1
|
Che X, Bai Y, Cai J, Liu Y, Li Y, Yin M, Xu T, Wu C, Yang J. Hippocampal neurogenesis interferes with extinction and reinstatement of methamphetamine-associated reward memory in mice. Neuropharmacology 2021; 196:108717. [PMID: 34273388 DOI: 10.1016/j.neuropharm.2021.108717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/16/2022]
Abstract
Drugs of abuse, including morphine and cocaine, can reduce hippocampal neurogenesis (HN). Whereas promotion of HN is being increasingly recognized as a promising strategy for treating morphine and cocaine addiction. The present study is focused on exploring the changes of HN during methamphetamine (METH) administration and further clarify if HN is involved in METH-associated reward memory. After successfully establishing the conditioned place preference (CPP) paradigm to simulate the METH-associated reward memory in C57BL/6 mice, we observed that HN was significantly inhibited during METH (2 mg/kg, i. p.) administration and returned to normal after the extinction of METH CPP, as indicated by the immunostaining of bromodeoxyuridine (BrdU) and doublecortin (DCX) in the hippocampus. To promote/inhibit HN levels, 7,8-dihydroxyflavone (DHF), a small tyrosine kinase receptor B (TrkB) agonist and temozolomide (TMZ), an alkylating agent, were administered intraperitoneally (i.p.), respectively. The data showed that either DHF (5 mg/kg, i. p.) or TMZ (25 mg/kg, i. p.) pre-treatment before METH administration could significantly prolong extinction and enhance reinstatement of the reward memory. Notably, DHF treatment after METH administration significantly facilitated extinction and inhibited METH reinstatement, while TMZ treatment resulted in opposite effects. The present study indicated that METH administration could induce a temporal inhibitory effect on HN. More importantly, promotion of HN after the acquisition of METH-associated reward memory, but not inhibition of HN or promotion of HN before the acquisition of reward memory, could facilitate METH extinction and inhibit METH reinstatement, indicating the beneficial effect of HN on METH addiction by erasing the according reward memory.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yijun Bai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yuting Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Meixue Yin
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Tianyu Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
2
|
Effects of classical PKC activation on hippocampal neurogenesis and cognitive performance: mechanism of action. Neuropsychopharmacology 2021; 46:1207-1219. [PMID: 33335309 PMCID: PMC8115324 DOI: 10.1038/s41386-020-00934-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022]
Abstract
Hippocampal neurogenesis has widely been linked to memory and learning performance. New neurons generated from neural stem cells (NSC) within the dentate gyrus of the hippocampus (DG) integrate in hippocampal circuitry participating in memory tasks. Several neurological and neuropsychiatric disorders show cognitive impairment together with a reduction in DG neurogenesis. Growth factors secreted within the DG promote neurogenesis. Protein kinases of the protein kinase C (PKC) family facilitate the release of several of these growth factors, highlighting the role of PKC isozymes as key target molecules for the development of drugs that induce hippocampal neurogenesis. PKC activating diterpenes have been shown to facilitate NSC proliferation in neurogenic niches when injected intracerebroventricularly. We show in here that long-term administration of diterpene ER272 promotes neurogenesis in the subventricular zone and in the DG of mice, affecting neuroblasts differentiation and neuronal maturation. A concomitant improvement in learning and spatial memory tasks performance can be observed. Insights into the mechanism of action reveal that this compound facilitates classical PKCα activation and promotes transforming growth factor alpha (TGFα) and, to a lesser extent, neuregulin release. Our results highlight the role of this molecule in the development of pharmacological drugs to treat neurological and neuropsychiatric disorders associated with memory loss and a deficient neurogenesis.
Collapse
|
3
|
Lunardi P, Mansk LMZ, Jaimes LF, Pereira GS. On the novel mechanisms for social memory and the emerging role of neurogenesis. Brain Res Bull 2021; 171:56-66. [PMID: 33753208 DOI: 10.1016/j.brainresbull.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Social memory (SM) is a key element in social cognition and it encompasses the neural representation of conspecifics, an essential information to guide behavior in a social context. Here we evaluate classical and cutting-edge studies on neurobiology of SM, using as a guiding principle behavioral tasks performed in adult rodents. Our review highlights the relevance of the hippocampus, especially the CA2 region, as a neural substrate for SM and suggest that neural ensembles in the olfactory bulb may also encode SM traces. Compared to other hippocampus-dependent memories, much remains to be done to describe the neurobiological foundations of SM. Nonetheless, we argue that special attention should be paid to neurogenesis. Finally, we pinpoint the remaining open question on whether the hippocampal adult neurogenesis acts through pattern separation to permit the discrimination of highly similar stimuli during behavior.
Collapse
Affiliation(s)
- Paula Lunardi
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Rodríguez-Iglesias N, Sierra A, Valero J. Rewiring of Memory Circuits: Connecting Adult Newborn Neurons With the Help of Microglia. Front Cell Dev Biol 2019; 7:24. [PMID: 30891446 PMCID: PMC6411767 DOI: 10.3389/fcell.2019.00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/08/2019] [Indexed: 12/16/2022] Open
Abstract
New neurons are continuously generated from stem cells and integrated into the adult hippocampal circuitry, contributing to memory function. Several environmental, cellular, and molecular factors regulate the formation of new neurons, but the mechanisms that govern their incorporation into memory circuits are less explored. Herein we will focus on microglia, the resident immune cells of the CNS, which modulate the production of new neurons in the adult hippocampus and are also well suited to participate in their circuit integration. Microglia may contribute to the refinement of brain circuits during development and exert a role in physiological and pathological conditions by regulating axonal and dendritic growth; promoting the formation, elimination, and relocation of synapses; modulating excitatory synaptic maturation; and participating in functional synaptic plasticity. Importantly, microglia are able to sense subtle changes in their environment and may use this information to differently modulate hippocampal wiring, ultimately impacting on memory function. Deciphering the role of microglia in hippocampal circuitry constant rewiring will help to better understand the influence of microglia on memory function.
Collapse
Affiliation(s)
- Noelia Rodríguez-Iglesias
- Laboratory of Glial Cell Biology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Amanda Sierra
- Laboratory of Glial Cell Biology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| | - Jorge Valero
- Laboratory of Glial Cell Biology, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|