1
|
Multi-timescale analysis of midbrain dopamine neuronal firing activities. J Theor Biol 2023; 556:111310. [PMID: 36279959 DOI: 10.1016/j.jtbi.2022.111310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Midbrain dopamine (DA) neurons exhibit spiking and bursting patterns under physiological conditions. Based on the data on electrophysiological recordings, Yu et al. developed a 13-dimensional mathematical model to capture the detailed characteristics of the DA neuronal firing activities. We use the fitting method to simplify the original model into a 4-dimensional model. Then, the spiking-to-bursting transition is detected from a simple and robust mathematical condition. Physiologically, this condition is a balance of the restorative and the regenerative ion channels at resting potential. Geometrically, this condition imposes a transcritical bifurcation. Moreover, we combine singularity theory and singular perturbation methods to capture the geometry of three-timescale firing attractors in a universal unfolding of a cusp singularity. In particular, the planar description of the corresponding firing patterns can generate the corresponding firing attractors. This analysis provides a new idea for understanding the firing activities of the DA neuron and the specific mechanisms for the switching and dynamic regulation among different patterns.
Collapse
|
2
|
Arencibia‐Albite F, Jiménez‐Rivera CA. Computational and theoretical insights into the homeostatic response to the decreased cell size of midbrain dopamine neurons. Physiol Rep 2021; 9:e14709. [PMID: 33484235 PMCID: PMC7824968 DOI: 10.14814/phy2.14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
Midbrain dopamine neurons communicate signals of reward anticipation and attribution of salience. This capacity is distorted in heroin or cocaine abuse or in conditions such as human mania. A shared characteristic among rodent models of these behavioral disorders is that dopamine neurons in these animals acquired a small size and manifest an augmented spontaneous and burst activity. The biophysical mechanism underlying this increased excitation is currently unknown, but is believed to primarily follow from a substantial drop in K+ conductance secondary to morphology reduction. This work uses a dopamine neuron mathematical model to show, surprisingly, that under size diminution a reduction in K+ conductance is an adaptation that attempts to decrease cell excitability. The homeostatic response that preserves the intrinsic activity is the conservation of the ion channel density for each conductance; a result that is analytically demonstrated and challenges the experimentalist tendency to reduce intrinsic excitation to K+ conductance expression level. Another unexpected mechanism that buffers the raise in intrinsic activity is the presence of the ether-a-go-go-related gen K+ channel since its activation is illustrated to increase with size reduction. Computational experiments finally demonstrate that size attenuation results in the paradoxical enhancement of afferent-driven bursting as a reduced temporal summation indexed correlates with improved depolarization. This work illustrates, on the whole, that experimentation in the absence of mathematical models may lead to the erroneous interpretation of the counterintuitive aspects of empirical data.
Collapse
Affiliation(s)
- Francisco Arencibia‐Albite
- Department of PhysiologyUniversity of Puerto RicoSan JuanPuerto Rico
- Department of Natural SciencesUniversity of Sacred HeartSan JuanPuerto Rico
| | | |
Collapse
|
3
|
Rumbell T, Kozloski J. Dimensions of control for subthreshold oscillations and spontaneous firing in dopamine neurons. PLoS Comput Biol 2019; 15:e1007375. [PMID: 31545787 PMCID: PMC6776370 DOI: 10.1371/journal.pcbi.1007375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/03/2019] [Accepted: 09/04/2019] [Indexed: 11/20/2022] Open
Abstract
Dopaminergic neurons (DAs) of the rodent substantia nigra pars compacta (SNc) display varied electrophysiological properties in vitro. Despite this, projection patterns and functional inputs from DAs to other structures are conserved, so in vivo delivery of consistent, well-timed dopamine modulation to downstream circuits must be coordinated. Here we show robust coordination by linear parameter controllers, discovered through powerful mathematical analyses of data and models, and from which consistent control of DA subthreshold oscillations (STOs) and spontaneous firing emerges. These units of control represent coordinated intracellular variables, sufficient to regulate complex cellular properties with radical simplicity. Using an evolutionary algorithm and dimensionality reduction, we discovered metaparameters, which when regressed against STO features, revealed a 2-dimensional control plane for the neuron’s 22-dimensional parameter space that fully maps the natural range of DA subthreshold electrophysiology. This plane provided a basis for spiking currents to reproduce a large range of the naturally occurring spontaneous firing characteristics of SNc DAs. From it we easily produced a unique population of models, derived using unbiased parameter search, that show good generalization to channel blockade and compensatory intracellular mechanisms. From this population of models, we then discovered low-dimensional controllers for regulating spontaneous firing properties, and gain insight into how currents active in different voltage regimes interact to produce the emergent activity of SNc DAs. Our methods therefore reveal simple regulators of neuronal function lurking in the complexity of combined ion channel dynamics. Electrophysiological activity of the neuronal membrane and concomitant ion channel properties are highly variable within groups of neurons of the same type from the same brain region. Reconciliation of the mechanisms generating neuronal activity is challenging due to the complexity of the interactions between the channel currents involved. Here we present a set of mathematical analyses that uncover the low-dimensional intracellular parameter combinations capable of regulating features of subthreshold oscillations and spontaneous firing in empirically constrained models of nigral dopaminergic neurons. This method generates, from a naive starting point, linear combinations of ion channel properties that are surprisingly capable of reliably controlling a wide variety of emergent electrophysiological activity, thereby predicting drug effects and shedding light on unsuspected compensatory mechanisms that contribute to neuronal function.
Collapse
Affiliation(s)
- Timothy Rumbell
- IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America
- * E-mail:
| | - James Kozloski
- IBM Research, Computational Biology Center, Thomas J. Watson Research Laboratories, Yorktown Heights, New York, United States of America
| |
Collapse
|
4
|
You C, Savarese A, Vandegrift BJ, He D, Pandey SC, Lasek AW, Brodie MS. Ethanol acts on KCNK13 potassium channels in the ventral tegmental area to increase firing rate and modulate binge-like drinking. Neuropharmacology 2019; 144:29-36. [PMID: 30332606 PMCID: PMC6286249 DOI: 10.1016/j.neuropharm.2018.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Alcohol excitation of the ventral tegmental area (VTA) is important in neurobiological processes related to the development of alcoholism. The ionotropic receptors on VTA neurons that mediate ethanol-induced excitation have not been identified. Quinidine blocks ethanol excitation of VTA neurons, and blockade of two-pore potassium channels is among the actions of quinidine. Therefore two-pore potassium channels in the VTA may be potential targets for the action of ethanol. Here, we explored whether ethanol activation of VTA neurons is mediated by the two-pore potassium channel KCNK13. Extracellular recordings of the response of VTA neurons to ethanol were performed in combination with knockdown of Kcnk13 using a short hairpin RNA (shRNA) in C57BL/6 J mice. Real-time PCR and immunohistochemistry were used to examine expression of this channel in the VTA. Finally, the role of KCNK13 in binge-like drinking was examined in the drinking in the dark test after knockdown of the channel. Kcnk13 expression in the VTA was increased by acute ethanol exposure. Ethanol-induced excitation of VTA neurons was selectively reduced by shRNA targeting Kcnk13. Importantly, knockdown of Kcnk13 in the VTA resulted in increased alcohol drinking. These results are consistent with the idea that ethanol stimulates VTA neurons at least in part by inhibiting KCNK13, a specific two-pore potassium channel, and that KCNK13 can control both VTA neuronal activity and binge drinking. KCNK13 is a novel alcohol-sensitive molecular target and may be amenable to the development of pharmacotherapies for alcoholism treatment.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Antonia Savarese
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bertha J Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Donghong He
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Yang S, Wang J, Lin Q, Deng B, Wei X, Liu C, Li H. Cost-efficient FPGA implementation of a biologically plausible dopamine neural network and its application. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Franci A, Drion G, Sepulchre R. Robust and tunable bursting requires slow positive feedback. J Neurophysiol 2017; 119:1222-1234. [PMID: 29357476 DOI: 10.1152/jn.00804.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We highlight that the robustness and tunability of a bursting model critically rely on currents that provide slow positive feedback to the membrane potential. Such currents have the ability to make the total conductance of the circuit negative in a timescale that is termed "slow" because it is intermediate between the fast timescale of the spike upstroke and the ultraslow timescale of even slower adaptation currents. We discuss how such currents can be assessed either in voltage-clamp experiments or in computational models. We show that, while frequent in the literature, mathematical and computational models of bursting that lack the slow negative conductance are fragile and rigid. Our results suggest that modeling the slow negative conductance of cellular models is important when studying the neuromodulation of rhythmic circuits at any broader scale. NEW & NOTEWORTHY Nervous system functions rely on the modulation of neuronal activity between different rhythmic patterns. The mechanisms of this modulation are still poorly understood. Using computational modeling, we show the critical role of currents that provide slow negative conductance, distinct from the fast negative conductance necessary for spike generation. The significance of the slow negative conductance for neuromodulation is often overlooked, leading to computational models that are rigid and fragile.
Collapse
Affiliation(s)
- Alessio Franci
- Department of Mathematics, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | | | - Rodolphe Sepulchre
- Department of Engineering, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
7
|
Jiménez-Vargas JM, Possani LD, Luna-Ramírez K. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 2017; 127:139-160. [PMID: 28941737 DOI: 10.1016/j.neuropharm.2017.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Arthropod venoms are a rich mixture of biologically active compounds exerting different physiological actions across diverse phyla and affecting multiple organ systems including the central nervous system. Venom compounds can inhibit or activate ion channels, receptors and transporters with high specificity and affinity providing essential insights into ion channel function. In this review, we focus on arthropod toxins (scorpions, spiders, bees and centipedes) acting on neuronal potassium channels. A brief description of the K+ channels classification and structure is included and a compendium of neuronal K+ channels and the arthropod toxins that modify them have been listed. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Karen Luna-Ramírez
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
8
|
Iyer R, Ungless MA, Faisal AA. Calcium-activated SK channels control firing regularity by modulating sodium channel availability in midbrain dopamine neurons. Sci Rep 2017; 7:5248. [PMID: 28701749 PMCID: PMC5507868 DOI: 10.1038/s41598-017-05578-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
Dopamine neurons in the substantia nigra pars compacta and ventral tegmental area regulate behaviours such as reward-related learning, and motor control. Dysfunction of these neurons is implicated in Schizophrenia, addiction to drugs, and Parkinson’s disease. While some dopamine neurons fire single spikes at regular intervals, others fire irregular single spikes interspersed with bursts. Pharmacological inhibition of calcium-activated potassium (SK) channels increases the variability in their firing pattern, sometimes also increasing the number of spikes fired in bursts, indicating that SK channels play an important role in maintaining dopamine neuron firing regularity and burst firing. However, the exact mechanisms underlying these effects are still unclear. Here, we develop a biophysical model of a dopamine neuron incorporating ion channel stochasticity that enabled the analysis of availability of ion channels in multiple states during spiking. We find that decreased firing regularity is primarily due to a significant decrease in the AHP that in turn resulted in a reduction in the fraction of available voltage-gated sodium channels due to insufficient recovery from inactivation. Our model further predicts that inhibition of SK channels results in a depolarisation of action potential threshold along with an increase in its variability.
Collapse
Affiliation(s)
- Rajeshwari Iyer
- MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK. .,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Aldo A Faisal
- MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK. .,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK. .,Department of Bioengineering, Imperial College London, London, United Kingdom. .,Department of Computing, Imperial College London, London, United Kingdom.
| |
Collapse
|
9
|
A Consistent Definition of Phase Resetting Using Hilbert Transform. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2017; 2017:5865101. [PMID: 28553658 PMCID: PMC5434474 DOI: 10.1155/2017/5865101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/09/2017] [Indexed: 12/22/2022]
Abstract
A phase resetting curve (PRC) measures the transient change in the phase of a neural oscillator subject to an external perturbation. The PRC encapsulates the dynamical response of a neural oscillator and, as a result, it is often used for predicting phase-locked modes in neural networks. While phase is a fundamental concept, it has multiple definitions that may lead to contradictory results. We used the Hilbert Transform (HT) to define the phase of the membrane potential oscillations and HT amplitude to estimate the PRC of a single neural oscillator. We found that HT's amplitude and its corresponding instantaneous frequency are very sensitive to membrane potential perturbations. We also found that the phase shift of HT amplitude between the pre- and poststimulus cycles gives an accurate estimate of the PRC. Moreover, HT phase does not suffer from the shortcomings of voltage threshold or isochrone methods and, as a result, gives accurate and reliable estimations of phase resetting.
Collapse
|
10
|
Huang CS, Wang GH, Tai CH, Hu CC, Yang YC. Antiarrhythmics cure brain arrhythmia: The imperativeness of subthalamic ERG K + channels in parkinsonian discharges. SCIENCE ADVANCES 2017; 3:e1602272. [PMID: 28508055 PMCID: PMC5425237 DOI: 10.1126/sciadv.1602272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
ERG K+ channels have long been known to play a crucial role in shaping cardiac action potentials and, thus, appropriate heart rhythms. The functional role of ERG channels in the central nervous system, however, remains elusive. We demonstrated that ERG channels exist in subthalamic neurons and have similar gating characteristics to those in the heart. ERG channels contribute crucially not only to the setting of membrane potential and, consequently, the firing modes, but also to the configuration of burst discharges and, consequently, the firing frequency and automaticity of the subthalamic neurons. Moreover, modulation of subthalamic discharges via ERG channels effectively modulates locomotor behaviors. ERG channel inhibitors ameliorate parkinsonian symptoms, whereas enhancers render normal animals hypokinetic. Thus, ERG K+ channels could be vital to the regulation of both cardiac and neuronal rhythms and may constitute an important pathophysiological basis and pharmacotherapeutic target for the growing list of neurological disorders related to "brain arrhythmias."
Collapse
Affiliation(s)
- Chen-Syuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Guan-Hsun Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Chang Hu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ya-Chin Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| |
Collapse
|
11
|
Canavier CC, Evans RC, Oster AM, Pissadaki EK, Drion G, Kuznetsov AS, Gutkin BS. Implications of cellular models of dopamine neurons for disease. J Neurophysiol 2016; 116:2815-2830. [PMID: 27582295 DOI: 10.1152/jn.00530.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
This review addresses the present state of single-cell models of the firing pattern of midbrain dopamine neurons and the insights that can be gained from these models into the underlying mechanisms for diseases such as Parkinson's, addiction, and schizophrenia. We will explain the analytical technique of separation of time scales and show how it can produce insights into mechanisms using simplified single-compartment models. We also use morphologically realistic multicompartmental models to address spatially heterogeneous aspects of neural signaling and neural metabolism. Separation of time scale analyses are applied to pacemaking, bursting, and depolarization block in dopamine neurons. Differences in subpopulations with respect to metabolic load are addressed using multicompartmental models.
Collapse
Affiliation(s)
- Carmen C Canavier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana;
| | - Rebekah C Evans
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Andrew M Oster
- Department of Mathematics, Eastern Washington University, Cheney, Washington
| | - Eleftheria K Pissadaki
- IBM T.J. Watson Research Center, Yorktown Heights, New York.,Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Guillaume Drion
- Department of Electrical Engineering and Computer Science, University of Liege, Liege, Belgium
| | - Alexey S Kuznetsov
- Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana
| | - Boris S Gutkin
- Group for Neural Theory, LNC INSERM U960, Département d'Études Cognitives, École Normale Supérieure PSL Research University, Paris, France.,Center for Cognition and Decision Making, NRU Higher School of Economics, Moscow, Russia; and
| |
Collapse
|
12
|
Brown PL, Shepard PD. Functional evidence for a direct excitatory projection from the lateral habenula to the ventral tegmental area in the rat. J Neurophysiol 2016; 116:1161-74. [PMID: 27358317 DOI: 10.1152/jn.00305.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/24/2016] [Indexed: 12/31/2022] Open
Abstract
The lateral habenula, a phylogenetically conserved epithalamic structure, is activated by aversive stimuli and reward omission. Excitatory efferents from the lateral habenula predominately inhibit midbrain dopamine neuronal firing through a disynaptic, feedforward inhibitory mechanism involving the rostromedial tegmental nucleus. However, the lateral habenula also directly targets dopamine neurons within the ventral tegmental area, suggesting that opposing actions may result from increased lateral habenula activity. In the present study, we tested the effect of habenular efferent stimulation on dopamine and nondopamine neurons in the ventral tegmental area of Sprague-Dawley rats using a parasagittal brain slice preparation. Single pulse stimulation of the fasciculus retroflexus excited 48% of dopamine neurons and 51% of nondopamine neurons in the ventral tegmental area of rat pups. These proportions were not altered by excision of the rostromedial tegmental nucleus and were evident in both cortical- and striatal-projecting dopamine neurons. Glutamate receptor antagonists blocked this excitation, and fasciculus retroflexus stimulation elicited evoked excitatory postsynaptic potentials with a nearly constant onset latency, indicative of a monosynaptic, glutamatergic connection. Comparison of responses in rat pups and young adults showed no significant difference in the proportion of neurons excited by fasciculus retroflexus stimulation. Our data indicate that the well-known, indirect inhibitory effect of lateral habenula activation on midbrain dopamine neurons is complemented by a significant, direct excitatory effect. This pathway may contribute to the role of midbrain dopamine neurons in processing aversive stimuli and salience.
Collapse
Affiliation(s)
- P Leon Brown
- Maryland Psychiatric Research Center, Catonsville, Maryland; and Department of Psychiatry, University of Maryland-Baltimore, Baltimore, Maryland
| | - Paul D Shepard
- Maryland Psychiatric Research Center, Catonsville, Maryland; and Department of Psychiatry, University of Maryland-Baltimore, Baltimore, Maryland
| |
Collapse
|
13
|
Paladini C, Tepper J. Neurophysiology of Substantia Nigra Dopamine Neurons: Modulation by GABA and Glutamate. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00017-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
14
|
Oster A, Faure P, Gutkin BS. Mechanisms for multiple activity modes of VTA dopamine neurons. Front Comput Neurosci 2015; 9:95. [PMID: 26283955 PMCID: PMC4516885 DOI: 10.3389/fncom.2015.00095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/05/2015] [Indexed: 11/20/2022] Open
Abstract
Midbrain ventral segmental area (VTA) dopaminergic neurons send numerous projections to cortical and sub-cortical areas, and diffusely release dopamine (DA) to their targets. DA neurons display a range of activity modes that vary in frequency and degree of burst firing. Importantly, DA neuronal bursting is associated with a significantly greater degree of DA release than an equivalent tonic activity pattern. Here, we introduce a single compartmental, conductance-based computational model for DA cell activity that captures the behavior of DA neuronal dynamics and examine the multiple factors that underlie DA firing modes: the strength of the SK conductance, the amount of drive, and GABA inhibition. Our results suggest that neurons with low SK conductance fire in a fast firing mode, are correlated with burst firing, and require higher levels of applied current before undergoing depolarization block. We go on to consider the role of GABAergic inhibition on an ensemble of dynamical classes of DA neurons and find that strong GABA inhibition suppresses burst firing. Our studies suggest differences in the distribution of the SK conductance and GABA inhibition levels may indicate subclasses of DA neurons within the VTA. We further identify, that by considering alternate potassium dynamics, the dynamics display burst patterns that terminate via depolarization block, akin to those observed in vivo in VTA DA neurons and in substantia nigra pars compacta (SNc) DA cell preparations under apamin application. In addition, we consider the generation of transient burst firing events that are NMDA-initiated or elicited by a sudden decrease of GABA inhibition, that is, disinhibition.
Collapse
Affiliation(s)
- Andrew Oster
- Department of Mathematics, Eastern Washington University Cheney, WA, USA ; Group for Neural Theory, LNC INSERM Unité 960, Département d'Études Cognitives, École Normale Supérieure Paris, France
| | - Philippe Faure
- Sorbonne Université, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U 1130, Université Pierre et Marie Curie Univ Paris, UM119 Paris, France
| | - Boris S Gutkin
- Group for Neural Theory, LNC INSERM Unité 960, Département d'Études Cognitives, École Normale Supérieure Paris, France ; Center for Cognition and Decision Making, National Research University Higher School of Economics Moscow, Russia
| |
Collapse
|
15
|
Forrest MD. Simulation of alcohol action upon a detailed Purkinje neuron model and a simpler surrogate model that runs >400 times faster. BMC Neurosci 2015; 16:27. [PMID: 25928094 PMCID: PMC4417229 DOI: 10.1186/s12868-015-0162-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 04/10/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND An approach to investigate brain function/dysfunction is to simulate neuron circuits on a computer. A problem, however, is that detailed neuron descriptions are computationally expensive and this handicaps the pursuit of realistic network investigations, where many neurons need to be simulated. RESULTS We confront this issue; we employ a novel reduction algorithm to produce a 2 compartment model of the cerebellar Purkinje neuron from a previously published, 1089 compartment model. It runs more than 400 times faster and retains the electrical behavior of the full model. So, it is more suitable for inclusion in large network models, where computational power is a limiting issue. We show the utility of this reduced model by demonstrating that it can replicate the full model's response to alcohol, which can in turn reproduce experimental recordings from Purkinje neurons following alcohol application. CONCLUSIONS We show that alcohol may modulate Purkinje neuron firing by an inhibition of their sodium-potassium pumps. We suggest that this action, upon cerebellar Purkinje neurons, is how alcohol ingestion can corrupt motor co-ordination. In this way, we relate events on the molecular scale to the level of behavior.
Collapse
Affiliation(s)
- Michael D Forrest
- Department of Computer Science, University of Warwick, Coventry, West Midlands, UK.
| |
Collapse
|
16
|
Yu N, Canavier CC. A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2015; 5:5. [PMID: 25852980 PMCID: PMC4385104 DOI: 10.1186/s13408-015-0017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Midbrain dopamine neurons exhibit a novel type of bursting that we call "inverted square wave bursting" when exposed to Ca(2+)-activated small conductance (SK) K(+) channel blockers in vitro. This type of bursting has three phases: hyperpolarized silence, spiking, and depolarization block. We find that two slow variables are required for this type of bursting, and we show that the three-dimensional bifurcation diagram for inverted square wave bursting is a folded surface with upper (depolarized) and lower (hyperpolarized) branches. The activation of the L-type Ca(2+) channel largely supports the separation between these branches. Spiking is initiated at a saddle node on an invariant circle bifurcation at the folded edge of the lower branch and the trajectory spirals around the unstable fixed points on the upper branch. Spiking is terminated at a supercritical Hopf bifurcation, but the trajectory remains on the upper branch until it hits a saddle node on the upper folded edge and drops to the lower branch. The two slow variables contribute as follows. A second, slow component of sodium channel inactivation is largely responsible for the initiation and termination of spiking. The slow activation of the ether-a-go-go-related (ERG) K(+) current is largely responsible for termination of the depolarized plateau. The mechanisms and slow processes identified herein may contribute to bursting as well as entry into and recovery from the depolarization block to different degrees in different subpopulations of dopamine neurons in vivo.
Collapse
Affiliation(s)
- Na Yu
- />Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112 USA
- />Department of Mathematics and Computer Science, Lawrence Technological University, 21000 West 10 Mile Road, Southfield, MI 48075 USA
| | - Carmen C. Canavier
- />Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112 USA
| |
Collapse
|
17
|
Implications of cellular models of dopamine neurons for schizophrenia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 123:53-82. [PMID: 24560140 DOI: 10.1016/b978-0-12-397897-4.00011-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Midbrain dopamine neurons are pacemakers in vitro, but in vivo they fire less regularly and occasionally in bursts that can lead to a temporary cessation in firing produced by depolarization block. The therapeutic efficacy of antipsychotic drugs used to treat the positive symptoms of schizophrenia has been attributed to their ability to induce depolarization block within a subpopulation of dopamine neurons. We summarize the results of experiments characterizing the physiological mechanisms underlying the ability of these neurons to enter depolarization block in vitro, and our computational simulations of those experiments. We suggest that the inactivation of voltage-dependent Na(+) channels, and, in particular, the slower component of this inactivation, is critical in controlling entry into depolarization block. In addition, an ether-a-go-related gene (ERG) K(+) current also appears to be involved by delaying entry into and speeding recovery from depolarization block. Since many antipsychotic drugs share the ability to block this current, ERG channels may contribute to the therapeutic effects of these drugs.
Collapse
|
18
|
D'Adamo MC, Catacuzzeno L, Di Giovanni G, Franciolini F, Pessia M. K(+) channelepsy: progress in the neurobiology of potassium channels and epilepsy. Front Cell Neurosci 2013; 7:134. [PMID: 24062639 PMCID: PMC3772396 DOI: 10.3389/fncel.2013.00134] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/06/2013] [Indexed: 12/19/2022] Open
Abstract
K(+) channels are important determinants of seizure susceptibility. These membrane proteins, encoded by more than 70 genes, make the largest group of ion channels that fine-tune the electrical activity of neuronal and non-neuronal cells in the brain. Their ubiquity and extremely high genetic and functional diversity, unmatched by any other ion channel type, place K(+) channels as primary targets of genetic variations or perturbations in K(+)-dependent homeostasis, even in the absence of a primary channel defect. It is therefore not surprising that numerous inherited or acquired K(+) channels dysfunctions have been associated with several neurologic syndromes, including epilepsy, which often generate confusion in the classification of the associated diseases. Therefore, we propose to name the K(+) channels defects underlying distinct epilepsies as "K(+) channelepsies," and introduce a new nomenclature (e.g., Kx.y-channelepsy), following the widely used K(+) channel classification, which could be also adopted to easily identify other channelopathies involving Na(+) (e.g., Nav x.y-phenotype), Ca(2+) (e.g., Cav x.y-phenotype), and Cl(-) channels. Furthermore, we discuss novel genetic defects in K(+) channels and associated proteins that underlie distinct epileptic phenotypes in humans, and analyze critically the recent progress in the neurobiology of this disease that has also been provided by investigations on valuable animal models of epilepsy. The abundant and varied lines of evidence discussed here strongly foster assessments for variations in genes encoding for K(+) channels and associated proteins in patients with idiopathic epilepsy, provide new avenues for future investigations, and highlight these proteins as critical pharmacological targets.
Collapse
Key Words
- Potassium channels: [Kv1, Kv2, Kv3, Kv4, Kv8, Kv11(HERG), KCa1.1, Kvβ1, Kvβ2, KChIP LGI1, Kir1-Kir7 (GIRK, KATP)]
- autism–epilepsy
- channelopathies
- temporal lobe epilepsy
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Faculty of Medicine, Section of Human Physiology, Department of Internal Medicine, University of Perugia Perugia, Italy ; Istituto Euro Mediterraneo di Scienza e Tecnologia, IEMEST Palermo, Italy
| | | | | | | | | |
Collapse
|
19
|
Ha J, Kuznetsov A. Interaction of NMDA receptor and pacemaking mechanisms in the midbrain dopaminergic neuron. PLoS One 2013; 8:e69984. [PMID: 23894569 PMCID: PMC3716766 DOI: 10.1371/journal.pone.0069984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/14/2013] [Indexed: 11/18/2022] Open
Abstract
Dopamine neurotransmission has been found to play a role in addictive behavior and is altered in psychiatric disorders. Dopaminergic (DA) neurons display two functionally distinct modes of electrophysiological activity: low- and high-frequency firing. A puzzling feature of the DA neuron is the following combination of its responses: N-methyl-D-aspartate receptor (NMDAR) activation evokes high-frequency firing, whereas other tonic excitatory stimuli (α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR) activation or applied depolarization) block firing instead. We suggest a new computational model that reproduces this combination of responses and explains recent experimental data. Namely, somatic NMDAR stimulation evokes high-frequency firing and is more effective than distal dendritic stimulation. We further reduce the model to a single compartment and analyze the mechanism of the distinct high-frequency response to NMDAR activation vs. other stimuli. Standard nullcline analysis shows that the mechanism is based on a decrease in the amplitude of calcium oscillations. The analysis confirms that the nonlinear voltage dependence provided by the magnesium block of the NMDAR determine its capacity to elevate the firing frequency. We further predict that the moderate slope of the voltage dependence plays the central role in the frequency elevation. Additionally, we suggest a repolarizing current that sustains calcium-independent firing or firing in the absence of calcium-dependent repolarizing currents. We predict that the ether-a-go-go current (ERG), which has been observed in the DA neuron, is the best fit for this critical role. We show that a calcium-dependent and a calcium-independent oscillatory mechanisms form a structure of interlocked negative feedback loops in the DA neuron. The structure connects research of DA neuron firing with circadian biology and determines common minimal models for investigation of robustness of oscillations, which is critical for normal function of both systems.
Collapse
Affiliation(s)
- Joon Ha
- Laboratory of Biological Modeling, The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Health, Bethesda, Maryland, United States of America
| | - Alexey Kuznetsov
- Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
20
|
Ji H, Tucker KR, Putzier I, Huertas MA, Horn JP, Canavier CC, Levitan ES, Shepard PD. Functional characterization of ether-à-go-go-related gene potassium channels in midbrain dopamine neurons - implications for a role in depolarization block. Eur J Neurosci 2012; 36:2906-16. [PMID: 22780096 PMCID: PMC4042402 DOI: 10.1111/j.1460-9568.2012.08190.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bursting activity by midbrain dopamine neurons reflects the complex interplay between their intrinsic pacemaker activity and synaptic inputs. Although the precise mechanism responsible for the generation and modulation of bursting in vivo has yet to be established, several ion channels have been implicated in the process. Previous studies with nonselective blockers suggested that ether-à-go-go-related gene (ERG) K(+) channels are functionally significant. Here, electrophysiology with selective chemical and peptide ERG channel blockers (E-4031 and rBeKm-1) and computational methods were used to define the contribution made by ERG channels to the firing properties of midbrain dopamine neurons in vivo and in vitro. Selective ERG channel blockade increased the frequency of spontaneous activity as well as the response to depolarizing current pulses without altering spike frequency adaptation. ERG channel block also accelerated entry into depolarization inactivation during bursts elicited by virtual NMDA receptors generated with the dynamic clamp, and significantly prolonged the duration of the sustained depolarization inactivation that followed pharmacologically evoked bursts. In vivo, somatic ERG blockade was associated with an increase in bursting activity attributed to a reduction in doublet firing. Taken together, these results show that dopamine neuron ERG K(+) channels play a prominent role in limiting excitability and in minimizing depolarization inactivation. As the therapeutic actions of antipsychotic drugs are associated with depolarization inactivation of dopamine neurons and blockade of cardiac ERG channels is a prominent side effect of these drugs, ERG channels in the central nervous system may represent a novel target for antipsychotic drug development.
Collapse
Affiliation(s)
- Huifang Ji
- Department of Psychiatry and the Maryland Psychiatry Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228
| | - Kristal R. Tucker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Ilva Putzier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Marco A. Huertas
- Department of Cell Biology and Anatomy and the Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - John P. Horn
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Carmen C. Canavier
- Department of Cell Biology and Anatomy and the Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Edwin S. Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Paul D. Shepard
- Department of Psychiatry and the Maryland Psychiatry Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228
| |
Collapse
|
21
|
Huertas MA, Ji H, Tucker K, Levitan E, Shepard PD, Canavier CC. The role of ERG current in pacemaking and bursting in dopamine neurons. BMC Neurosci 2011. [PMCID: PMC3240378 DOI: 10.1186/1471-2202-12-s1-p27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Oster AM, Gutkin BS. A reduced model of DA neuronal dynamics that displays quiescence, tonic firing and bursting. ACTA ACUST UNITED AC 2011; 105:53-8. [PMID: 21939761 DOI: 10.1016/j.jphysparis.2011.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/01/2011] [Accepted: 07/13/2011] [Indexed: 11/17/2022]
Abstract
Midbrain dopaminergic neurons send numerous projections to cortical and sub-cortical areas, and in a manner dependent upon their activities, diffusely release dopamine (DA) to their targets. Recent experimental studies have shown that DAergic neuronal bursting is associated with a significantly greater degree of DA release than an equivalent tonic activity pattern. Past computational models for DA cell activity relied upon somatodendritic mechanisms in order to generate DA neuronal bursting. However, recent experimental studies indicate that burst firing can be generated somatically with the dendrites silenced. These somatically induced bursts have characteristics consistent with normal bursting, suggesting that a single-compartmental model should be sufficient for generating the observed DA neuronal dynamics. In this work, we introduce such a model for DA neuronal dynamics and demonstrate that this model captures the qualitative behavior of DAergic neuronal dynamics: quiescence, tonic firing and bursting. In our conductance-based approach, the interplay between the L-type calcium and the calcium dependent SK potassium channel provides a scaffold for the underlying oscillation for the pacemaker-like firing patterns. The model includes terms which can selectively block the SK conductance, which would correspond to pharmacological manipulations using the drug apamin. Our modeling studies are in line with experimental evidence that a reduction of the SK conductance often induces DA neuronal bursting. Moreover, our model can reproduce findings that burst firing can be elicited via stimulus driven events, manifested by rises in the amount of NMDA. This model for DA cell activity could be further sculpted to include more detailed second messenger signaling processes in order to elucidate key differences between the two principal classes of midbrain DA neurons: those of the ventral tegmental area and the substantia nigra pars compacta.
Collapse
Affiliation(s)
- A M Oster
- Group for Neural Theory, LNC-INSERM Unité 960, Département d'Études Cognitives, École Normale Supérieure, 29 Rue d'Ulm, 75005 Paris, France.
| | | |
Collapse
|
23
|
Palma J, Versace M, Grossberg S. After-hyperpolarization currents and acetylcholine control sigmoid transfer functions in a spiking cortical model. J Comput Neurosci 2011; 32:253-80. [PMID: 21779754 DOI: 10.1007/s10827-011-0354-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 06/09/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
Recurrent networks are ubiquitous in the brain, where they enable a diverse set of transformations during perception, cognition, emotion, and action. It has been known since the 1970's how, in rate-based recurrent on-center off-surround networks, the choice of feedback signal function can control the transformation of input patterns into activity patterns that are stored in short term memory. A sigmoid signal function may, in particular, control a quenching threshold below which inputs are suppressed as noise and above which they may be contrast enhanced before the resulting activity pattern is stored. The threshold and slope of the sigmoid signal function determine the degree of noise suppression and of contrast enhancement. This article analyses how sigmoid signal functions and their shape may be determined in biophysically realistic spiking neurons. Combinations of fast, medium, and slow after-hyperpolarization (AHP) currents, and their modulation by acetylcholine (ACh), can control sigmoid signal threshold and slope. Instead of a simple gain in excitability that was previously attributed to ACh, cholinergic modulation may cause translation of the sigmoid threshold. This property clarifies how activation of ACh by basal forebrain circuits, notably the nucleus basalis of Meynert, may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract information, as predicted by Adaptive Resonance Theory.
Collapse
Affiliation(s)
- Jesse Palma
- Center for Adaptive Systems, Department of Cognitive and Neural Systems, and Center of Excellence for Learning in Education, Science, and Technology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
24
|
Drion G, Massotte L, Sepulchre R, Seutin V. How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons. PLoS Comput Biol 2011; 7:e1002050. [PMID: 21637742 PMCID: PMC3102759 DOI: 10.1371/journal.pcbi.1002050] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/28/2011] [Indexed: 11/23/2022] Open
Abstract
Midbrain dopaminergic neurons are endowed with endogenous slow pacemaking properties. In recent years, many different groups have studied the basis for this phenomenon, often with conflicting conclusions. In particular, the role of a slowly-inactivating L-type calcium channel in the depolarizing phase between spikes is controversial, and the analysis of slow oscillatory potential (SOP) recordings during the blockade of sodium channels has led to conflicting conclusions. Based on a minimal model of a dopaminergic neuron, our analysis suggests that the same experimental protocol may lead to drastically different observations in almost identical neurons. For example, complete L-type calcium channel blockade eliminates spontaneous firing or has almost no effect in two neurons differing by less than 1% in their maximal sodium conductance. The same prediction can be reproduced in a state of the art detailed model of a dopaminergic neuron. Some of these predictions are confirmed experimentally using single-cell recordings in brain slices. Our minimal model exhibits SOPs when sodium channels are blocked, these SOPs being uncorrelated with the spiking activity, as has been shown experimentally. We also show that block of a specific conductance (in this case, the SK conductance) can have a different effect on these two oscillatory behaviors (pacemaking and SOPs), despite the fact that they have the same initiating mechanism. These results highlight the fact that computational approaches, besides their well known confirmatory and predictive interests in neurophysiology, may also be useful to resolve apparent discrepancies between experimental results. Dopamine is a neurotransmitter which plays important roles in the control of voluntary movement, motivation and reward, attention, and learning. Dysfunction of midbrain dopaminergic systems is involved in various diseases such as Parkinson's disease, schizophrenia and drug abuse. This underlines the importance of a tight regulation of dopamine levels in the brain. At the cellular level, the release of dopamine is directly correlated to the type of electrical activity (the firing pattern) of nerve cells that produce it, the so-called “dopaminergic neurons”. Therefore, an in depth understanding of the mechanisms underlying the electrical behavior of dopaminergic neurons is of critical importance to find new strategies for the treatment of diseases that result from dysfunction of this system.
Collapse
Affiliation(s)
- Guillaume Drion
- Laboratory of Pharmacology and GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Laurent Massotte
- Laboratory of Pharmacology and GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Rodolphe Sepulchre
- Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Vincent Seutin
- Laboratory of Pharmacology and GIGA Neurosciences, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
25
|
A small-conductance Ca2+-dependent K+ current regulates dopamine neuron activity: a combined approach of dynamic current clamping and intracellular imaging of calcium signals. Neuroreport 2010; 21:667-74. [PMID: 20508546 DOI: 10.1097/wnr.0b013e32833add56] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To analyze the small-conductance calcium-dependent K current observed in dopaminergic neurons of the rat midbrain, we have developed a new dynamic current clamping method that incorporates recording of intracellular Ca levels. As reported earlier, blocking the small-conductance current with apamin shifted the firing modes of dopaminergic neurons and changed the firing rate and spike afterhyperpolarization. We modeled the kinetic properties of the current and assessed the model in a real-time computational system. Here, we show that the spike afterhyperpolarization is regulated by the small-conductance current, an effect that is observed in dopaminergic neurons. Thus, this current can effectively shape the autonomous firing patterns of dopaminergic neurons.
Collapse
|
26
|
Herrik KF, Christophersen P, Shepard PD. Pharmacological modulation of the gating properties of small conductance Ca2+-activated K+ channels alters the firing pattern of dopamine neurons in vivo. J Neurophysiol 2010; 104:1726-35. [PMID: 20660424 DOI: 10.1152/jn.01126.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA) neurons are autonomous pacemakers that occasionally fire bursts of action potentials, discharge patterns thought to reflect tonic and phasic DA signaling, respectively. Pacemaker activity depends on the concerted and cyclic interplay between intrinsic ion channels with small conductance Ca(2+)-activated K(+) (SK) channels playing an important role. Bursting activity is synaptically initiated but neither the transmitters nor the specific ion conductances involved have been definitively identified. Physiological and pharmacological regulation of SK channel Ca(2+) sensitivity has recently been demonstrated and could represent a powerful means of modulating the expression of tonic/phasic signaling in DA neurons in vivo. To test this premise, we characterized the effects of intravenous administration of the novel positive and negative SK channel modulators NS309 and NS8593, respectively, on the spontaneous activity of substantia nigra pars compacta DA neurons in anesthetized C57BL/6 mice. NS309, dose-dependently decreased DA cell firing rate, increased the proportion of regular firing cells, and eventually stopped spontaneous firing. By contrast, systemic administration of the negative SK channel modulator NS8593 increased firing rate and shifted the pattern toward increased irregularity/bursting; an effect similar to local application of the pore blocking peptide apamin. The altered firing patterns resulting from inhibiting SK currents persisted independently of changes in firing rates induced by administration of DA autoreceptor agonists/antagonists. We conclude that pharmacological modulation of SK channel Ca(2+)-sensitivity represents a powerful mechanism for switching DA neuron firing activity between tonic and phasic signaling modalities in vivo.
Collapse
Affiliation(s)
- Kjartan F Herrik
- H. Lundbeck, A/S, Department of Neurophysiology, Valby, Denmark.
| | | | | |
Collapse
|
27
|
Oprisan SA. Dopaminergic cells repolarization induced by calcium and Na+/K+ ATPase pumps. BMC Neurosci 2010. [PMCID: PMC3090852 DOI: 10.1186/1471-2202-11-s1-p148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Atalar F, Acuner TT, Cine N, Oncu F, Yesilbursa D, Ozbek U, Turkcan S. Two four-marker haplotypes on 7q36.1 region indicate that the potassium channel gene HERG1 (KCNH2, Kv11.1) is related to schizophrenia: a case control study. Behav Brain Funct 2010; 6:27. [PMID: 20507645 PMCID: PMC2890623 DOI: 10.1186/1744-9081-6-27] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 05/28/2010] [Indexed: 11/10/2022] Open
Abstract
Background The pathobiology of schizophrenia is still unclear. Its current treatment mainly depends on antipsychotic drugs. A leading adverse effect of these medications is the acquired long QT syndrome, which results from the blockade of cardiac HERG1 channels (human ether-a-go-go-related gene potassium channels 1) by antipsychotic agents. The HERG1 channel is encoded by HERG1 (KCNH2, Kv11.1) gene and is most highly expressed in heart and brain. Genetic variations in HERG1 predispose to acquired long QT syndrome. We hypothesized that the blockade of HERG1 channels by antipsychotics might also be significant for their therapeutic mode of action, indicating a novel mechanism in the pathogenesis of schizophrenia. Methods We genotyped four single nucleotide polymorphisms (SNPs) in 7q36.1 region (two SNPs, rs1805123 and rs3800779, located on HERG1, and two SNPs, rs885684 and rs956642, at the 3'-downstream intergenic region) and then performed single SNP and haplotype association analyses in 84 patients with schizophrenia and 74 healthy controls after the exclusion of individuals having prolonged or shortened QT interval on electrocardiogram. Results Our analyses revealed that both genotype and allele frequencies of rs3800779 (c.307+585G>T) were significantly different between populations (P = 0.023 and P = 0.018, respectively). We also identified that two previously undescribed four-marker haplotypes which are nearly allelic opposite of each other and located in chr7:150225599-150302147bp position encompassing HERG1 were either overrepresented (A-A-A-T, the at-risk haplotype, P = 0.0007) or underrepresented (C-A-C-G, the protective haplotype, P = 0.005) in patients compared to controls. Conclusions Our results indicate that the potassium channel gene HERG1 is related to schizophrenia. Our findings may also implicate the whole family of HERG channels (HERG1, HERG2 and HERG3) in the pathogenesis of psychosis and its treatment.
Collapse
Affiliation(s)
- Fatmahan Atalar
- Endocrinology Laboratory, Department of Growth, Development and Pediatric Endocrinology, Child Health Institute, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
29
|
Oprisan SA. Electrogenic calcium pump contributes to dopamine neuron repolarization. BMC Neurosci 2009. [DOI: 10.1186/1471-2202-10-s1-p30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Pessia M, Servettini I, Panichi R, Guasti L, Grassi S, Arcangeli A, Wanke E, Pettorossi VE. ERG voltage-gated K+ channels regulate excitability and discharge dynamics of the medial vestibular nucleus neurones. J Physiol 2008; 586:4877-90. [PMID: 18718985 PMCID: PMC2614050 DOI: 10.1113/jphysiol.2008.155762] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 08/14/2008] [Indexed: 11/08/2022] Open
Abstract
The discharge properties of the medial vestibular nucleus neurones (MVNn) critically depend on the activity of several ion channel types. In this study we show, immunohistochemically, that the voltage-gated K(+) channels ERG1A, ERG1B, ERG2 and ERG3 are highly expressed within the vestibular nuclei of P10 and P60 mice. The role played by these channels in the spike-generating mechanisms of the MVNn and in temporal information processing was investigated electrophysiologically from mouse brain slices, in vitro, by analysing the spontaneous discharge and the response to square-, ramp- and sinusoid-like intracellular DC current injections in extracellular and whole-cell patch-clamp studies. We show that more than half of the recorded MVNn were responsive to ERG channel block (WAY-123,398, E4031), displaying an increase in spontaneous activity and discharge irregularity. The response to step and ramp current injection was also modified by ERG block showing a reduction of first spike latency, enhancement of discharge rate and reduction of the slow spike-frequency adaptation process. ERG channels influence the interspike slope without affecting the spike shape. Moreover, in response to sinusoid-like current, ERG channel block caused frequency-dependent gain enhancement and phase-lead shift. Taken together, the data demonstrate that ERG channels control the excitability of MVNn, their discharge regularity and probably their resonance properties.
Collapse
Affiliation(s)
- Mauro Pessia
- Department of Internal Medicine, Section of Human Physiology, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Raschi E, Vasina V, Poluzzi E, De Ponti F. The hERG K+ channel: target and antitarget strategies in drug development. Pharmacol Res 2008; 57:181-95. [PMID: 18329284 DOI: 10.1016/j.phrs.2008.01.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 12/16/2022]
Abstract
The human ether-à-go-go related gene (hERG) K+ channel is of great interest for both basic researchers and clinicians because its blockade by drugs can lead to QT prolongation, which is a risk factor for torsades de pointes, a potentially life-threatening arrhythmia. A growing list of agents with "QT liability" have been withdrawn from the market or restricted in their use, whereas others did not even receive regulatory approval for this reason. Thus, hERG K+ channels have become a primary antitarget (i.e. an unwanted target) in drug development because their blockade causes potentially serious side effects. On the other hand, the recent identification and functional characterization of hERG K+ channels not only in the heart, but also in several other tissues (e.g. neurons, smooth muscle and cancer cells) may have far reaching implications for drug development for a possible exploitation of hERG as a target, especially in oncology and cardiology.
Collapse
Affiliation(s)
- Emanuel Raschi
- Department of Pharmacology, University of Bologna, Via Irnerio, 48, I-40126 Bologna BO, Bologna, Italy
| | | | | | | |
Collapse
|
33
|
Abstract
Antipsychotic drugs are thought to exert their therapeutic action by antagonizing dopamine receptors but are also known to produce side effects in the heart by inhibiting cardiac ether-a-go-go-related gene (ERG) K(+) channels. Recently, it has been discovered that the same channels are present in the brain, including midbrain dopamine neurons. ERG channels are most active after the cessation of intense electrical activity, and blockade of these channels prolongs plateau potentials in bursting dopamine neurons. This change in excitability would be expected to alter dopamine release. Therefore, the therapeutic action of antipsychotic drugs may depend on inhibition of both postsynaptic dopamine receptors and presynaptic ERG K(+) channels.
Collapse
Affiliation(s)
- Paul D Shepard
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA.
| | | | | |
Collapse
|