1
|
Thompson JT, Taylor-Burt KR, Kier WM. One size does not fit all: diversity of length-force properties of obliquely striated muscles. J Exp Biol 2023; 226:jeb244949. [PMID: 36633589 PMCID: PMC10658899 DOI: 10.1242/jeb.244949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/28/2022] [Indexed: 01/13/2023]
Abstract
Obliquely striated muscles occur in 17+ phyla, likely evolving repeatedly, yet the implications of oblique striation for muscle function are unknown. Contrary to the belief that oblique striation allows high force output over extraordinary length ranges (i.e. superelongation), recent work suggests diversity in operating length ranges and length-force relationships. We hypothesize oblique striation evolved to increase length-force relationship flexibility. We predict that superelongation is not a general characteristic of obliquely striated muscles and instead that length-force relationships vary with operating length range. To test these predictions, we measured length-force relationships of five obliquely striated muscles from inshore longfin squid, Doryteuthis pealeii: tentacle, funnel retractor and head retractor longitudinal fibers, and arm and fin transverse fibers. Consistent with superelongation, the tentacle length-force relationship had a long descending limb, whereas all others exhibited limited descending limbs. The ascending limb at 0.6P0 was significantly broader (P<0.001) for the tentacle length-force relationship (0.43±0.04L0; where L0 is the preparation length that produced peak isometric stress, P0) than for the arm (0.29±0.03L0), head retractor (0.24±0.06L0), fin (0.20±0.04L0) and funnel retractor (0.27±0.03L0). The fin's narrow ascending limb differed significantly from those of the arm (P=0.004) and funnel retractor (P=0.012). We further characterized the tentacle preparation's maximum isometric stress (315±78 kPa), maximum unloaded shortening velocity (2.97±0.55L0 s-1) and ultrastructural traits (compared with the arm), which may explain its broader length-force relationship. Comparison of obliquely striated muscles across taxa revealed length-force relationship diversity, with only two species exhibiting superelongation.
Collapse
Affiliation(s)
- Joseph T. Thompson
- Department of Biology, Franklin & Marshall College, Lancaster, PA 17604-3003, USA
| | - Kari R. Taylor-Burt
- Department of Biology, Franklin & Marshall College, Lancaster, PA 17604-3003, USA
- Department of Science, Mount St Mary's University, Emmitsburg, MD 21727, USA
| | - William M. Kier
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Andrews PLR, Ponte G, Rosas C. Methodological considerations in studying digestive system physiology in octopus: limitations, lacunae and lessons learnt. Front Physiol 2022; 13:928013. [PMID: 36160859 PMCID: PMC9501996 DOI: 10.3389/fphys.2022.928013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Current understanding of cephalopod digestive tract physiology is based on relatively “old” literature and a “mosaic of data” from multiple species. To provide a background to the discussion of methodologies for investigating physiology we first review the anatomy of the cephalopod digestive tract with a focus on Octopus vulgaris, highlighting structure-function relationships and species differences with potential functional consequences (e.g., absence of a crop in cuttlefish and squid; presence of a caecal sac in squid). We caution about extrapolation of data on the digestive system physiology from one cephalopod species to another because of the anatomical differences. The contribution of anatomical and histological techniques (e.g., digestive enzyme histochemistry and neurotransmitter immunohistochemistry) to understanding physiological processes is discussed. For each major digestive tract function we briefly review current knowledge, and then discuss techniques and their limitations for the following parameters: 1) Measuring motility in vitro (e.g., spatiotemporal mapping, tension and pressure), in vivo (labelled food, high resolution ultrasound) and aspects of pharmacology; 2) Measuring food ingestion and the time course of digestion with an emphasis on understanding enzyme function in each gut region with respect to time; 3) Assessing transepithelial transport of nutrients; 4) Measuring the energetic cost of food processing, impact of environmental temperature and metabolic rate (flow-through/intermittent respirometry); 4) Investigating neural (brain, gastric ganglion, enteric) and endocrine control processes with an emphasis on application of molecular techniques to identify receptors and their ligands. A number of major knowledge lacunae are identified where available techniques need to be applied to cephalopods, these include: 1) What is the physiological function of the caecal leaflets and intestinal typhlosoles in octopus? 2) What role does the transepithelial transport in the caecum and intestine play in ion, water and nutrient transport? 3) What information is signalled from the digestive tract to the brain regarding the food ingested and the progress of digestion? It is hoped that by combining discussion of the physiology of the cephalopod digestive system with an overview of techniques and identification of key knowledge gaps that this will encourage a more systematic approach to research in this area.
Collapse
Affiliation(s)
- Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- *Correspondence: Paul L. R. Andrews,
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| |
Collapse
|
3
|
Sivitilli DM, Smith JR, Gire DH. Lessons for Robotics From the Control Architecture of the Octopus. Front Robot AI 2022; 9:862391. [PMID: 35923303 PMCID: PMC9339708 DOI: 10.3389/frobt.2022.862391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Biological and artificial agents are faced with many of the same computational and mechanical problems, thus strategies evolved in the biological realm can serve as inspiration for robotic development. The octopus in particular represents an attractive model for biologically-inspired robotic design, as has been recognized for the emerging field of soft robotics. Conventional global planning-based approaches to controlling the large number of degrees of freedom in an octopus arm would be computationally intractable. Instead, the octopus appears to exploit a distributed control architecture that enables effective and computationally efficient arm control. Here we will describe the neuroanatomical organization of the octopus peripheral nervous system and discuss how this distributed neural network is specialized for effectively mediating decisions made by the central brain and the continuous actuation of limbs possessing an extremely large number of degrees of freedom. We propose top-down and bottom-up control strategies that we hypothesize the octopus employs in the control of its soft body. We suggest that these strategies can serve as useful elements in the design and development of soft-bodied robotics.
Collapse
Affiliation(s)
- Dominic M. Sivitilli
- Department of Psychology, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
- *Correspondence: Dominic M. Sivitilli, ; David H. Gire,
| | - Joshua R. Smith
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, United States
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
| | - David H. Gire
- Department of Psychology, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
- *Correspondence: Dominic M. Sivitilli, ; David H. Gire,
| |
Collapse
|
4
|
Zullo L, Bozzo M, Daya A, Di Clemente A, Mancini FP, Megighian A, Nesher N, Röttinger E, Shomrat T, Tiozzo S, Zullo A, Candiani S. The Diversity of Muscles and Their Regenerative Potential across Animals. Cells 2020; 9:cells9091925. [PMID: 32825163 PMCID: PMC7563492 DOI: 10.3390/cells9091925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of “non-canonical” animal models for molecular and even pharmacological studies in the field of muscle regeneration.
Collapse
Affiliation(s)
- Letizia Zullo
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (L.Z.); (A.Z.)
| | - Matteo Bozzo
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| | - Alon Daya
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Alessio Di Clemente
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS, INSERM, 06107 Nice, France;
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Paris, France;
| | - Alberto Zullo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy;
- Correspondence: (L.Z.); (A.Z.)
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| |
Collapse
|
5
|
Gilly WF, Renken C, Rosenthal JJC, Kier WM. Specialization for rapid excitation in fast squid tentacle muscle involves action potentials absent in slow arm muscle. J Exp Biol 2020; 223:jeb218081. [PMID: 31900349 DOI: 10.1242/jeb.218081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/27/2019] [Indexed: 11/20/2022]
Abstract
An important aspect of the performance of many fast muscle fiber types is rapid excitation. Previous research on the cross-striated muscle fibers responsible for the rapid tentacle strike in squid has revealed the specializations responsible for high shortening velocity, but little is known about excitation of these fibers. Conventional whole-cell patch recordings were made from tentacle fibers and the slower obliquely striated muscle fibers of the arms. The fast-contracting tentacle fibers show an approximately 10-fold greater sodium conductance than that of the arm fibers and, unlike the arm fibers, the tentacle muscle fibers produce action potentials. In situ hybridization using an antisense probe to the voltage-dependent sodium channel present in this squid genus shows prominent expression of sodium channel mRNA in tentacle fibers but undetectable expression in arm fibers. Production of action potentials by tentacle muscle fibers and their absence in arm fibers is likely responsible for the previously reported greater twitch-tetanus ratio in the tentacle versus the arm fibers. During the rapid tentacle strike, a few closely spaced action potentials would result in maximal activation of transverse tentacle muscle. Activation of the slower transverse muscle fibers in the arms would require summation of excitatory postsynaptic potentials over a longer time, allowing the precise modulation of force required for supporting slower movements of the arms.
Collapse
Affiliation(s)
- William F Gilly
- Hopkins Marine Station of Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - Corbin Renken
- The Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - William M Kier
- Department of Biology, CB# 3280 Coker Hall, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Mackrill JJ, Shiels HA. Evolution of Excitation-Contraction Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:281-320. [DOI: 10.1007/978-3-030-12457-1_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Nesher N, Maiole F, Shomrat T, Hochner B, Zullo L. From synaptic input to muscle contraction: arm muscle cells of Octopus vulgaris show unique neuromuscular junction and excitation-contraction coupling properties. Proc Biol Sci 2019; 286:20191278. [PMID: 31455193 DOI: 10.1098/rspb.2019.1278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The muscular-hydrostat configuration of octopus arms allows high manoeuvrability together with the efficient motor performance necessary for its multitasking abilities. To control this flexible and hyper-redundant system the octopus has evolved unique strategies at the various levels of its brain-to-body organization. We focus here on the arm neuromuscular junction (NMJ) and excitation-contraction (E-C) properties of the arm muscle cells. We show that muscle cells are cholinergically innervated at single eye-shaped locations where acetylcholine receptors (AChR) are concentrated, resembling the vertebrate neuromuscular endplates. Na+ and K+ contribute nearly equally to the ACh-activated synaptic current mediating membrane depolarization, thereby activating voltage-dependent L-type Ca2+ channels. We show that cell contraction can be mediated directly by the inward Ca2+ current and also indirectly by calcium-induced calcium release (CICR) from internal stores. Indeed, caffeine-induced cell contraction and immunohistochemical staining revealed the presence and close association of dihydropyridine (DHPR) and ryanodine (RyR) receptor complexes, which probably mediate the CICR. We suggest that the dynamics of octopus arm contraction can be controlled in two ways; motoneurons with large synaptic inputs activate vigorous contraction via activation of the two routs of Ca2+ induced contraction, while motoneurons with lower-amplitude inputs may regulate a graded contraction through frequency-dependent summation of EPSP trains that recruit the CICR. Our results thus suggest that these motoneuronal pools are likely to be involved in the activation of different E-C coupling modes, thus enabling a dynamics of muscles activation appropriate for various tasks such as stiffening versus motion generation.
Collapse
Affiliation(s)
- Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
| | - Federica Maiole
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
| | - Benyamin Hochner
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Letizia Zullo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
8
|
Zakon HH, Li W, Pillai NE, Tohari S, Shingate P, Ren J, Venkatesh B. Voltage-gated sodium channel gene repertoire of lampreys: gene duplications, tissue-specific expression and discovery of a long-lost gene. Proc Biol Sci 2017; 284:20170824. [PMID: 28931746 PMCID: PMC5627192 DOI: 10.1098/rspb.2017.0824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022] Open
Abstract
Studies of the voltage-gated sodium (Nav) channels of extant gnathostomes have made it possible to deduce that ancestral gnathostomes possessed four voltage-gated sodium channel genes derived from a single ancestral chordate gene following two rounds of genome duplication early in vertebrates. We investigated the Nav gene family in two species of lampreys (the Japanese lamprey Lethenteron japonicum and sea lamprey Petromyzon marinus) (jawless vertebrates-agnatha) and compared them with those of basal vertebrates to better understand the origin of Nav genes in vertebrates. We noted six Nav genes in both lamprey species, but orthology with gnathostome (jawed vertebrate) channels was inconclusive. Surprisingly, the Nav2 gene, ubiquitously found in invertebrates and believed to have been lost in vertebrates, is present in lampreys, elephant shark (Callorhinchus milii) and coelacanth (Latimeria chalumnae). Despite repeated duplication of the Nav1 family in vertebrates, Nav2 is only in single copy in those vertebrates in which it is retained, and was independently lost in ray-finned fishes and tetrapods. Of the other five Nav channel genes, most were expressed in brain, one in brain and heart, and one exclusively in skeletal muscle. Invertebrates do not express Nav channel genes in muscle. Thus, early in the vertebrate lineage Nav channels began to diversify and different genes began to express in heart and muscle.
Collapse
Affiliation(s)
- Harold H Zakon
- Department of Neuroscience, The University of Texas, Austin, TX 78712, USA
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Nisha E Pillai
- Comparative and Medical Genomics Lab, Institute of Molecular and Cell Biology, A*STAR, Biopolis, 138673, Singapore
| | - Sumanty Tohari
- Comparative and Medical Genomics Lab, Institute of Molecular and Cell Biology, A*STAR, Biopolis, 138673, Singapore
| | - Prashant Shingate
- Comparative and Medical Genomics Lab, Institute of Molecular and Cell Biology, A*STAR, Biopolis, 138673, Singapore
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Byrappa Venkatesh
- Comparative and Medical Genomics Lab, Institute of Molecular and Cell Biology, A*STAR, Biopolis, 138673, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| |
Collapse
|
9
|
Zullo L, Fossati SM, Imperadore P, Nödl MT. Molecular Determinants of Cephalopod Muscles and Their Implication in Muscle Regeneration. Front Cell Dev Biol 2017; 5:53. [PMID: 28555185 PMCID: PMC5430041 DOI: 10.3389/fcell.2017.00053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022] Open
Abstract
The ability to regenerate whole-body structures has been studied for many decades and is of particular interest for stem cell research due to its therapeutic potential. Several vertebrate and invertebrate species have been used as model systems to study pathways involved in regeneration in the past. Among invertebrates, cephalopods are considered as highly evolved organisms, which exhibit elaborate behavioral characteristics when compared to other mollusks including active predation, extraordinary manipulation, and learning abilities. These are enabled by a complex nervous system and a number of adaptations of their body plan, which were acquired over evolutionary time. Some of these novel features show similarities to structures present in vertebrates and seem to have evolved through a convergent evolutionary process. Octopus vulgaris (the common octopus) is a representative of modern cephalopods and is characterized by a sophisticated motor and sensory system as well as highly developed cognitive capabilities. Due to its phylogenetic position and its high regenerative power the octopus has become of increasing interest for studies on regenerative processes. In this paper we provide an overview over the current knowledge of cephalopod muscle types and structures and present a possible link between these characteristics and their high regenerative potential. This may help identify conserved molecular pathways underlying regeneration in invertebrate and vertebrate animal species as well as discover new leads for targeted tissue treatments in humans.
Collapse
Affiliation(s)
- Letizia Zullo
- Centre for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di TecnologiaGenoa, Italy
| | - Sara M Fossati
- Centre for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di TecnologiaGenoa, Italy
| | | | - Marie-Therese Nödl
- Centre for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di TecnologiaGenoa, Italy
| |
Collapse
|
10
|
Kier WM. The Musculature of Coleoid Cephalopod Arms and Tentacles. Front Cell Dev Biol 2016; 4:10. [PMID: 26925401 PMCID: PMC4757648 DOI: 10.3389/fcell.2016.00010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/01/2016] [Indexed: 01/07/2023] Open
Abstract
The regeneration of coleoid cephalopod arms and tentacles is a common occurrence, recognized since Aristotle. The complexity of the arrangement of the muscle and connective tissues of these appendages make them of great interest for research on regeneration. They lack rigid skeletal elements and consist of a three-dimensional array of muscle fibers, relying on a type of skeletal support system called a muscular hydrostat. Support and movement in the arms and tentacles depends on the fact that muscle tissue resists volume change. The basic principle of function is straightforward; because the volume of the appendage is essentially constant, a decrease in one dimension must result in an increase in another dimension. Since the muscle fibers are arranged in three mutually perpendicular directions, all three dimensions can be actively controlled and thus a remarkable diversity of movements and deformations can be produced. In the arms and tentacles of coleoids, three main muscle orientations are observed: (1) transverse muscle fibers arranged in planes perpendicular to the longitudinal axis; (2) longitudinal muscle fibers typically arranged in bundles parallel to the longitudinal axis; and (3) helical or obliquely arranged layers of muscle fibers, arranged in both right- and left-handed helixes. By selective activation of these muscle groups, elongation, shortening, bending, torsion and stiffening of the appendage can be produced. The predominant muscle fiber type is obliquely striated. Cross-striated fibers are found only in the transverse muscle mass of the prey capture tentacles of squid and cuttlefish. These fibers have unusually short myofilaments and sarcomeres, generating the high shortening velocity required for rapid elongation of the tentacles. It is likely that coleoid cephalopods use ultrastructural modifications rather than tissue-specific myosin isoforms to tune contraction velocities.
Collapse
Affiliation(s)
- William M Kier
- Department of Biology, University of North Carolina Chapel Hill, NC, USA
| |
Collapse
|
11
|
Hochner B. How nervous systems evolve in relation to their embodiment: what we can learn from octopuses and other molluscs. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:19-30. [PMID: 23979453 DOI: 10.1159/000353419] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cephalopods such as the octopus show the most advanced behavior among invertebrates, which they accomplish with an exceptionally flexible body plan. In this review I propose that the embodied organization approach, developed by roboticists to design efficient autonomous robots, is useful for understanding the evolution and development of the efficient adaptive interaction of animals with their environment, using the octopus as the leading example. The embodied organization approach explains adaptive behavior as emerging from the continuous dynamical and reciprocal physical and informational interactions between four elements: the controller, the mechanical and the sensory systems and the environment. In contrast to hierarchical organization, in embodied organization, self-organization processes can take part in the emergence of the adaptive properties. I first discuss how the embodiment concept explains covariation of body form, nervous system organization, and level of behavioral complexity using the Mollusca as an example. This is an ideal phylum to test such a qualitative correlation between body/brain/behavior, because they show the greatest variations of body plan within a single phylum. In some cases the covariation of nervous system and body structure seems to arise independently of close phylogenetic relationships. Next, I dwell on the octopus as an ideal model to test the embodiment concept within a single biological system. Here, the unusual body morphology of the octopus exposes the uniqueness of the four components comprising the octopus' embodiment. Considering together the results from behavioral, physiological, anatomical, and motor control research suggests that these four elements mutually influence each other. It is this mutual interactions and self-organization which have led to their unique evolution and development to create the unique and highly efficient octopus embodiment.
Collapse
Affiliation(s)
- Binyamin Hochner
- Department of Neurobiology, Silberman Institute of Life Sciences and Interdisciplinary Center for Neural Computation, Edmond J. Safra Campus, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
12
|
Abstract
Octopuses have a unique flexible body and unusual morphology, but nevertheless they are undoubtedly a great evolutionary success. They compete successfully with vertebrates in their ecological niche using a rich behavioral repertoire more typical of an intelligent predator which includes extremely effective defensive behavior--fast escape swimming and an astonishing ability to adapt their shape and color to their environment. The most obvious characteristic feature of an octopus is its eight long and flexible arms, but these pose a great challenge for achieving the level of motor and sensory information processing necessary for their behaviors. First, coordinating motion is a formidable task because of the infinite degrees of freedom that have to be controlled; and second, it is hard to use body coordinates in this flexible animal to represent sensory information in a central control system. Here I will review experimental results suggesting that these difficulties, arising from the animal's morphology, have imposed the evolution of unique brain/body/behavior relationships best explained as intelligent behavior which emerges from the octopus's embodied organization. The term 'intelligent embodiment' comes from robotics and refers to an approach to designing autonomous robots in which the behavior emerges from the dynamic physical and sensory interactions of the agent's materials, morphology and environment. Consideration of the unusual neurobiology of the octopus in the light of its unique morphology suggests that similar embodied principles are instrumental for understanding the emergence of intelligent behavior in all biological systems.
Collapse
Affiliation(s)
- Binyamin Hochner
- Department of Neurobiology, Silberman Institute of Life Sciences, and Interdisciplinary Center for Neural Computation, Edmond J Safra Campus, Givat Ram, Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
13
|
Laschi C, Mazzolai B, Mattoli V, Cianchetti M, Dario P. Design of a biomimetic robotic octopus arm. BIOINSPIRATION & BIOMIMETICS 2009; 4:015006. [PMID: 19258690 DOI: 10.1088/1748-3182/4/1/015006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper reports the rationale and design of a robotic arm, as inspired by an octopus arm. The octopus arm shows peculiar features, such as the ability to bend in all directions, to produce fast elongations, and to vary its stiffness. The octopus achieves these unique motor skills, thanks to its peculiar muscular structure, named muscular hydrostat. Different muscles arranged on orthogonal planes generate an antagonistic action on each other in the muscular hydrostat, which does not change its volume during muscle contractions, and allow bending and elongation of the arm and stiffness variation. By drawing inspiration from natural skills of octopus, and by analysing the geometry and mechanics of the muscular structure of its arm, we propose the design of a robot arm consisting of an artificial muscular hydrostat structure, which is completely soft and compliant, but also able to stiffen. In this paper, we discuss the design criteria of the robotic arm and how this design and the special arrangement of its muscular structure may bring the building of a robotic arm into being, by showing the results obtained by mathematical models and prototypical mock-ups.
Collapse
Affiliation(s)
- C Laschi
- Advanced Robotics Technology and Systems Laboratory, Scuola Superiore Sant'Anna, Pisa,
| | | | | | | | | |
Collapse
|
14
|
Rokkam M, Chatni MR, ul Haque A, De Carlo AR, Robinson BF, Irazoqui PP, Porterfield DM. High-density data acquisition system and signal preprocessor for interfacing with microelectromechanical system-based biosensor arrays. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2007; 78:044303. [PMID: 17477683 DOI: 10.1063/1.2722420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Microelectromechanical system (MEMS) development has become an active area for research in over the last decade. This area has advanced rapidly in recent years due to the potential ability of MEMS devices to perform complex functions in a smaller area. There is also the prospect to develop devices that can (1) be easily manufactured, (2) offer low power consumption, and (3) reduce waste. Especially in the BioMEMS area these advantages are important in terms of applied devices for biosensing, clinical diagnostics, physiological sensing, flow cytometry, and other lab-on-a-chip applications. However, one major obstacle that has been overlooked is the interface of these microdevices with the macroworld. This is critical to enable applications and development of the technology, as currently testing and analysis of data from these devices is mostly limited to generic microprobe stations. New advancements in BioMEMS have to occur in concert with the development of data acquisition systems and signal preprocessors to fully appreciate and test these developing technologies. In this work, we present the development of a cost effective, high throughput data acquisition system (Bio-HD DAQ) and a signal preprocessor for a MEMS-based cell electrophysiology lab-on-a-Chip (CEL-C) device. The signal preprocessor consists of a printed circuit board mounted with the CEL-C device and a 64-channel filter/amplifier circuit array. The data acquisition system includes a high-density crosspoint switching matrix that connects the signal preprocessor to a 16-channel, 18 bit, and 625 kSs DAQ card. Multimodule custom software designed on LABVIEW 7.0 is used to control the DAQ system. While this version of the Bio-HD DAQ system and accompanying software are designed keeping in view the specific requirements of the CEL-C device, it is highly adaptable and, with minor modifications, can become a generic data acquisition system for MEMS development, testing, and application.
Collapse
Affiliation(s)
- M Rokkam
- Bindley Bioscience Center, Physiological Sensing Facility, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Gutfreund Y, Matzner H, Flash T, Hochner B. Patterns of motor activity in the isolated nerve cord of the octopus arm. THE BIOLOGICAL BULLETIN 2006; 211:212-22. [PMID: 17179381 DOI: 10.2307/4134544] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension.
Collapse
Affiliation(s)
- Yoram Gutfreund
- Department of Neurobiology and Center for Neuronal Computation, Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
16
|
Hochner B, Shomrat T, Fiorito G. The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. THE BIOLOGICAL BULLETIN 2006; 210:308-17. [PMID: 16801504 DOI: 10.2307/4134567] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Comparative analysis of brain function in invertebrates with sophisticated behaviors, such as the octopus, may advance our understanding of the evolution of the neural processes that mediate complex behaviors. Until the last few years, this approach was infeasible due to the lack of neurophysiological tools for testing the neural circuits mediating learning and memory in the brains of octopus and other cephalopods. Now, for the first time, the adaptation of modern neurophysiological methods to the study of the central nervous system of the octopus allows this avenue of research. The emerging results suggest that a convergent evolutionary process has led to the selection of vertebrate-like neural organization and activity-dependent long-term synaptic plasticity. As octopuses and vertebrates are very remote phylogenetically, this convergence suggests the importance of the shared properties for the mediation of learning and memory.
Collapse
Affiliation(s)
- Binyamin Hochner
- Department of Neurobiology, Institute of Life Sciences and the Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, 91904 Israel.
| | | | | |
Collapse
|
17
|
Yekutieli Y, Sagiv-Zohar R, Hochner B, Flash T. Dynamic Model of the Octopus Arm. II. Control of Reaching Movements. J Neurophysiol 2005; 94:1459-68. [PMID: 15829593 DOI: 10.1152/jn.00685.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dynamic model of the octopus arm described in the first paper of this 2-part series was used here to investigate the neural strategies used for controlling the reaching movements of the octopus arm. These are stereotypical extension movements used to reach toward an object. In the dynamic model, sending a simple propagating neural activation signal to contract all muscles along the arm produced an arm extension with kinematic properties similar to those of natural movements. Control of only 2 parameters fully specified the extension movement: the amplitude of the activation signal (leading to the generation of muscle force) and the activation traveling time (the time the activation wave takes to travel along the arm). We found that the same kinematics could be achieved by applying activation signals with different activation amplitudes all exceeding some minimal level. This suggests that the octopus arm could use minimal amplitudes of activation to generate the minimal muscle forces required for the production of the desired kinematics. Larger-amplitude signals would generate larger forces that increase the arm’s stability against perturbations without changing the kinematic characteristics. The robustness of this phenomenon was demonstrated by examining activation signals with either a constant or a bell-shaped velocity profile. Our modeling suggests that the octopus arm biomechanics may allow independent control of kinematics and resistance to perturbation during arm extension movements.
Collapse
Affiliation(s)
- Yoram Yekutieli
- Department of Neurobiology, The Weizmann Institute of Science, Israel
| | | | | | | |
Collapse
|