1
|
Banke TG, Traynelis SF, Barria A. Early expression of GluN2A-containing NMDA receptors in a model of fragile X syndrome. J Neurophysiol 2024; 131:768-777. [PMID: 38380828 PMCID: PMC11254340 DOI: 10.1152/jn.00406.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
NMDA-type glutamate receptors (NMDARs) play a crucial role in synaptogenesis, circuit development, and synaptic plasticity, serving as fundamental components in cellular models of learning and memory. Their dysregulation has been implicated in several neurological disorders and synaptopathies. NMDARs are heterotetrameric complexes composed of two GluN1 and two GluN2 subunits. The composition of GluN2 subunits determines the main biophysical properties of the channel, such as calcium permeability and gating kinetics, and influences the ability of the receptor to interact with postsynaptic proteins involved in normal synaptic physiology and plasticity, including scaffolding proteins and signaling molecules. During early development, NMDARs in the forebrain contain solely the GluN2B subunit, a necessary subunit for proper synaptogenesis and synaptic plasticity. As the animal matures, the expression of the GluN2A subunit increases, leading to a partial replacement of GluN2B-containing synaptic NMDARs with GluN2A-containing receptors. The switch in the synaptic GluN2A-to-GluN2B ratio has a significant impact on the kinetics of excitatory postsynaptic currents and diminishes the synaptic plasticity capacity. In this study, we present findings indicating that GluN2A expression occurs earlier in a mouse model of fragile X syndrome (FXS). This altered timing of GluN2A expression affects various important parameters of NMDAR-mediated excitatory postsynaptic currents, including maximal current amplitude, decay time, and response to consecutive stimuli delivered in close temporal proximity. These observations suggest that the early expression of GluN2A during a critical period when synapses and circuits are developing could be an underlying factor contributing to the formation of pathological circuits in the FXS mouse model.NEW & NOTEWORTHY NMDA receptors (NMDARs) play important roles in synaptic transmission and are involved in multiple neurological disorders. During development, GluN2A in the forebrain becomes incorporated into previously GluN2B-dominated NMDARs, leading to the "GluN2A/GluN2B ratio switch." This is a crucial step for normal brain development. Here we present findings indicating that GluN2A expression occurs earlier in the fragile X mouse and this could be an underlying factor contributing to the pathology found in the fragile X model.
Collapse
Affiliation(s)
- Tue G Banke
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, United States
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, United States
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, United States
| | - Andres Barria
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
2
|
Riquelme R, Li L, Gambrill A, Barria A. ROR2 homodimerization is sufficient to activate a neuronal Wnt/calcium signaling pathway. J Biol Chem 2023; 299:105350. [PMID: 37832874 PMCID: PMC10654037 DOI: 10.1016/j.jbc.2023.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Wnt signaling plays a key role in the mature CNS by regulating trafficking of NMDA-type glutamate receptors and intrinsic properties of neurons. The Wnt receptor ROR2 has been identified as a necessary component of the neuronal Wnt5a/Ca2+ signaling pathway that regulates synaptic and neuronal function. Since ROR2 is considered a pseudokinase, its mechanism for downstream signaling upon ligand binding has been controversial. It has been suggested that its role is to function as a coreceptor of a G-protein-coupled Wnt receptor of the Frizzled family. We show that chemically induced homodimerization of ROR2 is sufficient to recapitulate key signaling events downstream of receptor activation in neurons, including PKC and JNK kinases activation, elevation of somatic and dendritic Ca2+ levels, and increased trafficking of NMDARs to synapses. In addition, we show that homodimerization of ROR2 induces phosphorylation of the receptor on Tyr residues. Point mutations in the conserved but presumed nonfunctional ATP-binding site of the receptor prevent its phosphorylation, as well as downstream signaling. This suggests an active kinase domain. Our results indicate that ROR2 can signal independently of Frizzled receptors to regulate the trafficking of a key synaptic component. Additionally, they suggest that homodimerization can overcome structural conformations that render the tyrosine kinase inactive. A better understanding of ROR2 signaling is crucial for comprehending the regulation of synaptic and neuronal function in normal brain processes in mature animals.
Collapse
Affiliation(s)
- Raul Riquelme
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Laura Li
- Neuroscience Undergraduate Program, University of Washington, Seattle, Washington, USA
| | - Abigail Gambrill
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andres Barria
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
3
|
Anchesi I, Schepici G, Chiricosta L, Gugliandolo A, Salamone S, Caprioglio D, Pollastro F, Mazzon E. Δ 8-THC Induces Up-Regulation of Glutamatergic Pathway Genes in Differentiated SH-SY5Y: A Transcriptomic Study. Int J Mol Sci 2023; 24:ijms24119486. [PMID: 37298437 DOI: 10.3390/ijms24119486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Cannabinoids, natural or synthetic, have antidepressant, anxiolytic, anticonvulsant, and anti-psychotic properties. Cannabidiol (CBD) and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied cannabinoids, but recently, attention has turned towards minor cannabinoids. Delta-8-tetrahydrocannabinol (Δ8-THC), an isomer of Δ9-THC, is a compound for which, to date, there is no evidence of its role in the modulation of synaptic pathways. The aim of our work was to evaluate the effects of Δ8-THC on differentiated SH-SY5Y human neuroblastoma cells. Using next generation sequencing (NGS), we investigated whether Δ8-THC could modify the transcriptomic profile of genes involved in synapse functions. Our results showed that Δ8-THC upregulates the expression of genes involved in the glutamatergic pathway and inhibits gene expression at cholinergic synapses. Conversely, Δ8-THC did not modify the transcriptomic profile of genes involved in the GABAergic and dopaminergic pathways.
Collapse
Affiliation(s)
- Ivan Anchesi
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Giovanni Schepici
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Diego Caprioglio
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
4
|
Mehrotra S, Pierce ML, Dravid SM, Murray TF. Stimulation of Neurite Outgrowth in Cerebrocortical Neurons by Sodium Channel Activator Brevetoxin-2 Requires Both N-Methyl-D-aspartate Receptor 2B (GluN2B) and p21 Protein (Cdc42/Rac)-Activated Kinase 1 (PAK1). Mar Drugs 2022; 20:559. [PMID: 36135748 PMCID: PMC9504648 DOI: 10.3390/md20090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 12/05/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.
Collapse
Affiliation(s)
- Suneet Mehrotra
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Omeros, Seattle, WA 98119, USA
| | - Marsha L. Pierce
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
5
|
Ma R, Hanse E, Gustafsson B. Homosynaptic frequency-dependent depression by release site inactivation at neonatal hippocampal synapses in the stratum lacunosum-moleculare. Eur J Neurosci 2021; 54:4838-4862. [PMID: 34137082 DOI: 10.1111/ejn.15357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/31/2021] [Indexed: 11/27/2022]
Abstract
When activated at low frequencies (0.1-1 Hz), second postnatal week synapses onto the most distal part of the apical dendritic tree (stratum lacunosum-moleculare) of rat hippocampal CA1 pyramidal cells display a frequency-dependent synaptic depression not observed for the more proximal (stratum radiatum) synapses. Depression in this frequency range is thought of as a possible contributor to behavioural habituation. In fact, in contrast to the proximal synapses, the distal synapses provide more direct sensory information from the entorhinal cortex as well as from thalamic nuclei. The use of antagonists showed that the activation of GABAA , GABAB , NMDA, mGlu, kainate, adenosine, or endocannabinoid receptors was not directly involved in the depression, indicating it to be intrinsic to the synapses themselves. While the depression affected paired-pulse plasticity in a manner indicating a decrease in vesicle release probability, the depression could not be explained by a stimulus-dependent decrease in calcium influx. Despite affecting the synaptic response evoked by brief high-frequency stimulation (10 impulses, 20 Hz) in a manner indicating vesicle depletion, the depression was unaffected by large variations in release probability. The depression was found not only to affect the synaptic transmission at low frequencies (0.1-1 Hz) but also to contribute to the depression evolving during brief high-frequency stimulation (10 impulses, 20 Hz). We propose that a release-independent process directly inactivating release sites with a fast onset (ms) and long duration (up to 20 s) underlies this synaptic depression.
Collapse
Affiliation(s)
- Rong Ma
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eric Hanse
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Gustafsson
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Magnesium for Pain Treatment in 2021? State of the Art. Nutrients 2021; 13:nu13051397. [PMID: 33919346 PMCID: PMC8143286 DOI: 10.3390/nu13051397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Magnesium (Mg) is commonly used in clinical practice for acute and chronic pain and has been reported to reduce pain intensity and analgesics consumption in a number of studies. Results are, however, contested. Objectives: This review aims to investigate randomised clinical trials (RCTs) on the effectiveness of Mg treatment on pain and analgesics consumption in situations including post-operative pain, migraine, renal pain, chronic pain, neuropathic pain and fibromyalgia. Results: The literature search identified 81 RCTs (n = 5447 patients) on Mg treatment in pain (50 RCTs in post-operative pain, 18 RCTs in migraine, 5 RCTs in renal pain, 6 RCTs in chronic/neuropathic pain, 2 RCTs in fibromyalgia). Conclusion: The level of evidence for the efficacy of Mg in reducing pain and analgesics consumption is globally modest and studies are not very numerous in chronic pain. A number of gaps have been identified in the literature that need to be addressed especially in methodology, rheumatic disease, and cancer. Additional clinical trials are needed to achieve a sufficient level of evidence and to better optimize the use of Mg for pain and pain comorbidities in order to improve the quality of life of patients who are in pain.
Collapse
|
7
|
Abstract
The neural mechanisms underlying the impacts of noise on nonauditory function, particularly learning and memory, remain largely unknown. Here, we demonstrate that rats exposed postnatally (between postnatal days 9 and 56) to structured noise delivered at a sound pressure level of ∼65 dB displayed significantly degraded hippocampus-related learning and memory abilities. Noise exposure also suppressed the induction of hippocampal long-term potentiation (LTP). In parallel, the total or phosphorylated levels of certain LTP-related key signaling molecules in the synapses of the hippocampus were down-regulated. However, no significant changes in stress-related processes were found for the noise-exposed rats. These results in a rodent model indicate that even moderate-level noise with little effect on stress status can substantially impair hippocampus-related learning and memory by altering the plasticity of synaptic transmission. They support the importance of more thoroughly defining the unappreciated hazards of moderately loud noise in modern human environments.
Collapse
|
8
|
Chiamulera C, Piva A, Abraham WC. Glutamate receptors and metaplasticity in addiction. Curr Opin Pharmacol 2020; 56:39-45. [PMID: 33128937 DOI: 10.1016/j.coph.2020.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Chronic drug use is a neuroadaptive disorder characterized by strong and persistent plasticity in the mesocorticolimbic reward system. Long-lasting effects of drugs of abuse rely on their ability to hijack glutamate receptor activity and long-term synaptic plasticity processes like long-term potentiation and depression. Importantly, metaplasticity-based modulation of synaptic plasticity contributes to durable neurotransmission changes in mesocorticolimbic pathways including the ventral tegmental area and the nucleus accumbens, causing 'maladaptive' drug memory and higher risk for drug-seeking relapse. On the other hand, drug-induced metaplasticity can make appetitive memories more malleable to modification, offering a potential target mechanism for intervention. Here we review the literature on the role of glutamate receptors in addiction-related metaplasticity phenomena.
Collapse
Affiliation(s)
- Cristiano Chiamulera
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - Alessandro Piva
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Verona, Italy
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Cabej NR. A neural mechanism of nuclear receptor expression and regionalization. Dev Dyn 2020; 249:1172-1181. [PMID: 32406963 DOI: 10.1002/dvdy.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 11/07/2022] Open
Abstract
Spatially restricted expression of genes by global circulating inducers (hormones, secreted proteins, growth factors, neuromodulators, etc.) was a prerequisite for the evolution of animals. Far from a random occurrence, it is a systematically occurring, certain event, implying that specific information is invested for it to happen. In this minireview, we show for the first time that the expression and regionalization takes place at the level of receptors via a neural mechanism and make an attempt to reconstruct the causal chain from neural signaling to expression of nuclear receptors.
Collapse
Affiliation(s)
- Nelson R Cabej
- Department of Biology, University of Tirana, Tirana, Albania
| |
Collapse
|
10
|
McQuate A, Barria A. Rapid exchange of synaptic and extrasynaptic NMDA receptors in hippocampal CA1 neurons. J Neurophysiol 2020; 123:1004-1014. [PMID: 31995440 DOI: 10.1152/jn.00458.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are fundamental coincidence detectors of synaptic activity necessary for the induction of synaptic plasticity and synapse stability. Adjusting NMDAR synaptic content, whether by receptor insertion or lateral diffusion between extrasynaptic and synaptic compartments, could play a substantial role defining the characteristics of the NMDAR-mediated excitatory postsynaptic current (EPSC), which in turn would mediate the ability of the synapse to undergo plasticity. Lateral NMDAR movement has been observed in dissociated neurons; however, it is currently unclear whether NMDARs are capable of lateral surface diffusion in hippocampal slices, a more physiologically relevant environment. To test for lateral mobility in rat hippocampal slices, we rapidly blocked synaptic NMDARs using MK-801, a use-dependent and irreversible NMDAR blocker. Following a 5-min washout period, we observed a strong recovery of NMDAR-mediated responses. The degree of the observed recovery was proportional to the amount of induced blockade, independent of levels of intracellular calcium, and mediated primarily by GluN2B-containing NMDA receptors. These results indicate that lateral diffusion of NMDARs could be a mechanism by which synapses rapidly adjust parameters to fine-tune synaptic plasticity.NEW & NOTEWORTHY N-methyl-d-aspartate-type glutamate receptors (NMDARs) have always been considered stable components of synapses. We show that in rat hippocampal slices synaptic NMDARs are in constant exchange with extrasynaptic receptors. This exchange of receptors is mediated primarily by NMDA receptors containing GluN2B, a subunit necessary to undergo synaptic plasticity. Thus this lateral movement of synaptic receptors allows synapses to rapidly regulate the total number of synaptic NMDARs with potential consequences for synaptic plasticity.
Collapse
Affiliation(s)
- Andrea McQuate
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington.,Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| | - Andres Barria
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Shin JH, Lee KM, Shin J, Kang KD, Nho CW, Cho YS. Genetic risk score combining six genetic variants associated with the cellular NRF2 expression levels correlates with Type 2 diabetes in the human population. Genes Genomics 2019; 41:537-545. [PMID: 30767168 DOI: 10.1007/s13258-019-00791-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Type 2 diabetes (T2D) is known as an inflammatory disease. NRF2 (Nuclear Factor Erythroid 2 Like2) encodes a transcription factor that binds to antioxidant response elements (AREs) and regulates the expression of genes involved in many antioxidant responses. OBJECTIVE This study aimed to gain insight into individual anti-inflammatory activity to prevent T2D development in humans. METHODS We performed a genome-wide association study (GWAS) to identify genetic variants influencing NRF2 expression in LCLs (lymphoblastoid cell lines) generated from 74 different individuals. Association analyses between T2D or its related traits and genetic risk score (GRS) calculated by combining genetic variants detected from GWAS for cellular NRF2 expression were performed using data from 8715 subjects. The T2D prediction model using GRS was evaluated by measuring the area under the curve (AUC) of the receiver operating characteristics (ROC) curve. RESULTS Our GWAS identified six genetic variants (SNP) showing suggestive evidence of associations with cellular NRF2 expression (P < 10- 6). Logistic regression analysis demonstrated that GRS was associated with an increased risk of T2D (P value = 0.003, OR = 1.13). In addition, linear regression analyses showed positive associations between GRS and fasting glucose (P value = 0.028, β = 0.62), 2-h glucose (P value = 0.0004, β = 1.13) and HbA1C (P value = 0.033, β = 0.03). In the T2D prediction model using GRS, the AUC of the ROC curve was 0.69. CONCLUSION This study highlights genetic variants associated with cellular NRF2 expression and suggests that the GRS of NRF2 expression-associated variants is likely to be a useful indicator of T2D development in the human population.
Collapse
Affiliation(s)
- Jae Hun Shin
- Department of Biomedical Science, Hallym University, Chuncheon, 200-702, Gangwon-do, Republic of Korea
| | - Kyung-Mi Lee
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology, Gangneung, Republic of Korea.,Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Jimin Shin
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology, Gangneung, Republic of Korea.,Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Kui Dong Kang
- Department of Ophthalmology, The Catholic University of Korea Incheon St. Mary's Hospital, Incheon, Republic of Korea
| | - Chu Won Nho
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology, Gangneung, Republic of Korea.,Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, 200-702, Gangwon-do, Republic of Korea.
| |
Collapse
|
12
|
Sanders EM, Nyarko-Odoom AO, Zhao K, Nguyen M, Liao HH, Keith M, Pyon J, Kozma A, Sanyal M, McHail DG, Dumas TC. Separate functional properties of NMDARs regulate distinct aspects of spatial cognition. ACTA ACUST UNITED AC 2018; 25:264-272. [PMID: 29764972 PMCID: PMC5959228 DOI: 10.1101/lm.047290.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) at excitatory synapses are central to activity-dependent synaptic plasticity and learning and memory. NMDARs act as ionotropic and metabotropic receptors by elevating postsynaptic calcium concentrations and by direct intracellular protein signaling. In the forebrain, these properties are controlled largely by the auxiliary GluN2 subunits, GluN2A and GluN2B. While calcium conductance through NMDAR channels and intracellular protein signaling make separate contributions to synaptic plasticity, it is not known if these properties individually influence learning and memory. To address this issue, we created chimeric GluN2 subunits containing the amino-terminal domain and transmembrane domains from GluN2A or GluN2B fused to the carboxy-terminal domain of GluN2B (termed ABc) or GluN2A ATD (termed BAc), respectively, and expressed these mutated GluN2 subunits in transgenic mice. Expression was confirmed at the mRNA level and protein subunit translation and translocation into dendrites were observed in forebrain neurons. In the spatial version of the Morris water maze, BAc mice displayed signs of a learning deficit. In contrast, ABc animals performed similarly to wild-types during training, but showed a more direct approach to the goal location during a long-term memory test. There was no effect of ABc or BAc expression in a nonspatial water escape task. Since background expression is predominantly GluN2A in mature animals, the results suggest that spatial learning is more sensitive to manipulations of the amino-terminal domain and transmembrane domains (calcium conductance) and long-term memory is regulated more by the carboxy-terminal domain (intracellular protein signaling).
Collapse
Affiliation(s)
- Erin M Sanders
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Akua O Nyarko-Odoom
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Kevin Zhao
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Michael Nguyen
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Hong Hong Liao
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Matthew Keith
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Jane Pyon
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Alyssa Kozma
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Mohima Sanyal
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Daniel G McHail
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Theodore C Dumas
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.,Psychology Department, George Mason University, Fairfax, Virginia 22030, USA
| |
Collapse
|
13
|
Two distinct mechanisms for experience-dependent homeostasis. Nat Neurosci 2018; 21:843-850. [PMID: 29760525 PMCID: PMC6019646 DOI: 10.1038/s41593-018-0150-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 11/13/2022]
Abstract
Models of firing rate homeostasis such as synaptic scaling and the sliding synaptic plasticity modification threshold predict that decreasing neuronal activity (e.g. by sensory deprivation) will enhance synaptic function. Manipulations of cortical activity during two forms of visual deprivation (dark exposure (DE) and binocular lid suture (BS)) revealed that, contrary to expectations, spontaneous firing in conjunction with loss of visual input is necessary to lower the threshold for Hebbian plasticity and increases mEPSC amplitude. Blocking activation of GluN2B receptors, which are up-regulated by DE, also prevents the increase in mEPSC amplitude, suggesting that DE potentiates mEPSCs primarily through a Hebbian mechanism, not through synaptic scaling. Nevertheless, NMDAR-independent changes in mEPSC amplitude consistent with synaptic scaling could be induced by extreme reductions of activity. Therefore, two distinct mechanisms operate within different ranges of neuronal activity to homeostatically regulate synaptic strength.
Collapse
|
14
|
RoR2 functions as a noncanonical Wnt receptor that regulates NMDAR-mediated synaptic transmission. Proc Natl Acad Sci U S A 2015; 112:4797-802. [PMID: 25825749 DOI: 10.1073/pnas.1417053112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Wnt signaling has a well-established role as a regulator of nervous system development, but its role in the maintenance and regulation of established synapses in the mature brain remains poorly understood. At excitatory glutamatergic synapses, NMDA receptors (NMDARs) have a fundamental role in synaptogenesis, synaptic plasticity, and learning and memory; however, it is not known what controls their number and subunit composition. Here we show that the receptor tyrosine kinase-like orphan receptor 2 (RoR2) functions as a Wnt receptor required to maintain basal NMDAR-mediated synaptic transmission. In addition, RoR2 activation by a noncanonical Wnt ligand activates PKC and JNK and acutely enhances NMDAR synaptic responses. Regulation of a key component of glutamatergic synapses through RoR2 provides a mechanism for Wnt signaling to modulate synaptic transmission, synaptic plasticity, and brain function acutely beyond embryonic development.
Collapse
|
15
|
Neuraminidase inhibition primes short-term depression and suppresses long-term potentiation of synaptic transmission in the rat hippocampus. Neural Plast 2015; 2015:908190. [PMID: 25802763 PMCID: PMC4329761 DOI: 10.1155/2015/908190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/16/2015] [Indexed: 01/22/2023] Open
Abstract
Neuraminidase (NEU) is a key enzyme that cleaves negatively charged sialic acid residues from membrane proteins and lipids. Clinical and basic science studies have shown that an imbalance in NEU metabolism or changes in NEU activity due to various pathological conditions parallel with behavior and cognitive impairment. It has been suggested that the decreases of NEU activity could cause serious neurological consequences. However, there is a lack of direct evidences that modulation of endogenous NEU activity can impair neuronal function. Using combined rat entorhinal cortex/hippocampal slices and a specific inhibitor of NEU, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (NADNA), we examined the effect of downregulation of NEU activity on different forms of synaptic plasticity in the hippocampal CA3-to-CA1 network. We show that NEU inhibition results in a significant decrease in long-term potentiation (LTP) and an increase in short-term depression. Synaptic depotentiation restores LTP in NADNA-pretreated slices to the control level. These data suggest that short-term NEU inhibition produces the LTP-like effect on neuronal network, which results in damping of further LTP induction. Our findings demonstrate that downregulation of NEU activity could have a major impact on synaptic plasticity and provide a new insight into the cellular mechanism underlying behavioral and cognitive impairment associated with abnormal metabolism of NEU.
Collapse
|
16
|
Weiss S, Mori F, Rossi S, Centonze D. Disability in multiple sclerosis: When synaptic long-term potentiation fails. Neurosci Biobehav Rev 2014; 43:88-99. [DOI: 10.1016/j.neubiorev.2014.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 12/13/2022]
|
17
|
Aman TK, Maki BA, Ruffino TJ, Kasperek EM, Popescu GK. Separate intramolecular targets for protein kinase A control N-methyl-D-aspartate receptor gating and Ca2+ permeability. J Biol Chem 2014; 289:18805-17. [PMID: 24847051 DOI: 10.1074/jbc.m113.537282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca(2+) flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca(2+) permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca(2+) conductance, because neither Na(+) conductance nor Ca(2+)-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca(2+) permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca(2+) permeability.
Collapse
Affiliation(s)
| | - Bruce A Maki
- From the Department of Biochemistry, Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214
| | | | | | - Gabriela K Popescu
- From the Department of Biochemistry, Neuroscience Program, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214
| |
Collapse
|
18
|
Huo XL, Min JJ, Pan CY, Zhao CC, Pan LL, Gui FF, Jin L, Wang XT. Efficacy of lovastatin on learning and memory deficits caused by chronic intermittent hypoxia-hypercapnia: through regulation of NR2B-containing NMDA receptor-ERK pathway. PLoS One 2014; 9:e94278. [PMID: 24718106 PMCID: PMC3981803 DOI: 10.1371/journal.pone.0094278] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/14/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Chronic intermittent hypoxia-hypercapnia (CIHH) exposure leads to learnning and memory deficits in rats. Overactivation of N-methyl-D-aspartate receptors(NMDARs) can lead to the death of neurons through a process termed excitotoxicity, which is involved in CIHH-induced cognitive deficits. Excessively activated NR2B (GluN2B)-containing NMDARs was reported as the main cause of excitotoxicity. The ERK1/2 (extracellular signal-regulated kinase 1/2) signaling cascade acts as a key component in NMDARs-dependent neuronal plasticity and survival. Ca2+/calmodulin-dependent protein kinase II (CaMKII), synapse-associated protein 102 (SAP102) and Ras GTPase-activating protein (SynGAP) have been shown to be involved in the regulation of NMDAR-ERK signalling cascade. Recent studies revealed statins (the HMG-CoA reductase inhibitor) have effect on the expression of NMDARs. The present study intends to explore the potential effect of lovastatin on CIHH-induced cognitive deficits and the NR2B-ERK signaling pathway. METHODS AND FINDINGS Eighty male Sprague Dawley rats were randomly divided into five groups. Except for those in the control group, the rats were exposed to chronic intermittent hypoxia-hypercapnia (CIHH) (9 ∼ 11%O2, 5.5 ∼ 6.5%CO2) for 4 weeks. After lovastatin administration, the rats performed better in the Morris water maze test. Electron microscopy showed alleviated hippocampal neuronal synaptic damage. Further observation suggested that either lovastatin or ifenprodil (a selective NR2B antagonist) administration similarly downregulated NR2B subunit expression leading to a suppression of CaMKII/SAP102/SynGAP signaling cascade, which in turn enhanced the phosphorylation of ERK1/2. The phosphorylated ERK1/2 induced signaling cascade involving cAMP-response element-binding protein (CREB) phosphorylation and brain-derived neurotrophic factor (BDNF) activation, which is responsible for neuroprotection. CONCLUSIONS These findings suggest that the ameliorative cognitive deficits caused by lovastatin are due to the downregulation of excessive NR2B expression accompanied by increased expression of ERK signaling cascade. The effect of NR2B in upregulating pERK1/2 maybe due, at least in part, to inactivation of CaMKII/SAP102/SynGAP signaling cascade.
Collapse
Affiliation(s)
- Xin-long Huo
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing-jing Min
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cai-yu Pan
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cui-cui Zhao
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu-lu Pan
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fei-fei Gui
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Jin
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-tong Wang
- The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Kim KY, Scholl ES, Liu X, Shepherd A, Haeseleer F, Lee A. Localization and expression of CaBP1/caldendrin in the mouse brain. Neuroscience 2014; 268:33-47. [PMID: 24631676 DOI: 10.1016/j.neuroscience.2014.02.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/31/2022]
Abstract
Ca(2+) binding protein 1 (CaBP1) and caldendrin are alternatively spliced variants of a subfamily of CaBPs with high homology to calmodulin. Although CaBP1 and caldendrin regulate effectors including plasma membrane and intracellular Ca(2+) channels in heterologous expression systems, little is known about their functions in vivo. Therefore, we generated mice deficient in CaBP1/caldendrin expression (C-KO) and analyzed the expression and cellular localization of CaBP1 and caldendrin in the mouse brain. Immunoperoxidase labeling with antibodies recognizing both CaBP1 and caldendrin was absent in the brain of C-KO mice, but was intense in multiple brain regions of wild-type mice. By Western blot, the antibodies detected two proteins that were absent in the C-KO mouse and consistent in size with caldendrin variants originating from alternative translation initiation sites. By quantitative PCR, caldendrin transcript levels were far greater than those for CaBP1, particularly in the cerebral cortex and hippocampus. In the frontal cortex but not in the hippocampus, caldendrin expression increased steadily from birth. By double-label immunofluorescence, CaBP1/caldendrin was localized in principal neurons and parvalbumin-positive interneurons. In the cerebellum, CaBP1/caldendrin antibodies labeled interneurons in the molecular layer and in basket cell terminals surrounding the soma and axon initial segment of Purkinje neurons, but immunolabeling was absent in Purkinje neurons. We conclude that CaBP1/caldendrin is localized both pre- and postsynaptically where it may regulate Ca(2+) signaling and excitability in select groups of excitatory and inhibitory neurons.
Collapse
Affiliation(s)
- K Y Kim
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - E S Scholl
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - X Liu
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - A Shepherd
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - F Haeseleer
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - A Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Tian Y, Yabuki Y, Moriguchi S, Fukunaga K, Mao PJ, Hong LJ, Lu YM, Wang R, Ahmed MM, Liao MH, Huang JY, Zhang RT, Zhou TY, Long S, Han F. Melatonin reverses the decreases in hippocampal protein serine/threonine kinases observed in an animal model of autism. J Pineal Res 2014; 56:1-11. [PMID: 23952810 DOI: 10.1111/jpi.12081] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/19/2013] [Indexed: 12/23/2022]
Abstract
Lower global cognitive function scores are a common symptom of autism spectrum disorders (ASDs). This study investigates the effects of melatonin on hippocampal serine/threonine kinase signaling in an experimental ASD model. We found that chronic melatonin (1.0 or 5.0 mg/kg/day, 28 days) treatment significantly rescued valproic acid (VPA, 600 mg/kg)-induced decreases in CaMKII (Thr286), NMDAR1 (Ser896), and PKA (Thr197) phosphorylation in the hippocampus without affecting total protein levels. Compared with control rats, the immunostaining of pyramidal neurons in the hippocampus revealed a decrease in immunolabeling intensity for phospho-CaMKII (Thr286) in the hippocampus of VPA-treated rats, which was ameliorated by chronic melatonin treatment. Consistent with the elevation of CaMKII/PKA/PKC phosphorylation observed in melatonin-treated rat, long-term potentiation (LTP) was enhanced after chronic melatonin (5.0 mg/kg) treatment, as reflected by extracellular field potential slopes that increased from 56 to 60 min (133.4 ± 3.9% of the baseline, P < 0.01 versus VPA-treated rats) following high-frequency stimulation (HFS) in hippocampal slices. Accordingly, melatonin treatment also significantly improved social behavioral deficits at postnatal day 50 in VPA-treated rats. Taken together, the increased phosphorylation of CaMKII/PKA/PKC signaling might contribute to the beneficial effects of melatonin on autism symptoms.
Collapse
Affiliation(s)
- Yun Tian
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Interleukin-1β promotes long-term potentiation in patients with multiple sclerosis. Neuromolecular Med 2013; 16:38-51. [PMID: 23892937 DOI: 10.1007/s12017-013-8249-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
The immune system shapes synaptic transmission and plasticity in experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis (MS). These synaptic adaptations are believed to drive recovery of function after brain lesions, and also learning and memory deficits and excitotoxic neurodegeneration; whether inflammation influences synaptic plasticity in MS patients is less clear. In a cohort of 59 patients with MS, we found that continuous theta-burst transcranial magnetic stimulation did not induce the expected long-term depression (LTD)-like synaptic phenomenon, but caused persisting enhancement of brain cortical excitability. The amplitude of this long-term potentiation (LTP)-like synaptic phenomenon correlated with the concentration of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the cerebrospinal fluid. In MS and EAE, the brain and spinal cord are typically enriched of CD3(+) T lymphocyte infiltrates, which are, along with activated microglia and astroglia, a major cause of inflammation. Here, we found a correlation between the presence of infiltrating T lymphocytes in the hippocampus of EAE mice and synaptic plasticity alterations. We observed that T lymphocytes from EAE, but not from control mice, release IL-1β and promote LTP appearance over LTD, thereby mimicking the facilitated LTP induction observed in the cortex of MS patients. EAE-specific T lymphocytes were able to suppress GABAergic transmission in an IL-1β-dependent manner, providing a possible synaptic mechanism able to lower the threshold of LTP induction in MS brains. Moreover, in vivo blockade of IL-1β signaling resulted in inflammation and synaptopathy recovery in EAE hippocampus. These data provide novel insights into the pathophysiology of MS.
Collapse
|
22
|
De Sousa A. Towards an integrative theory of consciousness: part 1 (neurobiological and cognitive models). Mens Sana Monogr 2013; 11:100-50. [PMID: 23678241 PMCID: PMC3653219 DOI: 10.4103/0973-1229.109335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 12/13/2012] [Accepted: 12/15/2012] [Indexed: 12/22/2022] Open
Abstract
The study of consciousness is poised today at interesting crossroads. There has been a surge of research into various neurobiological underpinnings of consciousness in the past decade. The present article looks at the theories regarding this complex phenomenon, especially the ones that neurobiology, cognitive neuroscience and cognitive psychology have to offer. We will first discuss the origin and etymology of word consciousness and its usage. Neurobiological correlates of consciousness are discussed with structures like the ascending reticular activating system, the amygdala, the cerebellum, the thalamus, the frontoparietal circuits, the prefrontal cortex and the precuneus. The cellular and microlevel theories of consciousness and cerebral activity at the neuronal level contributing to consciousness are highlighted, along with the various theories posited in this area. The role of neuronal assemblies and circuits along with firing patterns and their ramifications for the understanding of consciousness are discussed. A section on the role of anaesthesia and its links to consciousness is presented, along with details of split-brain studies in consciousness and altered states of awareness, including the vegetative states. The article finally discusses the progress cognitive psychology has made in identifying and theorising various perspectives of consciousness, perceptual awareness and conscious processing. Both recent and past researches are highlighted. The importance and salient features of each theory are discussed along with the pitfalls, if present. A need for integration of various theories to understand consciousness from a holistic perspective is stressed, to enable one to reach a theory that explains the ultimate neurobiology of consciousness.
Collapse
|
23
|
Hulme SR, Jones OD, Abraham WC. Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci 2013; 36:353-62. [PMID: 23602195 DOI: 10.1016/j.tins.2013.03.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/01/2022]
Abstract
Since its initial conceptualisation, metaplasticity has come to encompass a wide variety of phenomena and mechanisms, creating the important challenge of understanding how they contribute to network function and behaviour. Here, we present a framework for considering potential roles of metaplasticity across three domains of function. First, metaplasticity appears ideally placed to prepare for subsequent learning by either enhancing learning ability generally or by preparing neuronal networks to encode specific content. Second, metaplasticity can homeostatically regulate synaptic plasticity, and this likely has important behavioural consequences by stabilising synaptic weights while ensuring the ongoing availability of synaptic plasticity. Finally, we discuss emerging evidence that metaplasticity mechanisms may play a role in disease causally and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Sarah R Hulme
- Department of Psychology and Brain Health Research Centre, Box 56, University of Otago, Dunedin, 9054, New Zealand
| | | | | |
Collapse
|
24
|
Nisticò R, Mango D, Mandolesi G, Piccinin S, Berretta N, Pignatelli M, Feligioni M, Musella A, Gentile A, Mori F, Bernardi G, Nicoletti F, Mercuri NB, Centonze D. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis. PLoS One 2013; 8:e54666. [PMID: 23355887 PMCID: PMC3552964 DOI: 10.1371/journal.pone.0054666] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/17/2012] [Indexed: 12/18/2022] Open
Abstract
Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP) induction was favored over long-term depression (LTD) in EAE, as shown by a significant rightward shift in the frequency–synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β) perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.
Collapse
Affiliation(s)
- Robert Nisticò
- IRCSS Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Fisiologia e Farmacologia, Università di Roma "La Sapienza", Rome, Italy
- * E-mail: (RN); (DC)
| | - Dalila Mango
- IRCSS Fondazione Santa Lucia, Rome, Italy
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | | | - Sonia Piccinin
- Dipartimento di Fisiologia e Farmacologia, Università di Roma "La Sapienza", Rome, Italy
- Laboratorio di Farmacologia della Plasticità Sinaptica, EBRI-European Brain Research Institute, Rome, Italy
| | | | - Marco Pignatelli
- Dipartimento di Fisiologia e Farmacologia, Università di Roma "La Sapienza", Rome, Italy
- Laboratorio di Farmacologia della Plasticità Sinaptica, EBRI-European Brain Research Institute, Rome, Italy
| | - Marco Feligioni
- Laboratorio di Farmacologia della Plasticità Sinaptica, EBRI-European Brain Research Institute, Rome, Italy
| | - Alessandra Musella
- IRCSS Fondazione Santa Lucia, Rome, Italy
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Antonietta Gentile
- IRCSS Fondazione Santa Lucia, Rome, Italy
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Francesco Mori
- IRCSS Fondazione Santa Lucia, Rome, Italy
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Giorgio Bernardi
- IRCSS Fondazione Santa Lucia, Rome, Italy
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Ferdinando Nicoletti
- Dipartimento di Fisiologia e Farmacologia, Università di Roma "La Sapienza", Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Nicola B. Mercuri
- IRCSS Fondazione Santa Lucia, Rome, Italy
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Diego Centonze
- IRCSS Fondazione Santa Lucia, Rome, Italy
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
- * E-mail: (RN); (DC)
| |
Collapse
|
25
|
Mattison HA, Hayashi T, Barria A. Palmitoylation at two cysteine clusters on the C-terminus of GluN2A and GluN2B differentially control synaptic targeting of NMDA receptors. PLoS One 2012; 7:e49089. [PMID: 23166606 PMCID: PMC3499554 DOI: 10.1371/journal.pone.0049089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/09/2012] [Indexed: 11/19/2022] Open
Abstract
Palmitoylation of NMDARs occurs at two distinct cysteine clusters in the carboxyl-terminus of GluN2A and GluN2B subunits that differentially regulates retention in the Golgi apparatus and surface expression of NMDARs. Mutations of palmitoylatable cysteine residues in the membrane-proximal cluster to non-palmitoylatable serines leads to a reduction in the surface expression of recombinant NMDARs via enhanced internalization of the receptors. Mutations in a cluster of cysteines in the middle of the carboxyl-terminus of GluN2A and GluN2B, leads to an increase in the surface expression of NMDARs via an increase in post-Golgi trafficking. Using a quantitative electrophysiological assay, we investigated whether palmitoylation of GluN2 subunits and the differential regulation of surface expression affect functional synaptic incorporation of NMDARs. We show that a reduction in surface expression due to mutations in the membrane-proximal cluster translates to a reduction in synaptic expression of NMDARs. However, increased surface expression induced by mutations in the cluster of cysteines that regulates post-Golgi trafficking of NMDARs does not increase the synaptic pool of NMDA receptors, indicating that the number of synaptic receptors is tightly regulated.
Collapse
Affiliation(s)
- Hayley A. Mattison
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Takashi Hayashi
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andres Barria
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
26
|
Sanchez JT, Seidl AH, Rubel EW, Barria A. Control of neuronal excitability by NMDA-type glutamate receptors in early developing binaural auditory neurons. J Physiol 2012; 590:4801-18. [PMID: 22826130 DOI: 10.1113/jphysiol.2012.228734] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Precise control of neuronal excitability in the auditory brainstem is fundamental for processing timing cues used for sound localization and signal discrimination in complex acoustic environments. In mature nucleus laminaris (NL), the first nucleus responsible for binaural processing in chickens, neuronal excitability is governed primarily by voltage-activated potassium conductances (K(VA)). High levels of K(VA) expression in NL neurons result in one or two initial action potentials (APs) in response to high-frequency synaptic activity or sustained depolarization. Here we show that during a period of synaptogenesis and circuit refinement, before hearing onset, K(VA) conductances are relatively small, in particular low-voltage-activated K(+) conductances (K(LVA)). In spite of this, neuronal output is filtered and repetitive synaptic activity generates only one or two initial APs during a train of stimuli. During this early developmental time period, synaptic NMDA-type glutamate receptors (NMDA-Rs) contain primarily the GluN2B subunit. We show that the slow decay kinetics of GluN2B-containing NMDA-Rs allows synaptic responses to summate, filtering the output of NL neurons before intrinsic properties are fully developed. Weaker Mg(2+) blockade of NMDA-Rs and ambient glutamate early in development generate a tonic NMDA-R-mediated current that sets the membrane potential at more depolarized values. Small KLVA conductances, localized in dendrites, prevent excessive depolarization caused by tonic activation of NMDA-Rs. Thus, before intrinsic properties are fully developed, NMDA-Rs control the output of NL neurons during evoked synaptic transmission.
Collapse
Affiliation(s)
- Jason Tait Sanchez
- VirginiaMerrill Bloedel Hearing Research Center, School of Medicine, University of Washington, Box 357290, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Wnt ligands are secreted glycoproteins controlling gene expression and cytoskeleton reorganization involved in embryonic development of the nervous system. However, their role in later stages of brain development, particularly in the regulation of established synaptic connections, is not known. We found that Wnt-5a acutely and specifically upregulates synaptic NMDAR currents in rat hippocampal slices, facilitating induction of long-term potentiation, a cellular model of learning and memory. This effect requires an increase in postsynaptic Ca(2+) and activation of noncanonical downstream effectors of the Wnt signaling pathway. In contrast, Wnt-7a, an activator of the canonical Wnt signaling pathway, has no effect on NMDAR-mediated synaptic transmission. Moreover, endogenous Wnt ligands are necessary to maintain basal NMDAR synaptic transmission, adjusting the threshold for synaptic potentiation. This novel role for Wnt ligands provides a mechanism for Wnt signaling to acutely modulate synaptic plasticity and brain function in later stages of development and in the mature organism.
Collapse
|
28
|
Fetterolf F, Foster KA. Regulation of long-term plasticity induction by the channel and C-terminal domains of GluN2 subunits. Mol Neurobiol 2011; 44:71-82. [PMID: 21604197 DOI: 10.1007/s12035-011-8190-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/09/2011] [Indexed: 12/30/2022]
Abstract
Conventional long-term potentiation (LTP) and long-term depression (LTD) are induced by different patterns of synaptic stimulation, but both forms of synaptic modification require calcium influx through NMDA receptors (NMDARs). A prevailing model (the "calcium hypothesis") suggests that high postsynaptic calcium elevation results in LTP, whereas moderate elevations give rise to LTD. Recently, additional evidence has come to suggest that differential activation of NMDAR subunits also factors in determining which type of plasticity is induced. While the growing amount of data suggest that activation of NMDARs containing specific GluN2 subunits plays an important role in the induction of plasticity, it remains less clear which subunit is tied to which form of plasticity. Additionally, it remains to be determined which properties of the subunits confer upon them the ability to differentially induce long-term plasticity. This review highlights recent studies suggesting differential roles for the subunits, as well as findings that begin to shed light on how two similar subunits may be linked to the induction of opposing forms of plasticity.
Collapse
Affiliation(s)
- Frank Fetterolf
- Department of Basic Science, The Commonwealth Medical College, 501 Madison Ave., Scranton, PA 18510, USA
| | | |
Collapse
|