1
|
Pâslaru AC, Călin A, Morozan VP, Stancu M, Tofan L, Panaitescu AM, Zăgrean AM, Zăgrean L, Moldovan M. Burst-Suppression EEG Reactivity to Photic Stimulation-A Translational Biomarker in Hypoxic-Ischemic Brain Injury. Biomolecules 2024; 14:953. [PMID: 39199341 PMCID: PMC11352952 DOI: 10.3390/biom14080953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The reactivity of an electroencephalogram (EEG) to external stimuli is impaired in comatose patients showing burst-suppression (BS) patterns following hypoxic-ischemic brain injury (HIBI). We explored the reactivity of BS induced by isoflurane in rat models of HIBI and controls using intermittent photic stimulation (IPS) delivered to one eye. The relative time spent in suppression referred to as the suppression ratio (SR) was measured on the contralateral fronto-occipital cortical EEG channel. The BS reactivity (BSR) was defined as the decrease in the SR during IPS from the baseline before stimulation (SRPRE). We found that BSR increased with SRPRE. To standardize by anesthetic depth, we derived the BSR index (BSRi) as BSR divided by SRPRE. We found that the BSRi was decreased at 3 days after transient global cerebral ischemia in rats, which is a model of brain injury after cardiac arrest. The BSRi was also reduced 2 months after experimental perinatal asphyxia in rats, a model of birth asphyxia, which is a frequent neonatal complication in humans. Furthermore, Oxytocin attenuated BSRi impairment, consistent with a neuroprotective effect in this model. Our data suggest that the BSRi is a promising translational marker in HIBI which should be considered in future neuroprotection studies.
Collapse
Affiliation(s)
- Alexandru-Cătălin Pâslaru
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
| | - Alexandru Călin
- Department of Clinical Neurophysiology, King’s College Hospital NHS Foundation Trust, London SE59RS, UK;
| | - Vlad-Petru Morozan
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
| | - Mihai Stancu
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
- Division of Neurobiology, Ludwig-Maximilian University, 80539 Munich, Germany
| | - Laurențiu Tofan
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
| | - Anca Maria Panaitescu
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
- Clinical Hospital of Obstetrics and Gynaecology Filantropia, 011132 Bucharest, Romania
- Obstetrics and Gynaecology Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
| | - Leon Zăgrean
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
| | - Mihai Moldovan
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Neurology, Rigshospitalet, 2600 Glostrup, Denmark
- Department of Clinical Neurophysiology, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Hypercapnia Modulates the Activity of Adenosine A1 Receptors and mitoK +ATP-Channels in Rat Brain When Exposed to Intermittent Hypoxia. Neuromolecular Med 2021; 24:155-168. [PMID: 34115290 DOI: 10.1007/s12017-021-08672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms and signaling pathways of the neuroprotective effects of hypercapnia and its combination with hypoxia are not studied sufficiently. The study aims to test the hypothesis of the potentiating effect of hypercapnia on the systems of adaptation to hypoxia, directly associated with A1-adenosine receptors and mitochondrial ATP-dependent K+ -channels (mitoK+ATP-channels). We evaluated the relative number of A1-adenosine receptors and mitoK+ATP-channels in astrocytes obtained from male Wistar rats exposed to various respiratory conditions (15 times of hypoxia and/or hypercapnia). In addition, the relative number of these molecules in astrocytes was evaluated on an in vitro model of chemical hypoxia, as well as in the cerebral cortex after photothrombotic damage. This study indicates an increase in the relative number of A1-adenosine receptors in astrocytes and in cells next to the stroke region of the cerebral cortex in rats exposed to hypoxia and hypercapnic hypoxia, but not hypercapnia alone. Hypercapnia and hypoxia increase the relative number of mitoK+ATP-channels in astrocytes and in cells of the peri-infarct region of the cerebral cortex in rats. In an in vitro study, hypercapnia mitigates the effects of acute chemical hypoxia observed in astrocytes for A1-adenosine receptors and mitoK+ATP-channels. Hypercapnia, unlike hypoxia, does not affect the relative number of A1 receptors to adenosine. At the same time, both hypercapnia and hypoxia increase the relative number of mitoK+ATP-channels, which can potentiate their protective effects with combined exposure.
Collapse
|
3
|
Frenguelli BG. The Purine Salvage Pathway and the Restoration of Cerebral ATP: Implications for Brain Slice Physiology and Brain Injury. Neurochem Res 2019; 44:661-675. [PMID: 28836168 PMCID: PMC6420432 DOI: 10.1007/s11064-017-2386-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/24/2022]
Abstract
Brain slices have been the workhorse for many neuroscience labs since the pioneering work of Henry McIlwain in the 1950s. Their utility is undisputed and their acceptance as appropriate models for the central nervous system is widespread, if not universal. However, the skeleton in the closet is that ATP levels in brain slices are lower than those found in vivo, which may have important implications for cellular physiology and plasticity. Far from this being a disadvantage, the ATP-impoverished slice can serve as a useful and experimentally-tractable surrogate for the injured brain, which experiences similar depletion of cellular ATP. We have shown that the restoration of cellular ATP in brain slices to in vivo values is possible with a simple combination of D-ribose and adenine (RibAde), two substrates for ATP synthesis. Restoration of ATP in slices to physiological levels has implications for synaptic transmission and plasticity, whilst in the injured brain in vivo RibAde shows encouraging positive results. Given that ribose, adenine, and a third compound, allopurinol, are all separately in use in man, their combined application after acute brain injury, in accelerating ATP synthesis and increasing the reservoir of the neuroprotective metabolite, adenosine, may help reduce the morbidity associated with stroke and traumatic brain injury.
Collapse
|
4
|
Pereira SS, Kempley ST, Wertheim DF, Sinha AK, Morris JK, Shah DK. Investigation of EEG Activity Compared with Mean Arterial Blood Pressure in Extremely Preterm Infants. Front Neurol 2018. [PMID: 29535674 PMCID: PMC5834421 DOI: 10.3389/fneur.2018.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Cerebral electrical activity in extremely preterm infants is affected by various factors including blood gas and circulatory parameters. Objective To investigate whether continuously measured invasive mean arterial blood pressure (BP) is associated with electroencephalographic (EEG) discontinuity in extremely preterm infants. Study design This prospective observational study examined 51 newborn infants born <29 weeks gestation in the first 3 days after birth. A single channel of raw EEG was used to quantify discontinuity. Mean BP was acquired using continuous invasive measurement and Doppler ultrasound was used to measure left ventricular output (LVO) and common carotid artery blood flow (CCAF). Results Median gestation and birthweight were 25.6 weeks and 760 g, respectively. Mean discontinuity reduced significantly between days 1 and 3. EEG discontinuity was significantly related to gestation, pH and BP. LVO and CCAF were not associated with EEG discontinuity. Conclusion Continuously measured invasive mean arterial BP was found to have a negative relationship with EEG discontinuity; increasing BP was associated with lower EEG discontinuity. This did not appear to be mediated by surrogates of systemic or cerebral blood flow. Infants receiving inotropic support had significantly increased EEG discontinuity on the first day after birth.
Collapse
Affiliation(s)
- Sujith S Pereira
- Neonatal Unit, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom.,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stephen T Kempley
- Neonatal Unit, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom.,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David F Wertheim
- Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, United Kingdom
| | - Ajay K Sinha
- Neonatal Unit, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom.,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Joan K Morris
- Centre for Environmental and Preventive Medicine, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Divyen K Shah
- Neonatal Unit, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Şerban CA, Barborică A, Roceanu AM, Mîndruță IR, Ciurea J, Zăgrean AM, Zăgrean L, Moldovan M. EEG Assessment of Consciousness Rebooting from Coma. THE PHYSICS OF THE MIND AND BRAIN DISORDERS 2017. [DOI: 10.1007/978-3-319-29674-6_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Farbood Y, Sarkaki A, Khalaj L, Khodagholi F, Badavi M, Ashabi G. Targeting Adenosine Monophosphate-Activated Protein Kinase by Metformin Adjusts Post-Ischemic Hyperemia and Extracellular Neuronal Discharge in Transient Global Cerebral Ischemia. Microcirculation 2016. [PMID: 26213885 DOI: 10.1111/micc.12224] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE I/R and its subsequent reactive hyperemia results in different adverse effects such as brain edema and BBB disruption. AMPK activation has been perceived as one of the target factors for I/R treatment. We investigated the effect of Met (an AMPK activator) on some physiological parameters including vascular responses, hyperemia, BBB disruption, and electrophysiological activity following tGCI. METHODS Rats were pretreated with Met for two weeks and CC was administered half an hour before tGCI. Brain vascular responses, hyperemia, BBB disruption, and electrophysiological activity were evaluated following the ischemia. RESULTS Met attenuated BBB disruption and reactive hyperemia in tGCI rats compared with the untreated I/R rats (p < 0.001). Met administration along with CC in the ischemic rats reversed the beneficial effects of Met on BBB disruption and reactive hyperemia (p < 0.001). Electrophysiological records indicated that Met increased spike rates in the ischemic rats comparing with I/R rats (p < 0.001), whereas, CC administration blocked the beneficial effects of Met on the neuronal discharges (p < 0.05). CONCLUSION We established a regulatory role for AMPK in vascular and electrophysiological responses to tGCI. Studies are ongoing to determine if activation of AMPK in the reperfusion period would offer similar protection.
Collapse
Affiliation(s)
- Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Khalaj
- Medical School, Alborz University of Medical Sciences, Alborz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Badavi
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Prolonged deficits in parvalbumin neuron stimulation-evoked network activity despite recovery of dendritic structure and excitability in the somatosensory cortex following global ischemia in mice. J Neurosci 2015; 34:14890-900. [PMID: 25378156 DOI: 10.1523/jneurosci.1775-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Relatively few studies have examined plasticity of inhibitory neuronal networks following stroke in vivo, primarily due to the inability to selectively monitor inhibition. We assessed the structure of parvalbumin (PV) interneurons during a 5 min period of global ischemia and reperfusion in mice, which mimicked cerebral ischemia during cardiac arrest or forms of transient ischemic attack. The dendritic structure of PV-neurons in cortical superficial layers was rapidly swollen and beaded during global ischemia, but recovered within 5-10 min following reperfusion. Using optogenetics and a multichannel optrode, we investigated the function of PV-neurons in mouse forelimb somatosensory cortex. We demonstrated pharmacologically that PV-channelrhodopsin-2 (ChR2) stimulation evoked activation in layer IV/V, which resulted in rapid current sinks mediated by photocurrent and action potentials (a measure of PV-neuron excitability), which was then followed by current sources mediated by network GABAergic synaptic activity. During ischemic depolarization, the PV-ChR2-evoked current sinks (excitability) were suppressed, but recovered rapidly following reperfusion concurrent with repolarization of the DC-EEG. In contrast, the current sources reflecting GABAergic synaptic network activity recovered slowly and incompletely, and was coincident with the partial recovery of the forepaw stimulation-evoked current sinks in layer IV/V 30 min post reperfusion. Our in vivo data suggest that the excitability of PV inhibitory neurons was suppressed during global ischemia and rapidly recovered during reperfusion. In contrast, PV-ChR2 stimulation-evoked GABAergic synaptic network activity exhibited a prolonged suppression even ∼1 h after reperfusion, which could contribute to the dysfunction of sensation and cognition following transient global ischemia.
Collapse
|
8
|
Wassink G, Bennet L, Davidson JO, Westgate JA, Gunn AJ. Pre-existing hypoxia is associated with greater EEG suppression and early onset of evolving seizure activity during brief repeated asphyxia in near-term fetal sheep. PLoS One 2013; 8:e73895. [PMID: 23991209 PMCID: PMC3749175 DOI: 10.1371/journal.pone.0073895] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
Spontaneous antenatal hypoxia is associated with high risk of adverse outcomes, however, there is little information on neural adaptation to labor-like insults. Chronically instrumented near-term sheep fetuses (125 ± 3 days, mean ± SEM) with baseline PaO2 < 17 mmHg (hypoxic group: n = 8) or > 17 mmHg (normoxic group: n = 8) received 1-minute umbilical cord occlusions repeated every 5 minutes for a total of 4 hours, or until mean arterial blood pressure (MAP) fell below 20 mmHg for two successive occlusions. 5/8 fetuses with pre-existing hypoxia were unable to complete the full series of occlusions (vs. 0/8 normoxic fetuses). Pre-existing hypoxia was associated with progressive metabolic acidosis (nadir: pH 7.08 ± 0.04 vs. 7.33 ± 0.02, p<0.01), hypotension during occlusions (nadir: 24.7 ± 1.8 vs. 51.4 ± 3.2 mmHg, p<0.01), lower carotid blood flow during occlusions (23.6 ± 6.1 vs. 63.0 ± 4.8 mL/min, p<0.01), greater suppression of EEG activity during, between, and after occlusions (p<0.01) and slower resolution of cortical impedance, an index of cytotoxic edema. No normoxic fetuses, but 4/8 hypoxic fetuses developed seizures 148 ± 45 minutes after the start of occlusions, with a seizure burden of 26 ± 6 sec during the inter-occlusion period, and 15.1 ± 3.4 min/h in the first 6 hours of recovery. In conclusion, in fetuses with pre-existing hypoxia, repeated brief asphyxia at a rate consistent with early labor is associated with hypotension, cephalic hypoperfusion, greater EEG suppression, inter-occlusion seizures, and more sustained cytotoxic edema, consistent with early onset of neural injury.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | | | - Alistair J. Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
9
|
Alexander M, Smith AL, Rosenkrantz TS, Fitch RH. Therapeutic effect of caffeine treatment immediately following neonatal hypoxic-ischemic injury on spatial memory in male rats. Brain Sci 2013; 3:177-90. [PMID: 24961313 PMCID: PMC4061822 DOI: 10.3390/brainsci3010177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 12/15/2022] Open
Abstract
Hypoxia Ischemia (HI) refers to the disruption of blood and/or oxygen delivery to the brain. Term infants suffering perinatal complications that result in decreased blood flow and/or oxygen delivery to the brain are at risk for HI. Among a variety of developmental delays in this population, HI injured infants demonstrate subsequent memory deficits. The Rice-Vannucci rodent HI model can be used to explore behavioral deficits following early HI events, as well as possible therapeutic agents to help reduce deleterious outcomes. Caffeine is an adenosine receptor antagonist that has recently shown promising results as a therapeutic agent following HI injury. The current study sought to investigate the therapeutic benefit of caffeine following early HI injury in male rats. On post-natal day (P) 7, HI injury was induced (cauterization of the right common carotid artery, followed by two hours of 8% oxygen). Male sham animals received only a midline incision with no manipulation of the artery followed by room air exposure for two hours. Subsets of HI and sham animals then received either an intraperitoneal (i.p.) injection of caffeine (10 mg/kg), or vehicle (sterile saline) immediately following hypoxia. All animals later underwent testing on the Morris Water Maze (MWM) from P90 to P95. Results show that HI injured animals (with no caffeine treatment) displayed significant deficits on the MWM task relative to shams. These deficits were attenuated by caffeine treatment when given immediately following the induction of HI. We also found a reduction in right cortical volume (ipsilateral to injury) in HI saline animals as compared to shams, while right cortical volume in the HI caffeine treated animals was intermediate. These findings suggest that caffeine is a potential therapeutic agent that could be used in HI injured infants to reduce brain injury and preserve subsequent cognitive function.
Collapse
Affiliation(s)
- Michelle Alexander
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| | - Amanda L Smith
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| | - Ted S Rosenkrantz
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - R Holly Fitch
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
10
|
Drury PP, Bennet L, Booth LC, Davidson JO, Wassink G, Gunn AJ. Maturation of the mitochondrial redox response to profound asphyxia in fetal sheep. PLoS One 2012; 7:e39273. [PMID: 22720088 PMCID: PMC3376132 DOI: 10.1371/journal.pone.0039273] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/22/2012] [Indexed: 12/04/2022] Open
Abstract
Fetal susceptibility to hypoxic brain injury increases over the last third of gestation. This study examined the hypothesis that this is associated with impaired mitochondrial adaptation, as measured by more rapid oxidation of cytochrome oxidase (CytOx) during profound asphyxia. Methods: Chronically instrumented fetal sheep at 0.6, 0.7, and 0.85 gestation were subjected to either 30 min (0.6 gestational age (ga), n = 6), 25 min (0.7 ga, n = 27) or 15 min (0.85 ga, n = 17) of complete umbilical cord occlusion. Fetal EEG, cerebral impedance (to measure brain swelling) and near-infrared spectroscopy-derived intra-cerebral oxygenation (ΔHb = HbO2 – Hb), total hemoglobin (THb) and CytOx redox state were monitored continuously. Occlusion was associated with profound, rapid fall in ΔHb in all groups to a plateau from 6 min, greatest at 0.85 ga compared to 0.6 and 0.7 ga (p<0.05). THb initially increased at all ages, with the greatest rise at 0.85 ga (p<0.05), followed by a progressive fall from 7 min in all groups. CytOx initially increased in all groups with the greatest rise at 0.85 ga (p<0.05), followed by a further, delayed increase in preterm fetuses, but a striking fall in the 0.85 group after 6 min of occlusion. Cerebral impedance (a measure of cytotoxic edema) increased earlier and more rapidly with greater gestation. In conclusion, the more rapid rise in CytOx and cortical impedance during profound asphyxia with greater maturation is consistent with increasing dependence on oxidative metabolism leading to earlier onset of neural energy failure before the onset of systemic hypotension.
Collapse
Affiliation(s)
- Paul P. Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Lindsea C. Booth
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- Howard Florey Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Joanne O. Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- Starship Children's Hospital, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
11
|
EEG suppression associated with apneic episodes in a neonate. Case Rep Neurol Med 2012; 2012:250801. [PMID: 22953087 PMCID: PMC3420368 DOI: 10.1155/2012/250801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/17/2011] [Indexed: 11/18/2022] Open
Abstract
We describe the EEG findings from an ex-preterm neonate at term equivalent age who presented with intermittent but prolonged apneic episodes which were presumed to be seizures. A total of 8 apneic episodes were captured (duration 23–376 seconds) during EEG monitoring. The baseline EEG activity was appropriate for corrected gestational age and no electrographic seizure activity was recorded. The average baseline heart rate was 168 beats per minute (bpm) and the baseline oxygen saturation level was in the mid-nineties. Periods of complete EEG suppression lasting 68 and 179 seconds, respectively, were recorded during 2 of these 8 apneic episodes. Both episodes were accompanied by bradycardia less than 70 bpm and oxygen saturation levels of less than 20%. Short but severe episodes of apnea can cause complete EEG suppression in the neonate.
Collapse
|
12
|
Endogenous adenosine A1 receptor activation underlies the transient post-ischemic rhythmic delta EEG activity. Clin Neurophysiol 2010; 122:1117-26. [PMID: 20947418 DOI: 10.1016/j.clinph.2010.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/19/2010] [Accepted: 09/20/2010] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Emergence of slow EEG rhythms within the delta frequency band following an ischemic insult of the brain has long been considered a marker of irreversible anatomical damage. Here we investigated whether ischemic adenosine release and subsequent functional inhibition via the adenosine A(1) receptor (A(1)R) contributes to post-ischemic delta activity. METHODS Rats were subjected to episodes of non-injuring transient global cerebral ischemia (GCI) under chloral hydrate anesthesia. RESULTS We found that a GCI lasting only 10s was enough to induce a brief discharge of rhythmic delta activity (RDA) with a peak frequency just below 1 Hz quantified as an increase by twofold of the 0.5-1.5 Hz spectral power. This post-ischemic RDA did not occur following administration of the A(1)R antagonist 8-cyclopentyl-1,3-dipropylxanthine. Nevertheless, a similar RDA could be induced in rats not subjected to GCI, by systemic administration of the A(1)R agonist N(6)-cyclopentyladenosine. CONCLUSIONS Our data suggest that A(1)R activation at levels that occur following cerebral ischemia underlies the transient post-ischemic RDA. SIGNIFICANCE It is likely that the functional, thus potentially reversible, synaptic disconnection by A(1)R activation promotes slow oscillations in the cortical networks. This should be accounted for in the interpretation of early post-ischemic EEG delta activity.
Collapse
|
13
|
Dale N, Frenguelli BG. Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 2010; 7:160-79. [PMID: 20190959 PMCID: PMC2769001 DOI: 10.2174/157015909789152146] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/15/2009] [Accepted: 05/01/2009] [Indexed: 12/17/2022] Open
Abstract
Eighty years ago Drury & Szent-Györgyi described the actions of adenosine, AMP (adenylic acid) and ATP (pyrophosphoric or diphosphoric ester of adenylic acid) on the mammalian cardiovascular system, skeletal muscle, intestinal and urinary systems. Since then considerable insight has been gleaned on the means by which these compounds act, not least of which in the distinction between the two broad classes of their respective receptors, with their many subtypes, and the ensuing diversity in cellular consequences their activation invokes. These myriad actions are of course predicated on the release of the purines into the extracellular milieu, but, surprisingly, there is still considerable ambiguity as to how this occurs in various physiological and pathophysiological conditions. In this review we summarise the release of ATP and adenosine during seizures and cerebral ischemia and discuss mechanisms by which the purines adenosine and ATP may be released from cells in the CNS under these conditions.
Collapse
Affiliation(s)
- Nicholas Dale
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
14
|
Moldovan M, Constantinescu AO, Balseanu A, Oprescu N, Zagrean L, Popa-Wagner A. Sleep deprivation attenuates experimental stroke severity in rats. Exp Neurol 2010; 222:135-43. [PMID: 20045410 DOI: 10.1016/j.expneurol.2009.12.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/01/2009] [Accepted: 12/22/2009] [Indexed: 12/19/2022]
Abstract
Indirect epidemiological and experimental evidence suggest that the severity of injury during stroke is influenced by prior sleep history. The aim of our study was to test the effect of acute sleep deprivation on early outcome following experimental stroke. Young male Sprague-Dawley rats (n=20) were subjected to focal cerebral ischemia by reversible right middle cerebral artery occlusion (MCAO) for 90 min. In 10 rats, MCAO was performed just after 6-h of total sleep deprivation (TSD) by "gentle handling", whereas the other rats served as controls. Neurological function during the first week after stroke was monitored using a battery of behavioral tests investigating the asymmetry of sensorimotor deficit (tape removal test and cylinder test), bilateral sensorimotor coordination (rotor-rod and Inclined plane) and memory (T-maze and radial maze). Following MCAO, control rats had impaired behavioral performance in all tests. The largest impairment was noted in the tape test where the tape removal time from the left forelimb (contralateral to MCAO) was increased by approximately 10 fold (p<0.01). In contrast, rats subjected to TSD had complete recovery of sensorimotor performance consistent with a 2.5 fold smaller infarct volume and reduced morphological signs of neuronal injury at day 7 after MCAO. Our data suggest that brief TSD induces a neuroprotective response that limits the severity of a subsequent stroke, similar to rapid ischemic preconditioning.
Collapse
Affiliation(s)
- Mihai Moldovan
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
15
|
Ilie A, Ciocan D, Constantinescu A, Zagrean AM, Nita D, Zagrean L, Moldovan M. Endogenous Activation of adenosine A1 receptors promotes post-ischemic electrocortical burst suppression. Neuroscience 2009; 159:1070-8. [DOI: 10.1016/j.neuroscience.2009.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/12/2008] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
|
16
|
Metabolic challenge to glia activates an adenosine-mediated safety mechanism that promotes neuronal survival by delaying the onset of spreading depression waves. J Cereb Blood Flow Metab 2008; 28:1835-44. [PMID: 18612316 DOI: 10.1038/jcbfm.2008.71] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In a model of glial-specific chemical anoxia, we have examined how astrocytes influence both synaptic transmission and the viability of hippocampal pyramidal neurons. This relationship was assessed using electrophysiological, pharmacological, and biochemical techniques in rat slices and cell cultures, and oxidative metabolism was selectively impaired in glial cells by exposure to the mitochondrial gliotoxin, fluoroacetate. We found that synaptic transmission was blocked shortly after inducing glial metabolic stress and peri-infarct-like spreading depression (SD) waves developed within 1 to 2 h of treatment. Neuronal electrogenesis was not affected until SD waves developed, thereafter decaying irreversibly. The blockage of synaptic transmission was totally reversed by A(1) adenosine receptor antagonists, unlike the development of SD waves, which appeared earlier under these conditions. Such blockage led to a marked reduction in the electrical viability of pyramidal neurons 1 h after gliotoxin treatment. Cell culture experiments confirmed that astrocytes indeed release adenosine. We interpret this early glial response as a novel safety mechanism that allocates metabolic resources to vital processes when the glia itself sense an energy shortage, thereby delaying or preventing entry into massive lethal ischemic-like depolarization. The implication of these results on the functional recovery of the penumbra regions after ischemic insults is discussed.
Collapse
|
17
|
Krnjević K. Electrophysiology of cerebral ischemia. Neuropharmacology 2008; 55:319-33. [DOI: 10.1016/j.neuropharm.2008.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 12/31/2007] [Accepted: 01/08/2008] [Indexed: 12/20/2022]
|
18
|
Booth LC, Tummers L, Jensen EC, Barrett CJ, Malpas SC, Gunn AJ, Bennet L. Differential effects of the adenosine A1 receptor agonist adenosine amine congener on renal, femoral and carotid vascular conductance in preterm fetal sheep. Clin Exp Pharmacol Physiol 2008; 35:1316-20. [PMID: 18671718 DOI: 10.1111/j.1440-1681.2008.05013.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Adenosine A(1) receptor activation is critical for endogenous neuroprotection from hypoxia-ischaemia, raising the possibility that treatment with A(1) receptor agonists may be an effective physiological protection strategy for vulnerable preterm infants. However, the A(1) receptor can mediate unwanted systemic effects, including vasoconstriction of the afferent glomerular arteriole. There is limited information on whether this occurs at doses that improve cerebral perfusion in the immature brain. 2. Therefore, in the present study, we examined whether infusion of the selective A(1) receptor agonist adenosine amine congener (ADAC) is associated with reduced renal perfusion in chronically instrumented preterm (0.7 gestation) fetal sheep. In the present study, ADAC was given in successive doses of 2.5, 5.0 and 15.0 microg, 45 min apart. 3. Treatment with ADAC was associated with a marked reduction in renal vascular conductance (and blood flow), whereas carotid conductance was increased and there was no significant effect on femoral conductance. In contrast with the stable effects of increasing ADAC dose on vascular conductance, there was a significant dose-related fall in fetal heart rate and blood pressure. 4. In conclusion, these short-term data support the concern that A(1) receptor agonist infusion can selectively impair renal perfusion, even at low doses.
Collapse
Affiliation(s)
- Lindsea C Booth
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
19
|
Obrenovitch TP. Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 2008; 88:211-47. [PMID: 18195087 DOI: 10.1152/physrev.00039.2006] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ischemic tolerance describes the adaptive biological response of cells and organs that is initiated by preconditioning (i.e., exposure to stressor of mild severity) and the associated period during which their resistance to ischemia is markedly increased. This topic is attracting much attention because preconditioning-induced ischemic tolerance is an effective experimental probe to understand how the brain protects itself. This review is focused on the molecular and related functional changes that are associated with, and may contribute to, brain ischemic tolerance. When the tolerant brain is subjected to ischemia, the resulting insult severity (i.e., residual blood flow, disruption of cellular transmembrane gradients) appears to be the same as in the naive brain, but the ensuing lesion is substantially reduced. This suggests that the adaptive changes in the tolerant brain may be primarily directed against postischemic and delayed processes that contribute to ischemic damage, but adaptive changes that are beneficial during the subsequent test insult cannot be ruled out. It has become clear that multiple effectors contribute to ischemic tolerance, including: 1) activation of fundamental cellular defense mechanisms such as antioxidant systems, heat shock proteins, and cell death/survival determinants; 2) responses at tissue level, especially reduced inflammatory responsiveness; and 3) a shift of the neuronal excitatory/inhibitory balance toward inhibition. Accordingly, an improved knowledge of preconditioning/ischemic tolerance should help us to identify neuroprotective strategies that are similar in nature to combination therapy, hence potentially capable of suppressing the multiple, parallel pathophysiological events that cause ischemic brain damage.
Collapse
Affiliation(s)
- Tihomir Paul Obrenovitch
- Division of Pharmacology, School of Life Sciences, University of Bradford, Bradford, United Kingdom.
| |
Collapse
|
20
|
Frenguelli BG, Wigmore G, Llaudet E, Dale N. Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem 2007; 101:1400-13. [PMID: 17459147 PMCID: PMC1920548 DOI: 10.1111/j.1471-4159.2006.04425.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is well known to be released during cerebral metabolic stress and is believed to be neuroprotective. ATP release under similar circumstances has been much less studied. We have now used biosensors to measure and compare in real time the release of ATP and adenosine during in vitro ischaemia in hippocampal slices. ATP release only occurred following the anoxic depolarisation, whereas adenosine release was apparent almost immediately after the onset of ischaemia. ATP release required extracellular Ca2+. By contrast adenosine release was enhanced by removal of extracellular Ca2+, whilst TTX had no effect on either ATP release or adenosine release. Blockade of ionotropic glutamate receptors substantially enhanced ATP release, but had only a modest effect on adenosine release. Carbenoxolone, an inhibitor of gap junction hemichannels, also greatly enhanced ischaemic ATP release, but had little effect on adenosine release. The ecto-ATPase inhibitor ARL 67156, whilst modestly enhancing the ATP signal detected during ischaemia, had no effect on adenosine release. Adenosine release during ischaemia was reduced by pre-treament with homosysteine thiolactone suggesting an intracellular origin. Adenosine transport inhibitors did not inhibit adenosine release, but instead they caused a twofold increase of release. Our data suggest that ATP and adenosine release during ischaemia are for the most part independent processes with distinct underlying mechanisms. These two purines will consequently confer temporally distinct influences on neuronal and glial function in the ischaemic brain.
Collapse
Affiliation(s)
- Bruno G Frenguelli
- Neurosciences Institute, Division of Pathology & Neuroscience, University of Dundee, Ninewells HospitalDundee, UK
| | - Geoffrey Wigmore
- Department of Biological Sciences, University of WarwickCoventry, UK
| | - Enrique Llaudet
- Department of Biological Sciences, University of WarwickCoventry, UK
| | - Nicholas Dale
- Department of Biological Sciences, University of WarwickCoventry, UK
| |
Collapse
|