1
|
Lim WM, Chin EWM, Tang BL, Chen T, Goh ELK. WNK3 Maintains the GABAergic Inhibitory Tone, Synaptic Excitation and Neuronal Excitability via Regulation of KCC2 Cotransporter in Mature Neurons. Front Mol Neurosci 2021; 14:762142. [PMID: 34858138 PMCID: PMC8631424 DOI: 10.3389/fnmol.2021.762142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
The activation of chloride (Cl−)permeable gamma (γ)-aminobutyric acid type A(GABAA) receptors induces synaptic inhibition in mature and excitation in immature neurons. This developmental “switch” in GABA function controlled by its polarity depends on the postnatal decrease in intraneuronal Cl− concentration mediated by KCC2, a member of cation-chloride cotransporters (CCCs). The serine-threonine kinase WNK3 (With No Lysine [K]), is a potent regulator of all CCCs and is expressed in neurons. Here, we characterized the functions of WNK3 and its role in GABAergic signaling in cultured embryonic day 18 (E18) hippocampal neurons. We observed a decrease in WNK3 expression as neurons mature. Knocking down of WNK3 significantly hyperpolarized EGABA in mature neurons (DIV13–15) but had no effect on immature neurons (DIV6–8). This hyperpolarized EGABA in WNK3-deficient neurons was not due to the total expression of NKCC1 and KCC2, that remained unchanged. However, there was a reduction in phosphorylated KCC2 at the membrane, suggesting an increase in KCC2 chloride export activity. Furthermore, hyperpolarized EGABA observed in WNK3-deficient neurons can be reversed by the KCC2 inhibitor, VU024055, thus indicating that WNK3 acts through KCC2 to influence EGABA. Notably, WNK3 knockdown resulted in morphological changes in mature but not immature neurons. Electrophysiological characterization of WNK3-deficient mature neurons revealed reduced capacitances but increased intrinsic excitability and synaptic excitation. Hence, our study demonstrates that WNK3 maintains the “adult” GABAergic inhibitory tone in neurons and plays a role in the morphological development of neurons and excitability.
Collapse
Affiliation(s)
- Wee Meng Lim
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| | - Eunice W M Chin
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore.,Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Bor Luen Tang
- NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tingting Chen
- School of Pharmacy, Nantong University, Nantong, China
| | - Eyleen L K Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Patel AV, Codeluppi SA, Ervin KSJ, St-Denis MB, Choleris E, Bailey CDC. Developmental Age and Biological Sex Influence Muscarinic Receptor Function and Neuron Morphology within Layer VI of the Medial Prefrontal Cortex. Cereb Cortex 2021; 32:3137-3158. [PMID: 34864929 DOI: 10.1093/cercor/bhab406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/15/2023] Open
Abstract
Acetylcholine (ACh) neurotransmission within the medial prefrontal cortex (mPFC) plays an important modulatory role to support mPFC-dependent cognitive functions. This role is mediated by ACh activation of its nicotinic (nAChR) and muscarinic (mAChR) classes of receptors, which are both present on mPFC layer VI pyramidal neurons. While the expression and function of nAChRs have been characterized thoroughly for rodent mPFC layer VI neurons during postnatal development, mAChRs have not been characterized in detail. We employed whole-cell electrophysiology with biocytin filling to demonstrate that mAChR function is greater during the juvenile period of development than in adulthood for both sexes. Pharmacological experiments suggest that each of the M1, M2, and M3 mAChR subtypes contributes to ACh responses in these neurons in a sex-dependent manner. Analysis of dendrite morphology identified effects of age more often in males, as the amount of dendrite matter was greatest during the juvenile period. Interestingly, a number of positive correlations were identified between the magnitude of ACh/mAChR responses and dendrite morphology in juvenile mice that were not present in adulthood. To our knowledge, this work describes the first detailed characterization of mAChR function and its correlation with neuron morphology within layer VI of the mPFC.
Collapse
Affiliation(s)
- Ashutosh V Patel
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Sierra A Codeluppi
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kelsy S J Ervin
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Myles B St-Denis
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Craig D C Bailey
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Segal M. Calcium stores regulate excitability in cultured rat hippocampal neurons. J Neurophysiol 2018; 120:2694-2705. [PMID: 30230988 DOI: 10.1152/jn.00447.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Extracellular calcium ions support synaptic activity but also reduce excitability of central neurons. In the present study, the effect of calcium on excitability was explored in cultured hippocampal neurons. CaCl2 injected by pressure in the vicinity of a neuron that is bathed only in MgCl2 as the main divalent cation caused a depolarizing shift in action potential threshold and a reduction in excitability. This effect was not seen if the intracellular milieu consisted of Cs+ instead of K-gluconate as the main cation or when it contained ruthenium red, which blocks release of calcium from stores. The suppression of excitability by calcium was mimicked by caffeine, and calcium store antagonists cyclopiazonic acid or thapsigargin blocked this action. Neurons taken from synaptopodin-knockout mice show significantly reduced efficacy of calcium modulation of action potential threshold. Likewise, in Orai1 knockdown cells, calcium is less effective in modulating excitability of neurons. Activation of small-conductance K (SK) channels increased action potential threshold akin to that produced by calcium ions, whereas blockade of SK channels but not big K channels reduced the threshold for action potential discharge. These results indicate that calcium released from stores may suppress excitability of central neurons. NEW & NOTEWORTHY Extracellular calcium reduces excitability of cultured hippocampal neurons. This effect is mediated by calcium-gated potassium currents, possibly small-conductance K channels. Release of calcium from internal stores mimics the effect of extracellular calcium. It is proposed that calcium stores modulate excitability of central neurons.
Collapse
Affiliation(s)
- Menahem Segal
- Department of Neurobiology, The Weizmann Institute , Rehovot , Israel
| |
Collapse
|