1
|
Wu Z, Jiang J, Lischka FW, Zhao K. Is the mouse nose a miniature version of a rat nose? A computational comparative study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108282. [PMID: 38878359 DOI: 10.1016/j.cmpb.2024.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Although the mouse is a widely used animal model in biomedical research, there are few published studies on its nasal aerodynamics, potentially due to its small size. It is not appropriate to assume that mice and rats' nasal structure and airflow characteristics are the same because the ratio of nasal surface area to nasal volume and body weight is much higher in a mouse than in a rat. The aim of this work is to use anatomically accurate image-based computational fluid dynamic modeling to quantitatively reveal the characteristics of mouse nasal airflow and mass transport that haven't been detailed before and find key differences to that of rat nose, which will deepen our understanding of the mouse's physiological functions. METHODS We created an anatomically accurate 3D computational nasal model of a B6 mouse using postmortem high-resolution micro-CT scans and simulated the airflow distribution and odor transport patterns under restful breathing conditions. The deposition pattern of airborne particles was also simulated and validated against experimental data. In addition, we calculated the gas chromatograph efficiency of odor transport in the mouse employing the theoretical plate concept and compared it with previous studies involving cat and rat models. RESULTS Similar to the published rat model, respiratory and olfactory flow regimes are clearly separated in the mouse nasal cavity. A high-speed dorsal medial (DM) stream was observed, which enhances the delivery speed and efficiency of odor to the ethmoid (olfactory) recess (ER). The DM stream split into axial and secondary paths in the ER. However, the secondary flow in the mouse is less extensive than in the rat. The gas chromatograph efficiency calculations suggest that the rat may possess a moderately higher odorant transport efficiency than that of the mouse due to its more complex ethmoid recess structure and extensive secondary flow. However, the mouse's nasal structure seems to adapt better to varying airflow velocity. CONCLUSIONS Due to the inherent structural disparities, the rat and mouse models exhibit moderate differences in airflow and mass transport patterns, potentially impacting their olfaction and other behavioral habits.
Collapse
Affiliation(s)
- Zhenxing Wu
- Department of Otolaryngology-Head & Neck Surgery, the Ohio State University, 915 Olentangy River Road, Columbus, OH 43212, United States of America
| | - Jianbo Jiang
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Fritz W Lischka
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Kai Zhao
- Department of Otolaryngology-Head & Neck Surgery, the Ohio State University, 915 Olentangy River Road, Columbus, OH 43212, United States of America.
| |
Collapse
|
2
|
Kim S, Mukherjee S, Fonollosa J, Hu DL. Canine-inspired Unidirectional Flows for Improving Memory Effects in Machine Olfaction. Integr Comp Biol 2023; 63:332-342. [PMID: 37186165 DOI: 10.1093/icb/icad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
A dog's nose differs from a human's in that air does not change direction but flows in a unidirectional path from inlet to outlet. Previous simulations showed that unidirectional flow through a dog's complex nasal passageways creates stagnant zones of trapped air. We hypothesize that these zones give the dog a "physical memory," which it may use to compare recent odors to past ones. In this study, we conducted experiments with our previously built Gaseous Recognition Oscillatory Machine Integrating Technology (GROMIT) and performed corresponding simulations in two dimensions. We compared three settings: a control setting that mimics the bidirectional flow of the human nose; a short-circuit setting where odors exit before reaching the sensors; and a unidirectional configuration using a dedicated inlet and outlet that mimics the dog's nose. After exposure to odors, the sensors in the unidirectional setting showed the slowest return to their baseline level, indicative of memory effects. Simulations showed that both short-circuit and unidirectional flows created trapped recirculation zones, which slowed the release of odors from the chamber. In the future, memory effects such as the ones found here may improve the sensitivity and utility of electronic noses.
Collapse
Affiliation(s)
- Soohwan Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sandeepan Mukherjee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jordi Fonollosa
- B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - David L Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Flamm J, Hartung S, Gänger S, Maigler F, Pitzer C, Schindowski K. Establishment of an Olfactory Region-specific Intranasal Delivery Technique in Mice to Target the Central Nervous System. Front Pharmacol 2022; 12:789780. [PMID: 35082672 PMCID: PMC8785418 DOI: 10.3389/fphar.2021.789780] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
We have recently developed a region-specific catheter-based intranasal application method in mice by using CT scan-based 3D cast models of the murine nose (DOI: 10.2376/0005-9366-17,102). This technique is able to specifically deliver drugs to the olfactory region or to the respiratory region only. Thereby, intranasally administered drugs could be delivered either via neuronal connections to the central nervous system or via the well-perfused rostral parts of the nasal mucosa to the systemic circulation. In the present study, we transferred successfully this novel delivery technique to C57Bl/6 mice and determined parameters such as insertions depth of the catheter and maximum delivery volume in dependence to the weight of the mouse. Breathing was simulated to verify that the volume remains at the targeted area. A step-by-step procedure including a video is presented to adopt this technique for standardized and reproducible intranasal central nervous system (CNS) delivery studies (DOI: 10.3390/pharmaceutics13111904).
Collapse
Affiliation(s)
- Johannes Flamm
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany.,Faculty of Natural Science, University of Ulm, Ulm, Germany
| | - Sunniva Hartung
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany
| | - Stella Gänger
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany.,Medical Faculty, University of Ulm, Ulm, Germany
| | - Frank Maigler
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany.,Faculty of Natural Science, University of Ulm, Ulm, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany
| |
Collapse
|
4
|
Coppola DM. The sorption/chromatography hypothesis of olfactory discrimination: The rise, fall, and rebirth of a Phoenix. Bioessays 2022; 44:e2100263. [PMID: 34984707 DOI: 10.1002/bies.202100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022]
Abstract
Herein, I discuss the enduring mystery of the receptor layout in the vertebrate olfactory system. Since the awarding of the 2004 Nobel Prize to Axel and Buck for their discovery of the gene family that encodes olfactory receptors, our field has enjoyed a golden era. Despite this Renaissance, an answer to one of the most fundamental questions for any sensory system-what is the anatomical logic of its receptor array?-eludes us, still, for olfaction! Indeed, the only widely debated hypothesis, finding its origins in the musing of another Nobel laureate Sir Edgar Adrian, has it that the vertebrate nose organizes its receptors according to the "sorptive" properties of their ligands. This idea, known as the "sorption" or "chromatography" hypothesis, enjoys considerable support despite being controversial. Here, I review the history of the hypothesis-its rises and falls-and discuss the latest data and future prospects for this perennial idea whose history I liken to the mythical Phoenix.
Collapse
Affiliation(s)
- David M Coppola
- Department of Biology, Randolph-Macon College, Ashland, Virginia, 23005, USA
| |
Collapse
|
5
|
Pellegrino R, Hörberg T, Olofsson J, Luckett CR. Duality of Smell: Route-Dependent Effects on Olfactory Perception and Language. Chem Senses 2021; 46:6278057. [PMID: 34007980 DOI: 10.1093/chemse/bjab025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Olfactory research in humans has largely focused on odors perceived via sniffing, orthonasal olfaction, whereas odors perceived from the mouth, retronasal olfaction, are less well understood. Prior work on retronasally presented odors involves animal models and focus mainly on odor sensitivity, but little is known about retronasal olfactory perception and cognition in humans. In this study, we compared orthonasal and retronasal odor presentation routes to investigate differences in odor descriptions and evaluations. Thirty-six individuals participated in a within-subjects study using twelve odors (varying in pleasantness and edibility) in perceptual and semantic tasks. Orthonasal presentation was associated with a better ability to identify odors, and with more concrete (and source-based) language. Exploratory analyses revealed that whereas orthonasal odors were described with words that had visual associations, retronasal odors were described with words that had interoceptive associations. Interestingly, these route-dependent differences in descriptor usage were not explained by differences in sensitivity and intensity, suggesting instead a cognitive and linguistic processing difference between odors presented orthonasally and retronasally. Our results indicate that olfaction is, in fact, a dual sense, in which the routes change the perception of an odor.
Collapse
Affiliation(s)
- Robert Pellegrino
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, Tennessee, USA
| | - Thomas Hörberg
- Gösta Ekman Laboratory, Department of Psychology Stockholm University, Frescati hagväg 9, Stockholm, Sweden.,Department of Linguistics, Stockholm University, Universitetsvägen 10C, 114 18 Stockholm, Sweden
| | - Jonas Olofsson
- Gösta Ekman Laboratory, Department of Psychology Stockholm University, Frescati hagväg 9, Stockholm, Sweden
| | - Curtis R Luckett
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, Tennessee, USA
| |
Collapse
|
6
|
Fitzwater E, Coppola DM. Olfactory Deprivation and Enrichment: An Identity of Opposites? Chem Senses 2020; 46:5939855. [PMID: 33103187 DOI: 10.1093/chemse/bjaa071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of deprivation and enrichment on the electroolfactogram of mice were studied through the paradigms of unilateral naris occlusion and odor induction, respectively. Deprivation was shown to cause an increase in electroolfactogram amplitudes after 7 days. We also show that unilateral naris occlusion is not detrimental to the gross anatomical appearance or electroolfactogram of either the ipsilateral or contralateral olfactory epithelium even after year-long survival periods, consistent with our previous assumptions. Turning to induction, the increase in olfactory responses after a period of odor enrichment, could not be shown in CD-1 outbred mice for any odorant tried. However, consistent with classical studies, it was evident in C57BL/6J inbred mice, which are initially insensitive to isovaleric acid. As is the case for deprivation, enriching C57BL/6J mice with isovaleric acid causes an increase in their electroolfactogram response to this odorant over time. In several experiments on C57BL/6J mice, the odorant specificity, onset timing, recovery timing, and magnitude of the induction effect were studied. Considered together, the current findings and previous work from the laboratory support the counterintuitive conclusion that both compensatory plasticity in response to deprivation and induction in response to odor enrichment are caused by the same underlying homeostatic mechanism, the purpose of which is to preserve sensory information flow no matter the odorant milieu. This hypothesis, the detailed evidence supporting it, and speculations concerning human odor induction are discussed.
Collapse
Affiliation(s)
- Emily Fitzwater
- Department of Biology, Randolph-Macon College, Ashland, VA, USA
| | - David M Coppola
- Department of Biology, Randolph-Macon College, Ashland, VA, USA
| |
Collapse
|
7
|
Mast TG, Zuk K, Rinke A, Quasem K, Savard B, Brobbey C, Reiss J, Dryden M. Temporary Anosmia in Mice Following Nasal Lavage With Dilute Detergent Solution. Chem Senses 2020; 44:639-648. [PMID: 31363734 DOI: 10.1093/chemse/bjz047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Olfactory sensory deprivation induces anosmia and reduces tyrosine hydroxylase and dopamine levels in the olfactory bulb. The behavioral consequences specific to the loss of olfactory bulb dopamine are difficult to determine because sensory deprivation protocols are either confounded by side effects or leave the animal anosmic. A new method to both induce sensory deprivation and to measure the behavioral and circuit consequences is needed. We developed a novel, recoverable anosmia protocol using nasal lavage with a dilute detergent solution. Detergent treatment did not damage the olfactory epithelium as measured by scanning electron microscopy, alcian blue histology, and acetylated tubulin immunohistochemistry. One treatment-induced anosmia that lasted 24 to 48 h. Three treatments over 5 days reduced olfactory bulb tyrosine hydroxylase and dopamine levels indicating that anosmia persists between treatments. Importantly, even with multiple treatments, olfactory ability recovered within 48 h. This is the first report of a sensory deprivation protocol that induces recoverable anosmia and can be paired with biochemical, histological, and behavioral investigations of olfaction.
Collapse
Affiliation(s)
- Thomas Gerald Mast
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA.,Neuroscience Interdisciplinary Program, Eastern Michigan University, Ypsilanti, MI, USA
| | - Kelsey Zuk
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Andrew Rinke
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Khaleel Quasem
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA.,Neuroscience Interdisciplinary Program, Eastern Michigan University, Ypsilanti, MI, USA
| | - Bradley Savard
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA.,Neuroscience Interdisciplinary Program, Eastern Michigan University, Ypsilanti, MI, USA
| | - Charles Brobbey
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Jacob Reiss
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Michael Dryden
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| |
Collapse
|
8
|
Lemons K, Fu Z, Ogura T, Lin W. TRPM5-expressing Microvillous Cells Regulate Region-specific Cell Proliferation and Apoptosis During Chemical Exposure. Neuroscience 2020; 434:171-190. [PMID: 32224228 DOI: 10.1016/j.neuroscience.2020.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
The mammalian main olfactory epithelium (MOE) is exposed to a wide spectrum of external chemicals during respiration and relies on adaptive plasticity to maintain its structural and functional integrity. We previously reported that the chemo-responsive and cholinergic transient receptor potential channel M5 (TRPM5)-expressing-microvillous cells (MCs) in the MOE are required for maintaining odor-evoked electrophysiological responses and olfactory-guided behavior during two-week exposure to an inhaled chemical mixture. Here, we investigated the underlying factors by assessing the potential modulatory effects of TRPM5-MCs on MOE morphology and cell proliferation and apoptosis, which are important for MOE maintenance. In the posterior MOE of TRPM5-GFP mice, we found that two-week chemical exposure induced a significant increase in Ki67-expressing proliferating basal stem cells without a significant reduction in the thickness of the whole epithelium or mature olfactory sensory neuron (OSN) layer. This adaptive increase in stem cell proliferation was missing in chemical-exposed transcription factor Skn-1a knockout (Skn-1a-/-) mice lacking TRPM5-MCs. In addition, a greater number of isolated OSNs from chemical-exposed Skn-1a-/- mice displayed unhealthily high levels of resting intracellular Ca2+. Intriguingly, in the anterior MOE where we found a higher density of TRPM5-MCs, chemical-exposed TRPM5-GFP mice exhibited a time-dependent increase in apoptosis and a loss of mature OSNs without a significant increase in proliferation or neurogenesis to compensate for OSN loss. Together, our data suggest that TRPM5-MC-dependent region-specific upregulation of cell proliferation in the majority of the MOE during chemical exposure contributes to the adaptive maintenance of OSNs and olfactory function.
Collapse
Affiliation(s)
- Kayla Lemons
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Ziying Fu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
9
|
Smith TD, Craven BA, Engel SM, Bonar CJ, DeLeon VB. Nasal airflow in the pygmy slow loris ( Nycticebus pygmaeus) based on a combined histological, computed tomographic and computational fluid dynamics methodology. ACTA ACUST UNITED AC 2019; 222:jeb.207605. [PMID: 31712355 DOI: 10.1242/jeb.207605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023]
Abstract
'Macrosmatic' mammals have dedicated olfactory regions within their nasal cavity and segregated airstreams for olfaction and respiratory air-conditioning. Here, we examined the 3D distribution of olfactory surface area (SA) and nasal airflow patterns in the pygmy slow loris (Nycticebus pygmaeus), a primate with primitive nasal cavities, except for enlarged eyes that converge upon the posterodorsal nasal region. Using the head of an adult loris cadaver, we co-registered micro-computed tomography (CT) slices and histology sections to create a 3D reconstruction of the olfactory mucosa distribution. Histological sections were used to measure olfactory surface area and to annotate CT reconstructions. The loris has a complex olfactory recess (∼19% of total nasal SA) with multiple olfactory turbinals. However, the first ethmoturbinal has a rostral projection that extends far anterior to the olfactory recess, lined by ∼90% non-olfactory epithelium. Only one (of three) frontoturbinals bears olfactory mucosa. Computational fluid dynamics simulations of nasal airflow and odorant deposition revealed that there is some segregation of respiratory and olfactory flow in the loris nose, but that it is not as distinct as in well-studied 'macrosmats' (e.g. the dog). In the loris, airflow is segregated medially and laterally to vertically elongated, plate-like first ethmoturbinals. Thus, lorises may be said to have certain macrosmatic anatomical characteristics (e.g. olfactory recess), but not segregated nasal airflow patterns that are optimized for olfaction, as in canids. These results imply that a binary 'microsmatic/macrosmatic' dichotomy does not exist. Rather, mammals appear to exhibit complex trends with respect to specialization of the turbinals and recesses.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA 16057, USA
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Serena M Engel
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA 16057, USA
| | | | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Coppola DM, Fitzwater E, Rygg AD, Craven BA. Tests of the chromatographic theory of olfaction with highly soluble odors: a combined electro-olfactogram and computational fluid dynamics study in the mouse. Biol Open 2019; 8:bio.047217. [PMID: 31649069 PMCID: PMC6826284 DOI: 10.1242/bio.047217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The idea that the vertebrate nasal cavity operates like a gas chromatograph to separate and discriminate odors, referred to herein as the ‘chromatographic theory’ (CT), has a long and interesting history. Though the last decade has seen renewed interest in the notion, its validity remains in question. Here we examine a necessary condition of the theory: a correlation between nasal odor deposition patterns based on mucus solubility and the distribution of olfactory sensory neuron odotypes. Our recent work in the mouse failed to find such a relationship even across large sorption gradients within the olfactory epithelium (OE). However, these studies did not test extremely soluble odorants or low odor concentrations, factors that could explain our inability to find supporting evidence for the CT. The current study combined computational fluid dynamics (CFD) simulations of odor sorption patterns and electro-olfactogram (EOG) measurements of olfactory sensory neuron responses. The odorants tested were at the extremes of mucus solubility and at a range of concentrations. Results showed no relationship between local odor sorption patterns and EOG response maps. Together, results again failed to support a necessary condition of the CT casting further doubt on the viability of this classical odor coding mechanism. Summary: This paper casts doubt on the classical chromatographic theory of olfaction, showing there is no correlation between olfactory receptor spatial layout and odor solubility patterns, a necessary condition of the theory.
Collapse
Affiliation(s)
- David M Coppola
- Department of Biology, Randolph-Macon College, Ashland, VA 23005, USA
| | - Emily Fitzwater
- Department of Biology, Randolph-Macon College, Ashland, VA 23005, USA
| | - Alex D Rygg
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095, USA
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Coppola DM, White LE. Forever young: Neoteny, neurogenesis and a critique of critical periods in olfaction. J Bioenerg Biomembr 2018; 51:53-63. [PMID: 30421031 DOI: 10.1007/s10863-018-9778-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
The critical period concept has been one of the most transcendent in science, education, and society forming the basis of our fixation on 'quality' of childhood experiences. The neural basis of this process has been revealed in developmental studies of visual, auditory and somatosensory maps and their enduring modification through manipulations of experience early in life. Olfaction, too, possesses a number of phenomena that share key characteristics with classical critical periods like sensitive temporal windows and experience dependence. In this review, we analyze the candidate critical period-like phenomena in olfaction and find them disanalogous to classical critical periods in other sensory systems in several important ways. This leads us to speculate as to why olfaction may be alone among exteroceptive systems in lacking classical critical periods and how life-long neurogenesis of olfactory sensory neurons and bulbar interneurons-a neotenic vestige-- relates to the structure and function of the mammalian olfactory system.
Collapse
Affiliation(s)
- David M Coppola
- Department of Biology, Randolph Macon College, Ashland, VA, 23005, USA.
| | - Leonard E White
- Department of Neurology, Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC, 27708, USA
| |
Collapse
|