30% of the maximal voluntary contraction using a rigid pedal (force task) and a free pedal with an inertial load (position task). High-density surface electromyograms were recorded of the medial gastrocnemius muscle and decomposed into individual motor unit firing patterns. Ninety and hundred and nine motor units could be tracked between different target torques in each task. The mean firing rate increased and firing rate variability decreased on 10% maximal voluntary contraction force gain during both force and position tasks. There were no significant differences in these responses between the two tasks. Our results suggest that the motor unit firing rate is similarly regulated between force and position tasks in the medial gastrocnemius muscle with an increase in the exerted force.NEW & NOTEWORTHY Different neurophysiological strategies are used to perform a force control task and angle adjustment task. Our results showed that motor unit firing rate is similarly regulated between the two tasks in the medial gastrocnemius muscle with an increase in the exerted force. Although it is reported that position tasks contribute to early fatigue, it does not seem to be a particular problem for the increase in force.
Collapse
Affiliation(s)
- Shun Kunugi
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, grid.411620.0Chukyo University, Aichi, Japan
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | | | | | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, grid.411620.0Chukyo University, Aichi, Japan
| |
Collapse
|
4
|
Enoka RM, Farina D. Force Steadiness: From Motor Units to Voluntary Actions. Physiology (Bethesda) 2021; 36:114-130. [DOI: 10.1152/physiol.00027.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voluntary actions are controlled by the synaptic inputs that are shared by pools of spinal motor neurons. The slow common oscillations in the discharge times of motor units due to these synaptic inputs are strongly correlated with the fluctuations in force during submaximal isometric contractions (force steadiness) and moderately associated with performance scores on some tests of motor function. However, there are key gaps in knowledge that limit the interpretation of differences in force steadiness.
Collapse
Affiliation(s)
- Roger M. Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Colorado
| | - Dario Farina
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Caron KE, Burr JF, Power GA. The Effect of a Stretch-Shortening Cycle on Muscle Activation and Muscle Oxygen Consumption: A Study of History-Dependence. J Strength Cond Res 2020; 34:3139-3148. [PMID: 33105364 DOI: 10.1519/jsc.0000000000003815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Caron, KE, Burr, JF, and Power, GA.. The effect of a stretch-shortening cycle on muscle activation and muscle oxygen consumption: a study of history-dependence. J Strength Cond Res 34(11): 3139-3148, 2020-Stretch-shortening cycles (SSCs) are observed in a variety of human movements and are associated with increases in performance. Few studies have considered the effects of stretch-induced residual force enhancement (rFE) and shortening-induced residual force depression (rFD) during an SSC, and none have considered these properties during voluntary contractions. With force matched via a robotically resisted Smith machine, we hypothesized that in the isometric steady-state following an SSC (a) muscle activation (electromyography) of the knee and hip extensors would be greater and (b) muscle oxygen consumption be higher than the reference isometric condition (ISO), but less than the rFD condition. Subjects (n = 20, male, 24.9 ± 3.9 year) performed a squat exercise over 100-140° knee angle and a matched ISO at the top and bottom of the squat. After active shortening, the vastus medialis (VM), vastus lateralis (VL), and gluteus maximus (GM) showed activation increase in the rFD-state compared with ISO (∼15%, ∼11%, and ∼25% respectively). During the isometric steady-state following the SSC, there was no difference in activation as compared with ISO for VM, VL, but GM showed an activation increase of ∼15%. VM and VL showed an activation increase in the rFD-state compared with the isometric steady-state following SSC (∼16 and ∼10% respectively). Muscle oxygen consumption (tissue saturation index) was not different during the isometric steady-states following rFD and SSC compared with ISO. During a voluntary SSC exercise, the activation increase expected in the FD-state was attenuated, with no change in muscle oxygen consumption. The concomitant role of rFE and rFD during a voluntary position-matched SSC seems to counteract shortening-induced activation increase and may optimize movement economy.
Collapse
Affiliation(s)
- Kevin E Caron
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph Ontario, Canada
| | | | | |
Collapse
|
6
|
Jeon S, Miller WM, Ye X. A Comparison of Motor Unit Control Strategies between Two Different Isometric Tasks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082799. [PMID: 32325707 PMCID: PMC7215511 DOI: 10.3390/ijerph17082799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022]
Abstract
Background: This study examined the motor unit (MU) control strategies for non-fatiguing isometric elbow flexion tasks at 40% and 70% maximal voluntary isometric contraction. Methods: Nineteen healthy individuals performed two submaximal tasks with similar torque levels: contracting against an immovable object (force task), and maintaining the elbow joint angle against an external load (position task). Surface electromyographic (EMG) signals were collected from the agonist and antagonist muscles. The signals from the agonist were decomposed into individual action potential trains. The linear regression analysis was used to examine the MU recruitment threshold (RT) versus mean firing rates (MFR), and RT versus derecruitment threshold (DT) relationships. Results: Both agonist and antagonist muscles’ EMG amplitudes did not differ between two tasks. The linear slopes of the MU RT versus MFR and RT versus DT relationships during the position task were more negative (p = 0.010) and more positive (p = 0.023), respectively, when compared to the force task. Conclusions: To produce a similar force output, the position task may rely less on the recruitment of relatively high-threshold MUs. Additionally, as the force output decreases, MUs tend to derecruit at a higher force level during the position task.
Collapse
Affiliation(s)
| | | | - Xin Ye
- Correspondence: ; Tel.: +1-662-915-1630
| |
Collapse
|
7
|
Activity of Motor Units in Human Elbow Flexor and Extensor Muscles during Task-Dependent Unloading. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Enoka RM. Physiological validation of the decomposition of surface EMG signals. J Electromyogr Kinesiol 2019; 46:70-83. [PMID: 31003192 DOI: 10.1016/j.jelekin.2019.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/15/2019] [Accepted: 03/20/2019] [Indexed: 11/30/2022] Open
Abstract
Advances in technology have ushered in a new era in the measurement and interpretation of surface-recorded electromyographic (EMG) signals. These developments have included improvements in detection systems, the algorithms used to decompose the interference signals, and the strategies used to edit the identified waveforms. To evaluate the validity of the results obtained with this new technology, the purpose of this review was to compare the results achieved by decomposing surface-recorded EMG signals into the discharge times of single motor units with what is known about the rate coding characteristics of single motor units based on recordings obtained with intramuscular electrodes. The characteristics compared were peak discharge rate, saturation of discharge rate during submaximal contractions, rate coding during fast contractions, the association between oscillations in force and discharge rate, and adjustments during fatiguing contractions. The comparison indicates that some decomposition methods are able to replicate many of the findings derived from intramuscular recordings, but additional improvements in the methods are required. Critically, more effort needs to be focused on editing the waveforms identified by the decomposition algorithms. With adequate attention to detail, this technology has the potential to augment our knowledge on motor unit physiology and to provide useful approaches that are being translated into clinical practice.
Collapse
Affiliation(s)
- Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
9
|
Abstract
Performance fatigability is characterized as an acute decline in motor performance caused by an exercise-induced reduction in force or power of the involved muscles. Multiple mechanisms contribute to performance fatigability and originate from neural and muscular processes, with the task demands dictating the mechanisms. This review highlights that (1) inadequate activation of the motoneuron pool can contribute to performance fatigability, and (2) the demands of the task and the physiological characteristics of the population assessed, dictate fatigability and the involved mechanisms. Examples of task and population differences in fatigability highlighted in this review include contraction intensity and velocity, stability and support provided to the fatiguing limb, sex differences, and aging. A future challenge is to define specific mechanisms of fatigability and to translate these findings to real-world performance and exercise training in healthy and clinical populations across the life span.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
10
|
Abraham L, Bromberg F, Forradellas R. Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds. Comput Biol Med 2018; 95:129-139. [PMID: 29499448 DOI: 10.1016/j.compbiomed.2018.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Muscle activation level is currently being captured using impractical and expensive devices which make their use in telemedicine settings extremely difficult. To address this issue, a prototype is presented of a non-invasive, easy-to-install system for the estimation of a discrete level of muscle activation of the biceps muscle from 3D point clouds captured with RGB-D cameras. METHODS A methodology is proposed that uses the ensemble of shape functions point cloud descriptor for the geometric characterization of 3D point clouds, together with support vector machines to learn a classifier that, based on this geometric characterization for some points of view of the biceps, provides a model for the estimation of muscle activation for all neighboring points of view. This results in a classifier that is robust to small perturbations in the point of view of the capturing device, greatly simplifying the installation process for end-users. RESULTS In the discrimination of five levels of effort with values up to the maximum voluntary contraction (MVC) of the biceps muscle (3800 g), the best variant of the proposed methodology achieved mean absolute errors of about 9.21% MVC - an acceptable performance for telemedicine settings where the electric measurement of muscle activation is impractical. CONCLUSIONS The results prove that the correlations between the external geometry of the arm and biceps muscle activation are strong enough to consider computer vision and supervised learning an alternative with great potential for practical applications in tele-physiotherapy.
Collapse
Affiliation(s)
- Leandro Abraham
- Laboratorio DHARMa, DeSI, Universidad Tecnológica Nacional, Facultad Regional Mendoza - Rodriguez 273, PC M5502AJE Mendoza, Argentina; CEAL, Universidad Nacional de Cuyo, Facultad de Ingeniería - Centro Universitario CC 405, PC M5500AAT Mendoza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Facundo Bromberg
- Laboratorio DHARMa, DeSI, Universidad Tecnológica Nacional, Facultad Regional Mendoza - Rodriguez 273, PC M5502AJE Mendoza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Raymundo Forradellas
- CEAL, Universidad Nacional de Cuyo, Facultad de Ingeniería - Centro Universitario CC 405, PC M5500AAT Mendoza, Argentina.
| |
Collapse
|
11
|
Russ DW, Ross AJ, Clark BC, Thomas JS. The Effects of Task Type on Time to Task Failure During Fatigue: A Modified Sørensen Test. J Mot Behav 2017; 50:96-103. [DOI: 10.1080/00222895.2017.1286628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- David W. Russ
- School of Rehabilitation and Communication Sciences, Division of Physical Therapy, Ohio University, Athens
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens
| | - Andrew J. Ross
- School of Rehabilitation and Communication Sciences, Division of Physical Therapy, Ohio University, Athens
| | - Brian C. Clark
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens
| | - James S. Thomas
- School of Rehabilitation and Communication Sciences, Division of Physical Therapy, Ohio University, Athens
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens
| |
Collapse
|
12
|
Gould JR, Cleland BT, Mani D, Amiridis IG, Enoka RM. Motor unit activity in biceps brachii of left-handed humans during sustained contractions with two load types. J Neurophysiol 2016; 116:1358-65. [PMID: 27334949 DOI: 10.1152/jn.00147.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/18/2016] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to compare the discharge characteristics of single motor units during sustained isometric contractions that required either force or position control in left-handed individuals. The target force for the two sustained contractions (24.9 ± 10.5% maximal force) was identical for each biceps brachii motor unit (n = 32) and set at 4.7 ± 2.0% of maximal voluntary contraction (MVC) force above its recruitment threshold (range: 0.5-41.2% MVC force). The contractions were not sustained to task failure, but the duration (range: 60-330 s) was identical for each motor unit and the decline in MVC force immediately after the sustained contractions was similar for the two tasks (force: 11.1% ± 13.7%; position: 11.6% ± 9.9%). Despite a greater increase in the rating of perceived exertion during the position task (task × time interaction, P < 0.006), the amplitude of the surface-recorded electromyogram for the agonist and antagonist muscles increased similarly during the two tasks. Nonetheless, mean discharge rate of the biceps brachii motor units declined more during the position task (task × time interaction, P < 0.01) and the variability in discharge times (coefficient of variation for interspike interval) increased only during the position task (task × time interaction, P < 0.008). When combined with the results of an identical study on right-handers (Mottram CJ, Jakobi JM, Semmler JG, Enoka RM. J Neurophysiol 93: 1381-1392, 2005), the findings indicate that handedness does not influence the adjustments in biceps brachii motor unit activity during sustained submaximal contractions requiring either force or position control.
Collapse
Affiliation(s)
- Jeffrey R Gould
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado; and
| | - Brice T Cleland
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado; and
| | - Diba Mani
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado; and
| | - Ioannis G Amiridis
- Department of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Serres, Greece
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado; and
| |
Collapse
|
13
|
Poortvliet PC, Tucker KJ, Finnigan S, Scott D, Sowman P, Hodges PW. Cortical activity differs between position- and force-control knee extension tasks. Exp Brain Res 2015; 233:3447-57. [DOI: 10.1007/s00221-015-4404-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/03/2015] [Indexed: 11/24/2022]
|
14
|
Experimental pain has a greater effect on single motor unit discharge during force-control than position-control tasks. Clin Neurophysiol 2015; 126:1378-86. [DOI: 10.1016/j.clinph.2014.10.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 10/04/2014] [Accepted: 10/12/2014] [Indexed: 11/22/2022]
|
15
|
Boccia G, Dardanello D, Coratella G, Rinaldo N, Schena F, Rainoldi A. Differences in age-related fiber atrophy between vastii muscles of active subjects: a multichannel surface EMG study. Physiol Meas 2015; 36:1591-600. [DOI: 10.1088/0967-3334/36/7/1591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Kindred JH, Kalliokoski KK, Bojsen-Møller J, Rudroff T. Regional differences of [(18)F]-FDG uptake within the brain during fatiguing muscle contractions. Brain Behav 2015; 5:e00319. [PMID: 25798334 PMCID: PMC4356841 DOI: 10.1002/brb3.319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND AND PURPOSE Many studies have shown that a position task is more difficult than a force task although both are performed at a similar net muscle force. Thus, the time to task failure is consistently shown to be briefer during the position task. The contributions of the central nervous system to these two types of fatiguing contractions are not completely understood. The purpose of this pilot study was to examine differences in regional brain activity between force and position tasks using positron emission tomography (PET) with [(18)F]-Fluorodeoxyglucose (FDG). METHODS Two participants performed both a force and position task, separated by 7 days, with the elbow flexor muscles at 15% maximal voluntary contraction force. During both tasks, each participant was injected with ≈ 256 (SD 11) MBq of FDG. Immediately after both tasks PET imaging was performed and images were analyzed to determine FDG uptake within regions of the brain. RESULTS FDG uptake was greater in the occipital and temporal cortices of the brain during the position task compared to the force task. CONCLUSIONS These findings suggest that differences in visual-spatial feedback and processing may play a role in the reduced time to failure of position tasks. Future application of these findings may lead to improved designs of rehabilitative strategies involving different types of visual feedback.
Collapse
Affiliation(s)
- John H Kindred
- Department of Health and Exercise Science, Colorado State University Fort Collins, Colorado
| | - Kari K Kalliokoski
- Turku PET Centre, University of Turku and Turku University Hospital Turku, Finland
| | - Jens Bojsen-Møller
- Department of Physical Performance, Norwegian School of Sport Sciences Oslo, Norway
| | - Thorsten Rudroff
- Department of Health and Exercise Science, Colorado State University Fort Collins, Colorado
| |
Collapse
|
17
|
Kirimoto H, Tamaki H, Suzuki M, Matsumoto T, Sugawara K, Kojima S, Onishi H. Sensorimotor modulation differs with load type during constant finger force or position. PLoS One 2014; 9:e108058. [PMID: 25233353 PMCID: PMC4169486 DOI: 10.1371/journal.pone.0108058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/23/2014] [Indexed: 11/19/2022] Open
Abstract
During submaximal isometric contraction, there are two different load types: production of a constant force against a rigid restraint (force task), and maintenance of position against a constant load (position task). Previous studies reported that the time to task failure during a fatigue task was twice as long in the force task compared with the position task. Sensory feedback processing may contribute to these differences. The purpose of the current study was to determine the influence of load types during static muscle contraction tasks on the gating effect, i.e., attenuation of somatosensory-evoked potentials (SEPs) and the cortical silent period (cSP). Ten healthy subjects contracted their right first dorsal interosseus muscle by abducting their index finger for 90 s, to produce a constant force against a rigid restraint that was 20% of the maximum voluntary contraction (force task), or to maintain a constant position with 10° abduction of the metacarpophalangeal joint against the same load (position task). Somatosensory evoked potentials (SEPs) were recorded from C3' by stimulating either the right ulnar or median nerve at the wrist while maintaining contraction. The cortical silent period (cSP) was also elicited by transcranial magnetic stimulation. Reduction of the amplitude of the P45 component of SEPs was significantly larger during the position task than during the force task and under control rest conditions when the ulnar nerve, but not the median nerve, was stimulated. The position task had a significantly shorter cSP duration than the force task. These results suggest the need for more proprioceptive information during the position task than the force task. The shorter duration of the cSP during the position task may be attributable to larger amplitude of heteronymous short latency reflexes. Sensorimotor modulations may differ with load type during constant finger force or position tasks.
Collapse
Affiliation(s)
- Hikari Kirimoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiroyuki Tamaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Makoto Suzuki
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | - Takuya Matsumoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuhiro Sugawara
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Syo Kojima
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, Niigata, Japan
- Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
18
|
Pascoe MA, Holmes MR, Stuart DG, Enoka RM. Discharge characteristics of motor units during long-duration contractions. Exp Physiol 2014; 99:1387-98. [PMID: 25016025 DOI: 10.1113/expphysiol.2014.078584] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of the study was to determine how long humans could sustain the discharge of single motor units during a voluntary contraction. The discharge of motor units in first dorsal interosseus of subjects (27.8 ± 8.1 years old) was recorded for as long as possible. The task was terminated when the isolated motor unit stopped discharging action potentials, despite the ability of the individual to sustain the abduction force. Twenty-three single motor units were recorded. Task duration was 21.4 ± 17.8 min. When analysed across discharge duration, mean discharge rate (10.6 ± 1.8 pulses s(-1)) and mean abduction force (5.5 ± 2.8% maximum) did not change significantly (discharge rate, P = 0.119; and abduction force, P = 0.235). In contrast, the coefficient of variation for interspike interval during the initial 30 s of the task was 22.2 ± 6.0% and increased to 31.9 ± 7.0% during the final 30 s (P < 0.001). All motor units were recruited again after 60 s of rest. Although subjects were able to sustain a relatively constant discharge rate, the cessation of discharge was preceded by a gradual increase in discharge variability. The findings also showed that the maximal duration of human motor unit discharge exceeds that previously reported for the discharge elicited in motor neurons by intracellular current injection in vitro.
Collapse
Affiliation(s)
- Michael A Pascoe
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Matthew R Holmes
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Douglas G Stuart
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
19
|
Williams PS, Hoffman RL, Clark BC. Cortical and spinal mechanisms of task failure of sustained submaximal fatiguing contractions. PLoS One 2014; 9:e93284. [PMID: 24667484 PMCID: PMC3965562 DOI: 10.1371/journal.pone.0093284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 03/04/2014] [Indexed: 01/19/2023] Open
Abstract
In this and the subsequent companion paper, results are presented that collectively seek to delineate the contribution that supraspinal circuits have in determining the time to task failure (TTF) of sustained submaximal contractions. The purpose of this study was to compare adjustments in supraspinal and spinal excitability taken concurrently throughout the performance of two different fatigue tasks with identical mechanical demands but different TTF (i.e., force-matching and position-matching tasks). On separate visits, ten healthy volunteers performed the force-matching or position-matching task at 15% of maximum strength with the elbow flexors to task failure. Single-pulse transcranial magnetic stimulation (TMS), paired-pulse TMS, paired cortico-cervicomedullary stimulation, and brachial plexus electrical stimulation were delivered in a 6-stimuli sequence at baseline and every 2-3 minutes throughout fatigue-task performance. Contrary to expectations, the force-matching task TTF was 42% shorter (17.5 ± 7.9 min) than the position-matching task (26.9 ± 15.11 min; p<0.01); however, both tasks caused the same amount of muscle fatigue (p = 0.59). There were no task-specific differences for the total amount or rate of change in the neurophysiologic outcome variables over time (p>0.05). Therefore, failure occurred after a similar mean decline in motorneuron excitability developed (p<0.02, ES = 0.35-0.52) coupled with a similar mean increase in measures of corticospinal excitability (p<0.03, ES = 0.30-0.41). Additionally, the amount of intracortical inhibition decreased (p<0.03, ES = 0.32) and the amount of intracortical facilitation (p>0.10) and an index of upstream excitation of the motor cortex remained constant (p>0.40). Together, these results suggest that as fatigue develops prior to task failure, the increase in corticospinal excitability observed in relationship to the decrease in spinal excitability results from a combination of decreasing intracortical inhibition with constant levels of intracortical facilitation and upstream excitability that together eventually fail to provide the input to the motor cortex necessary for descending drive to overcome the spinal cord resistance, thereby contributing to task failure.
Collapse
Affiliation(s)
- Petra S. Williams
- Ohio Musculoskeletal & Neurological Institute (OMNI), Ohio University, Athens, Ohio, United States of America
- Department of Physical Therapy and Athletic Training, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Richard L. Hoffman
- Ohio Musculoskeletal & Neurological Institute (OMNI), Ohio University, Athens, Ohio, United States of America
| | - Brian C. Clark
- Ohio Musculoskeletal & Neurological Institute (OMNI), Ohio University, Athens, Ohio, United States of America
- Department of Biomedical Sciences, Ohio University, Athens, Ohio, United States of America
- Department of Geriatric Medicine and Gerontology, Ohio University, Athens, Ohio, United States of America
| |
Collapse
|
20
|
Cerqueira LS, Carvalho JF, Pompeu FAMS. Eletromiografia do bíceps braquial em contrações dinâmicas. REV BRAS MED ESPORTE 2013. [DOI: 10.1590/s1517-86922013000600016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: A reprodutibilidade da atividade eletromiográfica de superfície (EMG) é mais estudada em protocolos que envolvem contrações isométricas. Alguns fatores relacionados às contrações dinâmicas podem contribuir para a instabilidade do sinal mioelétrico e dificultar a reprodutibilidade da medida da EMG. OBJETIVO: Determinar a reprodutibilidade teste-reteste e quantificar o erro técnico da medida da frequência mediana (FM) e da amplitude (root mean square, RMS) da EMG, em contrações dinâmicas e estáticas. MÉTODOS: Dez sujeitos foram testados em dois dias, sendo a atividade EMG registrada na maior porção do bíceps braquial. No primeiro dia foi feito o teste de uma repetição máxima (1RM) e de contração voluntária máxima (CVM). No segundo dia foram realizadas duas séries de 10 contrações dos flexores do cotovelo com 75% de 1RM, entremeadas por 1 h em repouso. Antes de cada série foi realizada uma CVM. RESULTADOS: Para a FM e RMS foi observado alto coeficiente de correlação intraclasse para o sinal do bíceps braquial (CCI = 0,90-0,98 para a FM; CCI = 0,89-0,94 para o RMS) e de baixo para moderado coeficiente de variação (CV = 2,5-6,2% para a FM; CV = 14,6-16,3% para o RMS) em ambos os testes. Não foi observada diferença significativa entre teste e reteste (p > 0,05). CONCLUSÃO: A FM e o RMS apresentam alta confiabilidade e baixo a moderado erro em contrações estáticas e dinâmicas, possibilitando o uso da EMG para investigação da fadiga e de desordens neuromusculares.
Collapse
|
21
|
Abstract
Movement is accomplished by the controlled activation of motor unit populations. Our understanding of motor unit physiology has been derived from experimental work on the properties of single motor units and from computational studies that have integrated the experimental observations into the function of motor unit populations. The article provides brief descriptions of motor unit anatomy and muscle unit properties, with more substantial reviews of motoneuron properties, motor unit recruitment and rate modulation when humans perform voluntary contractions, and the function of an entire motor unit pool. The article emphasizes the advances in knowledge on the cellular and molecular mechanisms underlying the neuromodulation of motoneuron activity and attempts to explain the discharge characteristics of human motor units in terms of these principles. A major finding from this work has been the critical role of descending pathways from the brainstem in modulating the properties and activity of spinal motoneurons. Progress has been substantial, but significant gaps in knowledge remain.
Collapse
Affiliation(s)
- C J Heckman
- Northwestern University, Evanston, Illinois, USA.
| | | |
Collapse
|
22
|
Rudroff T, Kalliokoski KK, Block DE, Gould JR, Klingensmith WC, Enoka RM. PET/CT imaging of age- and task-associated differences in muscle activity during fatiguing contractions. J Appl Physiol (1985) 2013; 114:1211-9. [PMID: 23412899 DOI: 10.1152/japplphysiol.01439.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The study compared positron emission tomography/computed tomography (PET/CT) of [(18)F]-2-fluoro-2-deoxy-D-glucose ([(18)F]-FDG) uptake by skeletal muscles and the amount of muscle activity as indicated by surface electromyographic (EMG) recordings when young and old men performed fatiguing isometric contractions that required either force or position control. EMG signals were recorded from thigh muscles of six young men (26 ± 6 yr) and six old men (77 ± 6 yr) during fatiguing contractions with the knee extensors. PET/CT scans were performed immediately after task failure. Glucose uptake in 24 leg muscles, quantified as standardized uptake values, was greater for the old men after the force task and differed across tasks for the young men (force, 0.64 ± 0.3 g/ml; position, 0.73 ± 0.3 g/ml), but not the old men (force, 0.84 ± 0.3 g/ml; position, 0.79 ± 0.26 g/ml) (age × task interaction; P < 0.001). In contrast, the rate of increase in EMG amplitude for the agonist muscles was greater for the young men during the two contractions and there was no difference for either group of subjects in the rate of increase in EMG amplitude across the two tasks. The imaging estimates of glucose uptake indicated age- and task-dependent differences in the spatial distribution of [(18)F]-FDG uptake by skeletal muscles during fatiguing contractions. The findings demonstrate that PET/CT imaging of [(18)F]-FDG uptake, but not surface EMG recordings, detected the modulation of muscle activity across the fatiguing tasks by the young men but not the old men.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado 80523-1582, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Pascoe MA, Gould JR, Enoka RM. Motor unit activity when young and old adults perform steady contractions while supporting an inertial load. J Neurophysiol 2012; 109:1055-64. [PMID: 23221403 DOI: 10.1152/jn.00437.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to compare the discharge characteristics of biceps brachii motor units of young and old adults when they performed steady, submaximal contractions while the arm supported different inertial loads. Young (28 ± 4 yr; n = 16) and old (75 ± 4 yr; n = 14) adults performed steady contractions with the elbow flexors at target forces set at either small (11.7 ± 4.4% maximum) or large (17.8 ± 6.5% maximum) differences below the recruitment threshold force of the motor unit (n = 40). The task was to maintain an elbow angle at 1.57 rad until the motor unit was recruited and discharged action potentials for ∼120 s. Time to recruitment was longer for the larger target force difference (187 ± 227 s vs. 23 ± 46 s, P < 0.001). Once recruited, motor units discharged action potentials either repetitively or intermittently, with a greater proportion of motor units exhibiting the repetitive pattern for old adults. Discharge rate at recruitment and during the steady contraction was similar for the two target force differences for old adults but was greater for the small target force difference for young adults. Discharge variability was similar at recruitment for the two age groups but less for the old adults during the steady contraction. The greatest difference between the present results and those reported previously when the arm pulled against a rigid restraint was that old adults modulated discharge rate less than young adults across the two contraction intensities for both load types.
Collapse
Affiliation(s)
- Michael A Pascoe
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado 80045, USA.
| | | | | |
Collapse
|
24
|
Poortvliet PC, Tucker KJ, Hodges PW. Changes in constraint of proximal segments effects time to task failure and activity of proximal muscles in knee position-control tasks. Clin Neurophysiol 2012; 124:732-9. [PMID: 23102994 DOI: 10.1016/j.clinph.2012.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/24/2012] [Accepted: 09/30/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Maintenance of a limb position against external load (position-control) fails earlier (time to task failure: TTF) than maintenance of identical force against rigid restraint (force-control). Although possibly explained by physiological differences between contractions, we investigated whether less constraint of movements in other planes and proximal segments (commonly less in position-control tasks) shortens TTF. METHODS Seventeen adults (32±7 years) contracted knee extensor muscles to task failure in a position-control task, with and without constraint of motion in other planes and proximal segments, and a force-control task with constraints. Electromyography of knee extensors, their antagonist and hip muscles was recorded with force/position. RESULTS TTF was shorter for position-control without (161±55 s) than with constraint (184±51 s). Despite identical constraint, TTF was shorter in position- than force-control (216±56 s). Muscle activity and position variability at failure was greater without constraint. CONCLUSION Constraint of motion of proximal segments and other planes increases position-control TTF with less muscle activity and variability. As TTF differed between force- and position-control, despite equivalent constraint, other factors contribute to shorter position-control TTF. SIGNIFICANCE Results clarify that differences in the TTF between position- and force-control tasks are partly explained by unmatched restriction of motion in other planes and proximal segments.
Collapse
Affiliation(s)
- Peter C Poortvliet
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | | | | |
Collapse
|
25
|
Gordon NM, Rudroff T, Enoka JA, Enoka RM. Handedness but not dominance influences variability in endurance time for sustained, submaximal contractions. J Neurophysiol 2012; 108:1501-10. [DOI: 10.1152/jn.01144.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to compare endurance time and accompanying neuromuscular adjustments when left- and right-handed subjects used the dominant and nondominant arms to sustain submaximal contractions that required either force or position control. Ten left-handed and 10 right-handed healthy adults (21 ± 5 yr) participated in the study. Each subject exerted a similar net torque about the elbow joint during the force and position tasks to achieve a target force of 20% maximal voluntary contraction (MVC) force (56 ± 18 N). MVC force declined to a similar level immediately after task failure for left- and right-handed subjects (27 ± 13 vs. 25 ± 15%, P = 0.9). Endurance time for the position task was similar for the dominant and nondominant arms (task × dominance interaction, P = 0.17). Although the difference in endurance time between the two tasks was similar for left-handed (136 ± 165 s) and right-handed individuals (92 ± 73 s, task × handedness interaction, P = 0.38), there was greater variance in the ratio of the endurance times for the force and position tasks for left-handed (0.77) than right-handed subjects (0.13, P < 0.001; see Fig. 2 ). Furthermore, endurance time for the force and position tasks was significantly correlated for right-handed subjects ( r2 = 0.62, P < 0.001), but not for left-handed subjects ( r2 = 0.004, P = 0.79). Multiple regression analyses identified sets of predictor variables for each endurance time, and these differed with handedness and task. Hand dominance, however, did not influence endurance time for either group of subjects. These findings indicate that endurance times for the elbow flexors when performing submaximal isometric contractions that required either force or position control were not influenced by hand dominance but did depend on handedness.
Collapse
Affiliation(s)
- Nicole M. Gordon
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Thorsten Rudroff
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Joel A. Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Roger M. Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
26
|
Booghs C, Baudry S, Enoka R, Duchateau J. Influence of neural adjustments and muscle oxygenation on task failure during sustained isometric contractions with elbow flexor muscles. Exp Physiol 2012; 97:918-29. [DOI: 10.1113/expphysiol.2011.064303] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Muscle fatigue induced by two different resistances: Elastic tubing versus weight machines. J Electromyogr Kinesiol 2011; 21:954-9. [DOI: 10.1016/j.jelekin.2011.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 11/18/2022] Open
|
28
|
Baudry S, Maerz AH, Gould JR, Enoka RM. Task- and time-dependent modulation of Ia presynaptic inhibition during fatiguing contractions performed by humans. J Neurophysiol 2011; 106:265-73. [PMID: 21543747 DOI: 10.1152/jn.00954.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Presynaptic modulation of Ia afferents converging onto the motor neuron pool of the extensor carpi radialis (ECR) was compared during contractions (20% of maximal force) sustained to failure as subjects controlled either the angular position of the wrist while supporting an inertial load (position task) or exerted an equivalent force against a rigid restraint (force task). Test Hoffmann (H) reflexes were evoked in the ECR by stimulating the radial nerve above the elbow. Conditioned H reflexes were obtained by stimulating either the median nerve above the elbow or at the wrist (palmar branch) to assess presynaptic inhibition of homonymous (D1 inhibition) and heteronymous Ia afferents (heteronymous Ia facilitation), respectively. The position task was briefer than the force task (P = 0.001), although the maximal voluntary force and electromyograph for ECR declined similarly at failure for both tasks. Changes in the amplitude of the conditioned H reflex were positively correlated between the two conditioning methods (P = 0.02) and differed between the two tasks (P < 0.05). The amplitude of the conditioned H reflex during the position task first increased (129 ± 20.5% of the initial value, P < 0.001) before returning to its initial value (P = 0.22), whereas it increased progressively during the force task to reach 122 ± 17.4% of the initial value at failure (P < 0.001). Moreover, changes in conditioned H reflexes were associated with the time to task failure and force fluctuations. The results suggest a task- and time-dependent modulation of presynaptic inhibition of Ia afferents during fatiguing contractions.
Collapse
Affiliation(s)
- Stéphane Baudry
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA.
| | | | | | | |
Collapse
|
29
|
Pascoe MA, Holmes MR, Enoka RM. Discharge characteristics of biceps brachii motor units at recruitment when older adults sustained an isometric contraction. J Neurophysiol 2011; 105:571-81. [PMID: 21160000 PMCID: PMC3059164 DOI: 10.1152/jn.00841.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/10/2010] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to compare the discharge characteristics of motor units recruited during an isometric contraction that was sustained with the elbow flexor muscles by older adults at target forces that were less than the recruitment threshold force of each isolated motor unit. The discharge times of 27 single motor units were recorded from the biceps brachii in 11 old adults (78.8 ± 5.9 yr). The target force was set at either a relatively small (6.6 ± 3.7% maximum) or large (11.4 ± 4.5% maximum) difference below the recruitment threshold force and the contraction was sustained until the motor unit was recruited and discharged action potentials for about 60 s. The time to recruitment was longer for the large target-force difference (P = 0.001). At recruitment, the motor units discharged repetitively for both target-force differences, which contrasts with data from young adults when motor units discharged intermittently at recruitment for the large difference between recruitment threshold force and target force. The coefficient of variation (CV) for the first five interspike intervals (ISIs) increased from the small (18.7 ± 7.9) to large difference (35.0 ± 10.2%, P = 0.008) for the young adults, but did not differ for the two target force differences for the old adults (26.3 ± 14.7 to 24.0 ± 13.1%, P = 0.610). When analyzed across the discharge duration, the average CV for the ISI decreased similarly for the two target-force differences (P = 0.618) in old adults. These findings contrast with those of young adults and indicate that the integration of synaptic input during sustained contractions differs between young and old adults.
Collapse
Affiliation(s)
- Michael A Pascoe
- Neurophysiology of Movement Laboratory, Carlson 202G 354 UCB, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA.
| | | | | |
Collapse
|
30
|
Distribution of motor unit potential velocities in the biceps brachii muscle of sprinters and endurance athletes during prolonged dynamic exercises at low force levels. J Electromyogr Kinesiol 2010; 20:1115-24. [DOI: 10.1016/j.jelekin.2010.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 11/19/2022] Open
|
31
|
Enoka RM, Baudry S, Rudroff T, Farina D, Klass M, Duchateau J. Unraveling the neurophysiology of muscle fatigue. J Electromyogr Kinesiol 2010; 21:208-19. [PMID: 21071242 DOI: 10.1016/j.jelekin.2010.10.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/13/2010] [Indexed: 11/16/2022] Open
Abstract
Despite 100years of research since the seminal work of Angelo Mosso (1846-1910), our understanding of the interactions between the nervous system and muscle during the performance of fatiguing contractions remains rather rudimentary. Although the nervous system simply needs to provide an activation signal that will elicit the net muscle torque required for a prescribed action, changes in the number and diversity of synaptic inputs that must be integrated by the spinal motor neurons to accommodate the changes in the force-producing capabilities of the muscle fibers complicate the process of generating the requisite activation signal. This brief review examines two ways in which the activation signal can be compromised during sustained contractions and thereby contribute to the rate at which the muscles fatigue. These examples provide insight on the types of adjustments that occur in the nervous system during fatiguing contractions, but emphasize that much remains to be learned about the physiological processes that contribute to the phenomenon known as muscle fatigue.
Collapse
Affiliation(s)
- Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Rudroff T, Justice JN, Holmes MR, Matthews SD, Enoka RM. Muscle activity and time to task failure differ with load compliance and target force for elbow flexor muscles. J Appl Physiol (1985) 2010; 110:125-36. [PMID: 21030676 DOI: 10.1152/japplphysiol.00605.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary purpose of this study was to determine the influence of load compliance on time to failure during sustained isometric contractions performed with the elbow flexor muscles at four submaximal target forces. Subjects pulled against a rigid restraint during the force task and maintained a constant elbow angle, while supporting an equivalent inertial load during the position task. Each task was sustained for as long as possible. Twenty-one healthy adults (23 ± 6 yr; 11 men) participated in the study. The maximal voluntary contraction (MVC) force was similar (P = 0.95) before the subjects performed the force and position tasks at each of the four target forces: 20, 30, 45, and 60% of MVC force. The time to task failure was longer for the force tasks (576 ± 80 and 325 ± 70 s) than for the position tasks (299 ± 77 and 168 ± 35 s) at target forces of 20 and 30% (P < 0.001), but was similar for the force tasks (178 ± 35 and 86 ± 14 s) and the position tasks (132 ± 29 and 87 ± 14 s) at target forces of 45 and 60% (P > 0.19). The briefer times to failure for the position task at the lower forces were accompanied by greater rates of increase in elbow flexor muscle activity, mean arterial pressure, heart rate, and rating of perceived exertion. There was no difference in the estimates of external mechanical work at any target force. The dominant mechanisms limiting time to failure of sustained isometric contractions with the elbow flexor muscles appear to change at target forces between 30 and 45% MVC, with load compliance being a significant factor at lower forces only.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA.
| | | | | | | | | |
Collapse
|
33
|
Griffith EE, Yoon T, Hunter SK. Age and load compliance alter time to task failure for a submaximal fatiguing contraction with the lower leg. J Appl Physiol (1985) 2010; 108:1510-9. [PMID: 20299610 DOI: 10.1152/japplphysiol.01396.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to compare the time to failure and muscle activation of young and old adults for a sustained isometric submaximal contraction with the dorsiflexor muscles when the foot was restrained to a force transducer (force-control task) compared with supporting an equivalent inertial load unrestrained in the sagittal plane (position-control task). Seventeen young (23.6+/-6.5 yr) and 12 old (70.0+/-5.0 yr) adults performed the force-control and position-control tasks at 30% maximal voluntary contraction (MVC) until task failure on separate days. Despite the similar load torque for each task, time to failure was longer for the force-control than position-control task (10.4+/-4.5 vs. 8.6+/-3.4 min, P=0.03) for the young and old adults. The old adults, however, had a longer time to task failure than the young adults for both tasks (11.4+/-4.4 vs. 8.1+/-2.1 min, P=0.01), with no interaction of age and task (P=0.83). The rate of increase in agonist and antagonist root-mean-square EMG, agonist EMG bursting activity, mean arterial pressure, and heart rate during the fatiguing contraction was greater for the position-control than force-control task for the young and old adults. The old adults had a less rapid rate of increase in EMG activity, fluctuations in motor output, and cardiovascular measures than the young adults for both tasks. Development of fatigue can be manipulated in young and old adults by providing greater support to the foot and less ankle compliance during daily and ergonomic tasks that require prolonged activation of the lower leg. Minimizing load compliance to one degree of freedom during a position-control task maintained the greater fatigue resistance with age for an isometric contraction.
Collapse
Affiliation(s)
- Erin E Griffith
- Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201, USA
| | | | | |
Collapse
|
34
|
Law LAF, Avin KG. Endurance time is joint-specific: a modelling and meta-analysis investigation. ERGONOMICS 2010; 53:109-29. [PMID: 20069487 PMCID: PMC2891087 DOI: 10.1080/00140130903389068] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Static task intensity-endurance time (ET) relationships (e.g. Rohmert's curve) were first reported decades ago. However, a comprehensive meta-analysis to compare experimentally-observed ETs across bodily regions has not been reported. We performed a systematic literature review of ETs for static contractions, developed joint-specific power and exponential models of the intensity-ET relationships, and compared these models between each joint (ankle, trunk, hand/grip, elbow, knee, and shoulder) and the pooled data (generalised curve). 194 publications were found, representing a total of 369 data points. The power model provided the best fit to the experimental data. Significant intensity-dependent ET differences were predicted between each pair of joints. Overall, the ankle was most fatigue-resistant, followed by the trunk, hand/grip, elbow, knee and finally the shoulder was most fatigable. We conclude ET varies systematically between joints, in some cases with large effect sizes. Thus, a single generalised ET model does not adequately represent fatigue across joints. STATEMENT OF RELEVANCE: Rohmert curves have been used in ergonomic analyses of fatigue, as there are limited tools available to accurately predict force decrements. This study provides updated endurance time-intensity curves using a large meta-analysis of fatigue data. Specific models derived for five distinct joint regions should further increase prediction accuracy.
Collapse
|
35
|
Rudroff T, Jordan K, Enoka JA, Matthews SD, Baudry S, Enoka RM. Discharge of biceps brachii motor units is modulated by load compliance and forearm posture. Exp Brain Res 2009; 202:111-20. [DOI: 10.1007/s00221-009-2116-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
|