1
|
Mehsein Z, Kobaïter-Maarrawi S, Samaha H, El Shami M, Albeaini S, Maarrawi J. Right posterior insular epidural stimulation in rats with neuropathic pain induces a frequency-dependent and opioid system-mediated reduction of pain and its comorbid anxiety and depression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110845. [PMID: 37619765 DOI: 10.1016/j.pnpbp.2023.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/29/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Neuropathic pain (NP) is a sensory, emotional, and persistent disturbing experience caused by a lesion or disease of the somatosensory system which can lead when chronic to comorbidities such as anxiety and depression. Available treatments (pharmacotherapy, neurostimulation) have partial and unpredictable response; therefore, it seems necessary to find a new therapeutical approach that could alleviate most related symptoms and improve patients 'emotional state'. Posterior Insula seems to be a potential target of neurostimulation for pain relief. However, its effects on pain-related anxiety and depression remain unknown. Using rats with spared nerve injury (SNI), this study aims to elucidate the correlation between NP and anxio-depressive disorders, evaluate potential analgesic, anxiolytic, and antidepressant effects of right posterior insula stimulation (IS) using low (LF-IS, 50 Hz) or high (HF-IS, 150 Hz) frequency and assess endogenous opioid involvement in these effects. Results showed positive correlation between NP, anxiety, and depression. LF-IS reversed anhedonia and despair-like behavior through pain alleviation, whereas HF-IS only reduced anhedonia, all effects involving endogenous opioids. These findings support the link between NP and anxio-depressive disorders. Moreover, IS appears to have analgesic, anxiolytic and antidepressant effects mediated by the endogenous opioid system, making it a promising target for neurostimulation.
Collapse
Affiliation(s)
- Zeinab Mehsein
- Laboratory of Research in Neuroscience (LAREN), Pôle Technologie Santé (PTS), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Sandra Kobaïter-Maarrawi
- Laboratory of Research in Neuroscience (LAREN), Pôle Technologie Santé (PTS), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon.
| | - Hady Samaha
- Laboratory of Research in Neuroscience (LAREN), Pôle Technologie Santé (PTS), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Mohamad El Shami
- Laboratory of Research in Neuroscience (LAREN), Pôle Technologie Santé (PTS), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Sylvana Albeaini
- Laboratory of Research in Neuroscience (LAREN), Pôle Technologie Santé (PTS), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Joseph Maarrawi
- Laboratory of Research in Neuroscience (LAREN), Pôle Technologie Santé (PTS), Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon; Department of Neurosurgery - Hôtel-Dieu de France Hospital, Beirut, Lebanon
| |
Collapse
|
2
|
Sypré L, Durand JB, Nelissen K. Functional characterization of macaque insula using task-based and resting-state fMRI. Neuroimage 2023; 276:120217. [PMID: 37271304 DOI: 10.1016/j.neuroimage.2023.120217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/13/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023] Open
Abstract
Neurophysiological investigations over the past decades have demonstrated the involvement of the primate insula in a wide array of sensory, cognitive, affective and regulatory functions, yet the complex functional organization of the insula remains unclear. Here we examined to what extent non-invasive task-based and resting-state fMRI provides support for functional specialization and integration of sensory and motor information in the macaque insula. Task-based fMRI experiments suggested a functional specialization related to processing of ingestive/taste/distaste information in anterior insula, grasping-related sensorimotor responses in middle insula and vestibular information in posterior insula. Visual stimuli depicting social information involving conspecific`s lip-smacking gestures yielded responses in middle and anterior portions of dorsal and ventral insula, overlapping partially with the sensorimotor and ingestive/taste/distaste fields. Functional specialization/integration of the insula was further corroborated by seed-based whole brain resting-state analyses, showing distinct functional connectivity gradients across the anterio-posterior extent of both dorsal and ventral insula. Posterior insula showed functional correlations in particular with vestibular/optic flow network regions, mid-dorsal insula with vestibular/optic flow as well as parieto-frontal regions of the sensorimotor grasping network, mid-ventral insula with social/affiliative network regions in temporal, cingulate and prefrontal cortices and anterior insula with taste and mouth motor networks including premotor and frontal opercular regions.
Collapse
Affiliation(s)
- Lotte Sypré
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | | | - Koen Nelissen
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Pagano RL, Dale CS, Campos ACP, Hamani C. Translational aspects of deep brain stimulation for chronic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1084701. [PMID: 36713643 PMCID: PMC9874335 DOI: 10.3389/fpain.2022.1084701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
The use of deep brain stimulation (DBS) for the treatment of chronic pain was one of the first applications of this technique in functional neurosurgery. Established brain targets in the clinic include the periaqueductal (PAG)/periventricular gray matter (PVG) and sensory thalamic nuclei. More recently, the anterior cingulum (ACC) and the ventral striatum/anterior limb of the internal capsule (VS/ALIC) have been investigated for the treatment of emotional components of pain. In the clinic, most studies showed a response in 20%-70% of patients. In various applications of DBS, animal models either provided the rationale for the development of clinical trials or were utilized as a tool to study potential mechanisms of stimulation responses. Despite the complex nature of pain and the fact that animal models cannot reliably reflect the subjective nature of this condition, multiple preparations have emerged over the years. Overall, DBS was shown to produce an antinociceptive effect in rodents when delivered to targets known to induce analgesic effects in humans, suggesting a good predictive validity. Compared to the relatively high number of clinical trials in the field, however, the number of animal studies has been somewhat limited. Additional investigation using modern neuroscience techniques could unravel the mechanisms and neurocircuitry involved in the analgesic effects of DBS and help to optimize this therapy.
Collapse
Affiliation(s)
- Rosana L. Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Camila S. Dale
- Laboratory of Neuromodulation and Experimental Pain, Department of Anatomy, University of São Paulo, São Paulo, Brazil
| | | | - Clement Hamani
- Sunnybrook Research Institute, Hurvitz Brain Sciences Centre, Toronto, ON, Canada,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada,Correspondence: Clement Hamani
| |
Collapse
|
4
|
Decomposing Neural Representational Patterns of Discriminatory and Hedonic Information during Somatosensory Stimulation. eNeuro 2023; 10:ENEURO.0274-22.2022. [PMID: 36549914 PMCID: PMC9829099 DOI: 10.1523/eneuro.0274-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The ability to interrogate specific representations in the brain, determining how, and where, difference sources of information are instantiated can provide invaluable insight into neural functioning. Pattern component modeling (PCM) is a recent analytic technique for human neuroimaging that allows the decomposition of representational patterns in brain into contributing subcomponents. In the current study, we present a novel PCM variant that tracks the contribution of prespecified representational patterns to brain representation across areas, thus allowing hypothesis-guided employment of the technique. We apply this technique to investigate the contributions of hedonic and nonhedonic information to the neural representation of tactile experience. We applied aversive pressure (AP) and appetitive brush (AB) to stimulate distinct peripheral nerve pathways for tactile information (C-/CT-fibers, respectively) while patients underwent functional magnetic resonance imaging (fMRI) scanning. We performed representational similarity analyses (RSAs) with pattern component modeling to dissociate how discriminatory versus hedonic tactile information contributes to population code representations in the human brain. Results demonstrated that information about appetitive and aversive tactile sensation is represented separately from nonhedonic tactile information across cortical structures. This also demonstrates the potential of new hypothesis-guided PCM variants to help delineate how information is instantiated in the brain.
Collapse
|
5
|
Shiroshita Y, Kirimoto H, Watanabe T, Yunoki K, Sobue I. Event-related potentials evoked by skin puncture reflect activation of Aβ fibers: comparison with intraepidermal and transcutaneous electrical stimulations. PeerJ 2021; 9:e12250. [PMID: 34707936 PMCID: PMC8504465 DOI: 10.7717/peerj.12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background Recently, event-related potentials (ERPs) evoked by skin puncture, commonly used for blood sampling, have received attention as a pain assessment tool in neonates. However, their latency appears to be far shorter than the latency of ERPs evoked by intraepidermal electrical stimulation (IES), which selectively activates nociceptive Aδ and C fibers. To clarify this important issue, we examined whether ERPs evoked by skin puncture appropriately reflect central nociceptive processing, as is the case with IES. Methods In Experiment 1, we recorded evoked potentials to the click sound produced by a lance device (click-only), lance stimulation with the click sound (click+lance), or lance stimulation with white noise (WN+lance) in eight healthy adults to investigate the effect of the click sound on the ERP evoked by skin puncture. In Experiment 2, we tested 18 heathy adults and recorded evoked potentials to shallow lance stimulation (SL) with a blade that did not reach the dermis (0.1 mm insertion depth); normal lance stimulation (CL) (1 mm depth); transcutaneous electrical stimulation (ES), which mainly activates Aβ fibers; and IES, which selectively activates Aδ fibers when low stimulation current intensities are applied. White noise was continuously presented during the experiments. The stimulations were applied to the hand dorsum. In the SL, the lance device did not touch the skin and the blade was inserted to a depth of 0.1 mm into the epidermis, where the free nerve endings of Aδ fibers are located, which minimized the tactile sensation caused by the device touching the skin and the activation of Aβ fibers by the blade reaching the dermis. In the CL, as in clinical use, the lance device touched the skin and the blade reached a depth of 1 mm from the skin surface, i.e., the depth of the dermis at which the Aβ fibers are located. Results The ERP N2 latencies for click-only (122 ± 2.9 ms) and click+lance (121 ± 6.5 ms) were significantly shorter than that for WN+lance (154 ± 7.1 ms). The ERP P2 latency for click-only (191 ± 11.3 ms) was significantly shorter than those for click+lance (249 ± 18.6 ms) and WN+lance (253 ± 11.2 ms). This suggests that the click sound shortens the N2 latency of the ERP evoked by skin puncture. The ERP N2 latencies for SL, CL, ES, and IES were 146 ± 8.3, 149 ± 9.9, 148 ± 13.1, and 197 ± 21.2 ms, respectively. The ERP P2 latencies were 250 ± 18.2, 251 ± 14.1, 237 ± 26.3, and 294 ± 30.0 ms, respectively. The ERP latency for SL was significantly shorter than that for IES and was similar to that for ES. This suggests that the penetration force generated by the blade of the lance device activates the Aβ fibers, consequently shortening the ERP latency. Conclusions Lance ERP may reflect the activation of Aβ fibers rather than Aδ fibers. A pain index that correctly and reliably reflects nociceptive processing must be developed to improve pain assessment and management in neonates.
Collapse
Affiliation(s)
- Yui Shiroshita
- Department of Nursing Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Yunoki
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ikuko Sobue
- Department of Nursing Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Lee CH, Kim HS, Kim YS, Jung S, Yoon CH, Kwon OY. Cerebral current-source distribution associated with pain improvement by non-invasive painless signaling therapy in patients with failed back surgery syndrome. Korean J Pain 2021; 34:437-446. [PMID: 34593661 PMCID: PMC8494963 DOI: 10.3344/kjp.2021.34.4.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Non-invasive painless signaling therapy (NPST) is an electro-cutaneous treatment that converts endogenous pain information into synthetic non-pain information. This study explored whether pain improvement by NPST in failed back surgery syndrome (FBSS) patients is related to cerebral modulation. METHODS Electroencephalography (EEG) analysis was performed in 11 patients with FBSS. Subjects received daily NPST for 5 days. Before the first treatment, patients completed the Brief Pain Inventory (BPI) and Beck Depression Inventory and underwent baseline EEG. After the final treatment, they responded again to the BPI, reported the percent pain improvement (PPI), and then underwent post-treatment EEG. If the PPI grade was zero, they were assigned to the ineffective group, while all others were assigned to the effective group. We used standardized low-resolution brain electromagnetic tomography (sLORETA) to explore the EEG current-source distribution (CSD) associated with pain improvement by NPST. RESULTS The 11 participants had a median age of 67.0 years, and 63.6% were female. The sLORETA images revealed a beta-2 CSD increment in 12 voxels of the right anterior cingulate gyrus (ACG) and the right medial frontal area. The point of maximal CSD changes was in the right ACG. The alpha band CSD increased in 2 voxels of the left transverse gyrus. CONCLUSIONS Pain improvement by NPST in FBSS patients was associated with increased cerebral activity, mainly in the right ACG. The change in afferent information induced by NPST seems to be associated with cerebral pain perception.
Collapse
Affiliation(s)
- Chang Han Lee
- Department of Rehabilitation Medicine, Gyeongsang National University Hospital, Jinju, Korea
- Department of Rehabilitation Medicine, Gyeongsang National University College of Medicine, Jinju, Korea
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Hyeong Seop Kim
- Department of Rehabilitation Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Young-Soo Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
- Department of Neurology, Gyeongsang National University College of Medicine, Jinju, Korea
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Seokwon Jung
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
| | - Chul Ho Yoon
- Department of Rehabilitation Medicine, Gyeongsang National University Hospital, Jinju, Korea
- Department of Rehabilitation Medicine, Gyeongsang National University College of Medicine, Jinju, Korea
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Oh-Young Kwon
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
- Department of Neurology, Gyeongsang National University College of Medicine, Jinju, Korea
- Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Korea
| |
Collapse
|
7
|
Bergeron D, Obaid S, Fournier-Gosselin MP, Bouthillier A, Nguyen DK. Deep Brain Stimulation of the Posterior Insula in Chronic Pain: A Theoretical Framework. Brain Sci 2021; 11:brainsci11050639. [PMID: 34063367 PMCID: PMC8156413 DOI: 10.3390/brainsci11050639] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. METHODS We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. RESULTS Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. CONCLUSION In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.
Collapse
Affiliation(s)
- David Bergeron
- Service de Neurochirurgie, Université de Montréal, Montréal, QC H3T 1L5, Canada; (S.O.); (M.-P.F.-G.); (A.B.)
- Correspondence:
| | - Sami Obaid
- Service de Neurochirurgie, Université de Montréal, Montréal, QC H3T 1L5, Canada; (S.O.); (M.-P.F.-G.); (A.B.)
| | | | - Alain Bouthillier
- Service de Neurochirurgie, Université de Montréal, Montréal, QC H3T 1L5, Canada; (S.O.); (M.-P.F.-G.); (A.B.)
| | - Dang Khoa Nguyen
- Service de Neurologie, Université de Montréal, Montréal, QC H3T 1L5, Canada;
| |
Collapse
|
8
|
Abstract
Long perceived as a primitive and poorly differentiated brain structure, the primate insular cortex recently emerged as a highly evolved, organized and richly connected cortical hub interfacing bodily states with sensorimotor, environmental, and limbic activities. This insular interface likely substantiates emotional embodiment and has the potential to have a key role in the interoceptive shaping of cognitive processes, including perceptual awareness. In this review, we present a novel working model of the insular cortex, based on an accumulation of neuroanatomical and functional evidence obtained essentially in the macaque monkey. This model proposes that interoceptive afferents that represent the ongoing physiological status of all the organs of the body are first being received in the granular dorsal fundus of the insula or “primary interoceptive cortex,” then processed through a series of dysgranular poly-modal “insular stripes,” and finally integrated in anterior agranular areas that serve as an additional sensory platform for visceral functions and as an output stage for efferent autonomic regulation. One of the agranular areas hosts the specialized von Economo and Fork neurons, which could provide a decisive evolutionary advantage for the role of the anterior insula in the autonomic and emotional binding inherent to subjective awareness.
Collapse
Affiliation(s)
- Henry C Evrard
- Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Center for Integrative Neuroscience, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
9
|
Kirimoto H, Tamaki H, Otsuru N, Yamashiro K, Onishi H, Nojima I, Oliviero A. Transcranial Static Magnetic Field Stimulation over the Primary Motor Cortex Induces Plastic Changes in Cortical Nociceptive Processing. Front Hum Neurosci 2018; 12:63. [PMID: 29497371 PMCID: PMC5818436 DOI: 10.3389/fnhum.2018.00063] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022] Open
Abstract
Transcranial static magnetic field stimulation (tSMS) is a novel and inexpensive, non-invasive brain stimulation (NIBS) technique. Here, we performed non-invasive modulation of intra-epidermal electrical stimulation-evoked potentials (IES-EPs) by applying tSMS or sham stimulation over the primary motor (M1) and somatosensory (S1) cortices in 18 healthy volunteers for 15 min. We recorded EPs after IES before, right after, and 10 min after tSMS. The IES-EP amplitude was significantly reduced immediately after tSMS over M1, whereas tSMS over S1 and sham stimulation did not affect the IES-EP amplitude. Thus, tSMS may affect cortical nociceptive processing. Although the results of intervention for experimental acute pain in healthy subjects cannot be directly translated into the clinical situation, tSMS may be a potentially useful NIBS method for managing chronic pain, in addition to standard of care treatments.
Collapse
Affiliation(s)
- Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Tamaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naufumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Ippei Nojima
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Toledo, Spain
| |
Collapse
|
10
|
Jutzeler CR, Warner FM, Wanek J, Curt A, Kramer JLK. Thermal grill conditioning: Effect on contact heat evoked potentials. Sci Rep 2017; 7:40007. [PMID: 28079118 PMCID: PMC5228159 DOI: 10.1038/srep40007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022] Open
Abstract
The ‘thermal grill illusion’ (TGI) is a unique cutaneous sensation of unpleasantness, induced through the application of interlacing warm and cool stimuli. While previous studies have investigated optimal parameters and subject characteristics to evoke the illusion, our aim was to examine the modulating effect as a conditioning stimulus. A total of 28 healthy control individuals underwent three testing sessions on separate days. Briefly, 15 contact heat stimuli were delivered to the right hand dorsum, while the left palmar side of the hand was being conditioned with either neutral (32 °C), cool (20 °C), warm (40 °C), or TGI (20/40 °C). Rating of perception (numeric rating scale: 0–10) and evoked potentials (i.e., N1 and N2P2 potentials) to noxious contact heat stimuli were assessed. While cool and warm conditioning decreased cortical responses to noxious heat, TGI conditioning increased evoked potential amplitude (N1 and N2P2). In line with other modalities of unpleasant conditioning (e.g., sound, visual, and olfactory stimulation), cortical and possibly sub-cortical modulation may underlie the facilitation of contact heat evoked potentials.
Collapse
Affiliation(s)
- Catherine R Jutzeler
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,ICORD, University of British Columbia, Vancouver, BC, Canada.,School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Freda M Warner
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,ICORD, University of British Columbia, Vancouver, BC, Canada
| | - Johann Wanek
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - John L K Kramer
- ICORD, University of British Columbia, Vancouver, BC, Canada.,School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Insular Cortex is Critical for the Perception, Modulation, and Chronification of Pain. Neurosci Bull 2016; 32:191-201. [PMID: 26898298 DOI: 10.1007/s12264-016-0016-y] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
An increasing body of neuroimaging and electrophysiological studies of the brain suggest that the insular cortex (IC) integrates multimodal salient information ranging from sensation to cognitive-affective events to create conscious interoception. Especially with regard to pain experience, the IC has been supposed to participate in both sensory-discriminative and affective-motivational aspects of pain. In this review, we discuss the latest data proposing that subregions of the IC are involved in isolated pain networks: the posterior sensory circuit and the anterior emotional network. Due to abundant connections with other brain areas, the IC is likely to serve as an interface where cross-modal shaping of pain occurs. In chronic pain, however, this mode of emotional awareness and the modulation of pain are disrupted. We highlight some of the molecular mechanisms underlying the changes of the pain modulation system that contribute to the transition from acute to chronic pain in the IC.
Collapse
|
12
|
Ødegård SS, Omland PM, Nilsen KB, Stjern M, Gravdahl GB, Sand T. The effect of sleep restriction on laser evoked potentials, thermal sensory and pain thresholds and suprathreshold pain in healthy subjects. Clin Neurophysiol 2014; 126:1979-87. [PMID: 25579466 DOI: 10.1016/j.clinph.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Sleep restriction seems to change our experience of pain and reduce laser evoked potential (LEP) amplitudes. However, although LEP-habituation abnormalities have been described in painful conditions with comorbid sleep impairment, no study has previously measured the effect of sleep restriction on LEP-habituation, pain thresholds, and suprathreshold pain. METHOD Sixteen males and seventeen females (aged 18-31years) were randomly assigned to either two nights of delayed bedtime and four hours sleep (partial sleep deprivation) or nine hours sleep. The study subjects slept at home, and the sleep was measured with actigraphy both nights and polysomnography the last night. LEP, thermal thresholds and suprathreshold pain ratings were obtained the day before and the day after intervention. The investigator was blinded. ANOVA was used to evaluate the interaction between sleep restriction and day for each pain-related variable. RESULTS LEP-amplitude decreased after sleep restriction (interaction p=0.02) compared to subjects randomized to nine hours sleep. LEP-habituation was similar in both groups. Thenar cold pain threshold decreased after sleep restriction (interaction p=0.009). Supra-threshold heat pain rating increased temporarily 10s after stimulus onset after sleep restriction (interaction p=0.01), while it did not change after nine hours sleep. CONCLUSION Sleep restriction reduced the CNS response to pain, while some of the subjective pain measures indicated hyperalgesia. SIGNIFICANCE Since LEP-amplitude is known to reflect both CNS-pain-specific processing and cognitive attentive processing, our results suggest that hyperalgesia after sleep restriction might partly be caused by a reduction in cortical cognitive or perceptual mechanisms, rather than sensory amplification.
Collapse
Affiliation(s)
- Siv Steinsmo Ødegård
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, MTFS, N-7489 Trondheim, Norway.
| | - Petter Moe Omland
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, MTFS, N-7489 Trondheim, Norway
| | - Kristian Bernhard Nilsen
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, MTFS, N-7489 Trondheim, Norway; Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway; Department of Neurology, Section for Clinical Neurophysiology, Oslo University Hospital - Ullevål, Oslo, Norway
| | - Marit Stjern
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, MTFS, N-7489 Trondheim, Norway; Norwegian National Headache Centre, Section of Neurology, St. Olavs Hospital, N-7006 Trondheim, Norway
| | - Gøril Bruvik Gravdahl
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, MTFS, N-7489 Trondheim, Norway; Norwegian National Headache Centre, Section of Neurology, St. Olavs Hospital, N-7006 Trondheim, Norway
| | - Trond Sand
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, MTFS, N-7489 Trondheim, Norway; Norwegian National Headache Centre, Section of Neurology, St. Olavs Hospital, N-7006 Trondheim, Norway
| |
Collapse
|
13
|
Craig ADB. Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus in the long-tailed macaque monkey. J Comp Neurol 2014; 522:36-63. [PMID: 23853108 PMCID: PMC4145874 DOI: 10.1002/cne.23425] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/15/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022]
Abstract
Prior anterograde tracing work identified somatotopically organized lamina I trigemino- and spinothalamic terminations in a cytoarchitectonically distinct portion of posterolateral thalamus of the macaque monkey, named the posterior part of the ventral medial nucleus (VMpo; Craig [2004] J. Comp. Neurol. 477:119-148). Microelectrode recordings from clusters of selectively thermoreceptive or nociceptive neurons were used to guide precise microinjections of various tracers in VMpo. A prior report (Craig and Zhang [2006] J. Comp. Neurol. 499:953-964) described retrograde tracing results, which confirmed the selective lamina I input to VMpo and the anteroposterior (head to foot) topography. The present report describes the results of microinjections of anterograde tracers placed at different levels in VMpo, based on the anteroposterior topographic organization of selectively nociceptive units and clusters over nearly the entire extent of VMpo. Each injection produced dense, patchy terminal labeling in a single coherent field within a distinct granular cortical area centered in the fundus of the superior limiting sulcus. The terminations were distributed with a consistent anteroposterior topography over the posterior half of the superior limiting sulcus. These observations demonstrate a specific VMpo projection area in dorsal posterior insular cortex that provides the basis for a somatotopic representation of selectively nociceptive lamina I spinothalamic activity. These results also identify the VMpo terminal area as the posterior half of interoceptive cortex; the anterior half receives input from the vagal-responsive and gustatory neurons in the basal part of the ventral medial nucleus.
Collapse
Affiliation(s)
- A D Bud Craig
- Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, Arizona, 85013
| |
Collapse
|
14
|
Krahé C, Springer A, Weinman JA, Fotopoulou A. The social modulation of pain: others as predictive signals of salience - a systematic review. Front Hum Neurosci 2013; 7:386. [PMID: 23888136 PMCID: PMC3719078 DOI: 10.3389/fnhum.2013.00386] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/04/2013] [Indexed: 12/15/2022] Open
Abstract
Several studies in cognitive neuroscience have investigated the cognitive and affective modulation of pain. By contrast, fewer studies have focused on the social modulation of pain, despite a plethora of relevant clinical findings. Here we present the first review of experimental studies addressing how interpersonal factors, such as the presence, behavior, and spatial proximity of an observer, modulate pain. Based on a systematic literature search, we identified 26 studies on experimentally induced pain that manipulated different interpersonal variables and measured behavioral, physiological, and neural pain-related responses. We observed that the modulation of pain by interpersonal factors depended on (1) the degree to which the social partners were active or were perceived by the participants to possess possibility for action; (2) the degree to which participants could perceive the specific intentions of the social partners; (3) the type of pre-existing relationship between the social partner and the person in pain, and lastly, (4) individual differences in relating to others and coping styles. Based on these findings, we propose that the modulation of pain by social factors can be fruitfully understood in relation to a recent predictive coding model, the free energy framework, particularly as applied to interoception and social cognition. Specifically, we argue that interpersonal interactions during pain may function as social, predictive signals of contextual threat or safety and as such influence the salience of noxious stimuli. The perception of such interpersonal interactions may in turn depend on (a) prior beliefs about interpersonal relating and (b) the certainty or precision by which an interpersonal interaction may predict environmental threat or safety.
Collapse
Affiliation(s)
- Charlotte Krahé
- Department of Psychology, Institute of Psychiatry, King’s College London, London, UK
| | - Anne Springer
- Department of Sport and Exercise Psychology, University of Potsdam, Potsdam, Germany
| | - John A. Weinman
- Department of Psychology, Institute of Psychiatry, King’s College London, London, UK
| | - Aikaterini Fotopoulou
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
15
|
|
16
|
Pain and analgesia: the value of salience circuits. Prog Neurobiol 2013; 104:93-105. [PMID: 23499729 DOI: 10.1016/j.pneurobio.2013.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 02/07/2023]
Abstract
Evaluating external and internal stimuli is critical to survival. Potentially tissue-damaging conditions generate sensory experiences that the organism must respond to in an appropriate, adaptive manner (e.g., withdrawal from the noxious stimulus, if possible, or seeking relief from pain and discomfort). The importance we assign to a signal generated by a noxious state, its salience, reflects our belief as to how likely the underlying situation is to impact our chance of survival. Importantly, it has been hypothesized that aberrant functioning of the brain circuits which assign salience values to stimuli may contribute to chronic pain. We describe examples of this phenomenon, including 'feeling pain' in the absence of a painful stimulus, reporting minimal pain in the setting of major trauma, having an 'analgesic' response in the absence of an active treatment, or reporting no pain relief after administration of a potent analgesic medication, which may provide critical insights into the role that salience circuits play in contributing to numerous conditions characterized by persistent pain. Collectively, a refined understanding of abnormal activity or connectivity of elements within the salience network may allow us to more effectively target interventions to relevant components of this network in patients with chronic pain.
Collapse
|
17
|
Vierck CJ, Whitsel BL, Favorov OV, Brown AW, Tommerdahl M. Role of primary somatosensory cortex in the coding of pain. Pain 2013; 154:334-344. [PMID: 23245864 PMCID: PMC4501501 DOI: 10.1016/j.pain.2012.10.021] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 09/15/2012] [Accepted: 10/29/2012] [Indexed: 02/04/2023]
Abstract
The intensity and submodality of pain are widely attributed to stimulus encoding by peripheral and subcortical spinal/trigeminal portions of the somatosensory nervous system. Consistent with this interpretation are studies of surgically anesthetized animals, demonstrating that relationships between nociceptive stimulation and activation of neurons are similar at subcortical levels of somatosensory projection and within the primary somatosensory cortex (in cytoarchitectural areas 3b and 1 of somatosensory cortex, SI). Such findings have led to characterizations of SI as a network that preserves, rather than transforms, the excitatory drive it receives from subcortical levels. Inconsistent with this perspective are images and neurophysiological recordings of SI neurons in lightly anesthetized primates. These studies demonstrate that an extreme anterior position within SI (area 3a) receives input originating predominantly from unmyelinated nociceptors, distinguishing it from posterior SI (areas 3b and 1), long recognized as receiving input predominantly from myelinated afferents, including nociceptors. Of particular importance, interactions between these subregions during maintained nociceptive stimulation are accompanied by an altered SI response to myelinated and unmyelinated nociceptors. A revised view of pain coding within SI cortex is discussed, and potentially significant clinical implications are emphasized.
Collapse
Affiliation(s)
- Charles J Vierck
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610-0244, USA Department of Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA Department of Computer Sciences, University of North Carolina School of Medicine, Chapel Hill, NC, USA Senior School, Shadyside Academy, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain. Neurophysiol Clin 2012; 42:315-23. [DOI: 10.1016/j.neucli.2012.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/23/2012] [Accepted: 05/28/2012] [Indexed: 12/23/2022] Open
|
20
|
Garcia-Larrea L. The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol Clin 2012; 42:299-313. [DOI: 10.1016/j.neucli.2012.06.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/01/2012] [Accepted: 06/10/2012] [Indexed: 01/15/2023] Open
|
21
|
Differential NMR spectroscopy reactions of anterior/posterior and right/left insular subdivisions due to acute dental pain. Eur Radiol 2012; 23:450-60. [DOI: 10.1007/s00330-012-2621-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 12/26/2022]
|
22
|
Steady-state evoked potentials to tag specific components of nociceptive cortical processing. Neuroimage 2012; 60:571-81. [DOI: 10.1016/j.neuroimage.2011.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/02/2011] [Accepted: 12/04/2011] [Indexed: 11/20/2022] Open
|
23
|
Oostrom H, Stienen PJ, Doornenbal A, Hellebrekers LJ. Nociception-related somatosensory evoked potentials in awake dogs recorded after intra epidermal electrical stimulation. Eur J Pain 2012; 13:154-60. [DOI: 10.1016/j.ejpain.2008.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 03/10/2008] [Accepted: 03/31/2008] [Indexed: 11/26/2022]
|
24
|
Mazzola L, Isnard J, Peyron R, Mauguière F. Stimulation of the human cortex and the experience of pain: Wilder Penfield's observations revisited. ACTA ACUST UNITED AC 2011; 135:631-40. [PMID: 22036962 DOI: 10.1093/brain/awr265] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thanks to the seminal work of Wilder Graves Penfield (1891-1976) at the Montreal Neurological Institute, electrical stimulation is used worldwide to localize the epileptogenic cortex and to map the functionally eloquent areas in the context of epilepsy surgery or lesion resections. In the functional map of elementary and experiential responses he described through >20 years of careful exploration of the human cortex via stimulation of the cortical surface, Penfield did not identify any 'pain cortical area'. We reinvestigated this issue by analysing subjective and videotaped behavioural responses to 4160 cortical stimulations using intracerebral electrodes implanted in all cortical lobes that were carried out over 12 years during the presurgical evaluation of epilepsy in 164 consecutive patients. Pain responses were scarce (1.4%) and concentrated in the medial part of the parietal operculum and neighbouring posterior insula where pain thresholds showed a rostrocaudal decrement. This deep cortical region remained largely inaccessible to the intraoperative stimulation of the cortical surface carried out by Penfield after resection of the parietal operculum. It differs also from primary sensory areas described by Penfield et al. in the sense that, with our stimulation paradigm, pain represented only 10% of responses. Like Penfield et al., we obtained no pain response anywhere else in the cortex, including in regions consistently activated by pain in most functional imaging studies, i.e. the first somatosensory area, the lateral part of the secondary somatosensory area, anterior and mid-cingulate gyri (mid-cingulate cortex), anterior frontal, posterior parietal and supplementary motor areas. The medial parietal operculum and posterior insula are thus the only areas where electrical stimulation is able to trigger activation of the pain cortical network and thus the experience of somatic pain.
Collapse
Affiliation(s)
- Laure Mazzola
- Department of Neurology, University Hospital, St-Etienne, 42055 cedex 2, France
| | | | | | | |
Collapse
|
25
|
Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J Neurosci 2011; 31:6079-87. [PMID: 21508233 DOI: 10.1523/jneurosci.3977-10.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The periodic presentation of a sensory stimulus induces, at certain frequencies of stimulation, a sustained electroencephalographic response known as steady-state evoked potential (SS-EP). In the somatosensory, visual, and auditory modalities, SS-EPs are considered to constitute an electrophysiological correlate of cortical sensory networks resonating at the frequency of stimulation. In the present study, we describe and characterize, for the first time, SS-EPs elicited by the selective activation of skin nociceptors in humans. The stimulation consisted of 2.3-s-long trains of 16 identical infrared laser pulses (frequency, 7 Hz), applied to the dorsum of the left and right hand and foot. Two different stimulation energies were used. The low energy activated only C-nociceptors, whereas the high energy activated both Aδ- and C-nociceptors. Innocuous electrical stimulation of large-diameter Aβ-fibers involved in the perception of touch and vibration was used as control. The high-energy nociceptive stimulus elicited a consistent SS-EP, related to the activation of Aδ-nociceptors. Regardless of stimulus location, the scalp topography of this response was maximal at the vertex. This was noticeably different from the scalp topography of the SS-EPs elicited by innocuous vibrotactile stimulation, which displayed a clear maximum over the parietal region contralateral to the stimulated side. Therefore, we hypothesize that the SS-EPs elicited by the rapid periodic thermal activation of nociceptors may reflect the activation of a network that is preferentially involved in processing nociceptive input and may thus provide some important insight into the cortical processes generating painful percepts.
Collapse
|
26
|
Social rejection shares somatosensory representations with physical pain. Proc Natl Acad Sci U S A 2011; 108:6270-5. [PMID: 21444827 DOI: 10.1073/pnas.1102693108] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How similar are the experiences of social rejection and physical pain? Extant research suggests that a network of brain regions that support the affective but not the sensory components of physical pain underlie both experiences. Here we demonstrate that when rejection is powerfully elicited--by having people who recently experienced an unwanted break-up view a photograph of their ex-partner as they think about being rejected--areas that support the sensory components of physical pain (secondary somatosensory cortex; dorsal posterior insula) become active. We demonstrate the overlap between social rejection and physical pain in these areas by comparing both conditions in the same individuals using functional MRI. We further demonstrate the specificity of the secondary somatosensory cortex and dorsal posterior insula activity to physical pain by comparing activated locations in our study with a database of over 500 published studies. Activation in these regions was highly diagnostic of physical pain, with positive predictive values up to 88%. These results give new meaning to the idea that rejection "hurts." They demonstrate that rejection and physical pain are similar not only in that they are both distressing--they share a common somatosensory representation as well.
Collapse
|
27
|
Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol 2010; 93:111-24. [PMID: 21040755 DOI: 10.1016/j.pneurobio.2010.10.005] [Citation(s) in RCA: 587] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 10/08/2010] [Accepted: 10/20/2010] [Indexed: 01/18/2023]
Abstract
Neuroimaging and neurophysiological studies have shown that nociceptive stimuli elicit responses in an extensive cortical network including somatosensory, insular and cingulate areas, as well as frontal and parietal areas. This network, often referred to as the "pain matrix", is viewed as representing the activity by which the intensity and unpleasantness of the perception elicited by a nociceptive stimulus are represented. However, recent experiments have reported (i) that pain intensity can be dissociated from the magnitude of responses in the "pain matrix", (ii) that the responses in the "pain matrix" are strongly influenced by the context within which the nociceptive stimuli appear, and (iii) that non-nociceptive stimuli can elicit cortical responses with a spatial configuration similar to that of the "pain matrix". For these reasons, we propose an alternative view of the functional significance of this cortical network, in which it reflects a system involved in detecting, orienting attention towards, and reacting to the occurrence of salient sensory events. This cortical network might represent a basic mechanism through which significant events for the body's integrity are detected, regardless of the sensory channel through which these events are conveyed. This function would involve the construction of a multimodal cortical representation of the body and nearby space. Under the assumption that this network acts as a defensive system signaling potentially damaging threats for the body, emphasis is no longer on the quality of the sensation elicited by noxious stimuli but on the action prompted by the occurrence of potential threats.
Collapse
Affiliation(s)
- Valéry Legrain
- Department of Experimental-Clinical and Health Psychology, Ghent University, Belgium.
| | | | | | | |
Collapse
|
28
|
Afif A, Minotti L, Kahane P, Hoffmann D. Anatomofunctional organization of the insular cortex: a study using intracerebral electrical stimulation in epileptic patients. Epilepsia 2010; 51:2305-15. [PMID: 20946128 DOI: 10.1111/j.1528-1167.2010.02755.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Different lines of evidence suggest that the insular cortex has many important functional roles. Direct electrical stimulation (ES) of the human insular cortex during surgical procedures for epilepsy, functional imaging techniques, and lesion studies also occasionally induces clinical responses. METHODS In this study, we evaluated 25 patients with drug-refractory focal epilepsy by stereotactically implanting at least one electrode into the insular cortex using an oblique approach (transfrontal or transparietal). One hundred twenty-eight insular sites (each situated between two contiguous contacts within the same electrode) were examined within the gyral substructures. We located each stimulation site by fusing preimplantation three-dimensional (3D) magnetic resonance imaging (MRI) images with the postimplantation 3D computed tomography (CT) scans that revealed the electrode contacts. RESULTS Sixty-seven stimulations induced at least one clinical response. Stimulation from within the insular cortex evoked 83 responses, without evidence of afterdischarge in the insular or extrainsular regions. We classified the principal responses as sensory (paresthesias and localized warm sensations), motor, pain, auditory, oropharyngeal, speech disturbances (including speech arrest and reduced voice intensity) and neurovegetative phenomena, such as facial reddening, generalized sensations of warmth or cold, hypogastric sensations, anxiety attacks, respiratory accelerations, sensations of rotation, and nausea. CONCLUSIONS These findings may indicate a functional specificity for the insular gyri and show the need for exploring this structure during invasive presurgical evaluation of epileptic patients according to seizure manifestations.
Collapse
Affiliation(s)
- Afif Afif
- Department of Neurosurgery, Neurological Hospital, Hospices Civils de Lyon, Lyon, France.
| | | | | | | |
Collapse
|
29
|
Baumgärtner U. [Nociceptive system : Nociceptors, fiber types, spinal pathways, and projection areas]. Schmerz 2010; 24:105-13. [PMID: 20376598 DOI: 10.1007/s00482-010-0904-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In order to transform a nociceptive stimulus into a painful perception, a highly specialized chain of structural and functional elements is necessary. This system comprises nociceptors in the periphery with specific molecular properties for differential coding of noxious submodalities, ascending and descending tracts that can control the input into the dorsal horn of the spinal cord as well as supraspinal processing that regulates the integration of nociceptive information with other sensory modalities and autonomic function. In this article, structures involved in nociceptive signal processing starting from the periphery up to spinal and cerebral structures are discussed in the order of their spatio-temporal activation sequence - as far as these are known. Already from the basis of the different receptor subtypes found on the thinly or unmyelinated nerve fibers in the periphery, the predominant principle of polymodality is demonstrated. Different input to the dorsal horn of the spinal cord by different nerve fiber populations to superficial and deep layers is explained, ascending tracts as well as descending systems capable of either facilitating or inhibiting the upstream flow of nociceptive information, together with their known transmitters. Finally, thalamic relay nuclei for sensory and nociceptive signals, as well as subcortical and cortical projection targets are discussed. To complete the current view of the nociceptive system, information from molecular biology and anatomic tracing studies as well as data from functional electrophysiologic cell recordings in animals and imaging studies in humans are assembled.
Collapse
Affiliation(s)
- U Baumgärtner
- Lehrstuhl für Neurophysiologie, Centrum für Biomedizin und Medizintechnik Mannheim (CBTM), Medizinische Fakultät Mannheim der Universität Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Deutschland.
| |
Collapse
|
30
|
Henderson LA, Rubin TK, Macefield VG. Within-limb somatotopic representation of acute muscle pain in the human contralateral dorsal posterior insula. Hum Brain Mapp 2010; 32:1592-601. [PMID: 20845392 DOI: 10.1002/hbm.21131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/15/2010] [Accepted: 06/23/2010] [Indexed: 12/18/2022] Open
Abstract
It is well established that the insular cortex processes noxious information. We have previously shown that noxious inputs from the arm and leg are coarsely organized somatotopically within the dorsal posterior insula. The same has been shown for inputs from C tactile afferents, which mediate affective touch, and it has been suggested that the insula may be responsible for the localization of some somatosensory stimuli. Knowing the degree of spatial detail may have significant implications for the potential role of the dorsal posterior insula in the processing of noxious stimuli. Using high-resolution functional magnetic resonance imaging (fMRI), we compared insula activation patterns in 13 subjects during muscle pain induced by injection of hypertonic saline (5%) into three muscles within the same limb: shoulder (deltoid), forearm (flexor carpi radialis), and hand (first dorsal interosseous). Mapping the maximally activated voxels within the contralateral dorsal posterior insula in each individual subject during each pain stimulus revealed a clear somatotopy of activation within the contralateral dorsal posterior insula. Shoulder pain was represented anterior to forearm pain and medial to hand pain. This fine somatotopic organization may be crucial for pain localization or other aspects of the pain experience that differ depending on stimulation site.
Collapse
Affiliation(s)
- Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | |
Collapse
|
31
|
Baumgärtner U, Iannetti GD, Zambreanu L, Stoeter P, Treede RD, Tracey I. Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study. J Neurophysiol 2010; 104:2863-72. [PMID: 20739597 DOI: 10.1152/jn.00253.2010] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas studies of somatotopic representation of touch have been useful to distinguish multiple somatosensory areas within primary (SI) and secondary (SII) somatosensory cortex regions, no such analysis exists for the representation of pain across nociceptive modalities. Here we investigated somatotopy in the operculo-insular cortex with noxious heat and pinprick stimuli in 11 healthy subjects using high-resolution (2 × 2 × 4 mm) 3T functional magnetic resonance imaging (fMRI). Heat stimuli (delivered using a laser) and pinprick stimuli (delivered using a punctate probe) were directed to the dorsum of the right hand and foot in a balanced design. Locations of the peak fMRI responses were compared between stimulation sites (hand vs. foot) and modalities (heat vs. pinprick) within four bilateral regions of interest: anterior and posterior insula and frontal and parietal operculum. Importantly, all analyses were performed on individual, non-normalized fMRI images. For heat stimuli, we found hand-foot somatotopy in the contralateral anterior and posterior insula [hand, 9 ± 10 (SD) mm anterior to foot, P < 0.05] and in the contralateral parietal operculum (SII; hand, 7 ± 10 mm lateral to foot, P < 0.05). For pinprick stimuli, we also found somatotopy in the contralateral posterior insula (hand, 9 ± 10 mm anterior to foot, P < 0.05). Furthermore, the response to heat stimulation of the hand was 11 ± 12 mm anterior to the response to pinprick stimulation of the hand in the contralateral (left) anterior insula (P < 0.05). These results indicate the existence of multiple somatotopic representations for pain within the operculo-insular region in humans, possibly reflecting its importance as a sensory-integration site that directs emotional responses and behavior appropriately depending on the body site being injured.
Collapse
Affiliation(s)
- Ulf Baumgärtner
- Department of Neurophysiology, Center for Biomedicine and Medical Technology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Kurth F, Eickhoff SB, Schleicher A, Hoemke L, Zilles K, Amunts K. Cytoarchitecture and probabilistic maps of the human posterior insular cortex. Cereb Cortex 2009; 20:1448-61. [PMID: 19822572 DOI: 10.1093/cercor/bhp208] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human posterior insula was shown to respond to a wide variety of stimulation paradigms (e.g. pain, somatosensory, or auditory processing) in functional imaging experiments. Although various anatomical maps of this region have been published over the last century, these schemes show variable results. Moreover, none can directly be integrated with functional imaging data. Hence, our current knowledge about the structure-function relationships in this region remains limited. We therefore remapped the posterior part of the human insular cortex in 10 postmortem brains using an observer-independent approach. This analysis revealed the existence of 3 cytoarchitectonically distinct areas in the posterior insula. The examined brains were then 3D reconstructed and spatially normalized to the Montreal Neurological Institute single-subject template. Probabilistic maps for each area were calculated by superimposing the individual delineations, and a cytoarchitectonic summary map was computed to chart the regional architectonic organization. These maps can be used to identify the anatomical correlates of functional activations observed in neuroimaging studies and to understand the microstructural correlates of the functional segregation of the human posterior insula.
Collapse
Affiliation(s)
- Florian Kurth
- C & O Vogt Institute of Brain Research, University Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Mazzola L, Isnard J, Peyron R, Guénot M, Mauguière F. Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 2009; 146:99-104. [PMID: 19665303 DOI: 10.1016/j.pain.2009.07.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/26/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
The question whether pain encoding in the human insula shows some somatotopic organization is still pending. We studied 142 patients undergoing depth stereotactic EEG (SEEG) exploration of the insular cortex for pre-surgical evaluation of epilepsy. 472 insular electrical stimulations were delivered, of which only 49 (10.5%) elicited a painful sensation in 38 patients (27%). Most sites where low intensity electric stimulation produced pain, without after-discharge or concomitant visually detectable change in EEG activity outside the insula, were located in the posterior two thirds of the insula. Pain was located in a body area restricted to face, upper limb or lower limb for 27 stimulations (55%) and affected more than one of these regions for all others. The insular cortex being oriented parallel to the medial sagittal plane we found no significant difference between body segment representations in the medio-lateral axis. Conversely a somatotopic organization of sites where stimulation produced pain was observed along the rostro-caudal and vertical axis of the insula, showing a face representation rostral to those of upper and lower limbs, with an upper limb representation located above that of the lower limb. These data suggest that, in spite of large and often bilateral receptive fields, pain representation shows some degree of somatotopic organization in the human insula.
Collapse
Affiliation(s)
- L Mazzola
- INSERM U 879 (Central Integration of Pain), Lyon, St. Etienne, France.
| | | | | | | | | |
Collapse
|
35
|
Characterizing the cortical activity through which pain emerges from nociception. J Neurosci 2009; 29:7909-16. [PMID: 19535602 DOI: 10.1523/jneurosci.0014-09.2009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nociception begins when Adelta- and C-nociceptors are activated. However, the processing of nociceptive input by the cortex is required before pain can be consciously experienced from nociception. To characterize the cortical activity related to the emergence of this experience, we recorded, in humans, laser-evoked potentials elicited by physically identical nociceptive stimuli that were either perceived or unperceived. Infrared laser pulses, which selectively activate skin nociceptors, were delivered to the hand dorsum either as a pair of rapidly succeeding and spatially displaced stimuli (two-thirds of trials) or as a single stimulus (one-third of trials). After each trial, subjects reported whether one or two distinct painful pinprick sensations, associated with Adelta-nociceptor activation, had been perceived. The psychophysical feedback after each pair of stimuli was used to adjust the interstimulus interval (ISI) of the subsequent pair: when a single percept was reported, ISI was increased by 40 ms; when two distinct percepts were reported, ISI was decreased by 40 ms. This adaptive algorithm ensured that the probability of perceiving the second stimulus of the pair tended toward 0.5. We found that the magnitude of the early-latency N1 wave was similar between perceived and unperceived stimuli, whereas the magnitudes of the later N2 and P2 waves were reduced when stimuli were unperceived. These findings suggest that the N1 wave represents an early stage of sensory processing related to the ascending nociceptive input, whereas the N2 and P2 waves represent a later stage of processing related, directly or indirectly, to the perceptual outcome of this nociceptive input.
Collapse
|
36
|
Weiss T, Hesse W, Ungureanu M, Hecht H, Leistritz L, Witte H, Miltner WHR. How Do Brain Areas Communicate During the Processing of Noxious Stimuli? An Analysis of Laser-Evoked Event-Related Potentials Using the Granger Causality Index. J Neurophysiol 2008; 99:2220-31. [DOI: 10.1152/jn.00912.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Several imaging techniques have identified different brain areas involved in the processing of noxious stimulation and thus in the constitution of pain. However, only little is known how these brain areas communicate with one another after activation by stimulus processing and which areas directionally affect or modulate the activity of succeeding areas. One measure for the analysis of such interactions is represented by the Granger Causality Index (GCI). In applying time-varying bivariate and partial variants of this concept (tvGCI), the aim of the present study was to investigate the interaction of neural activities between a set of scalp electrodes that best represent the brain electrical neural activity of major cortical areas involved in the processing of noxious laser-heat stimuli and their variation in time. Bivariate and partial tvGCIs were calculated within four different intervals of laser-evoked event-related potentials (LEPs) including a baseline period prior to stimulus application and three intervals immediately following stimulus application, i.e., between 170 and 200 ms (at the N2 component), between 260 and 320 ms (P2 component), and between 320 and 400 ms (P3 component of LEPs). Results show some similarities, but also some striking differences between bivariate and partial tvGCIs. These differences might be explained by the nature of bivariate and partial tvGCIs. However, both tvGCI approaches revealed a directed interaction between medial and lateral electrodes of the centroparietal region. This result was interpreted as a directed interaction between the anterior cingulate cortex and the secondary somatosensory cortex and the insula, structures that are significantly involved in the constitution of pain.
Collapse
|
37
|
Brain activation upon selective stimulation of cutaneous C- and Adelta-fibers. Neuroimage 2008; 41:1372-81. [PMID: 18499480 DOI: 10.1016/j.neuroimage.2008.03.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/19/2008] [Accepted: 03/23/2008] [Indexed: 11/23/2022] Open
Abstract
Thermal and nociceptive cutaneous stimuli activate the brain via two types of nerve fibers, slightly myelinated Adelta-fibers with moderate conduction velocity and unmyelinated C-fibers with slow conduction velocity. Differences in central processing upon selective stimulation of these two fiber types in healthy human subjects still remain poorly understood. By means of event-related functional magnetic resonance imaging the present study investigated brain activation in response to stimulation of Adelta- and C-fibers in healthy subjects. We used the stimulation of tiny skin areas to perform a selective stimulation upon cutaneous C-fibers. Besides similar activation in several brain areas in response to both kinds of stimulation, we observed pronounced brain activation to selective C-fiber stimulation as compared to Adelta-fiber stimulation in the right frontal operculum and anterior insula. Based on a putative function of these structures we suggest that the C-fiber system might be engaged in homeostatic and interoceptive functions in a manner other than the Adelta-fiber system, producing a signal of greater emotional salience.
Collapse
|
38
|
Afif A, Hoffmann D, Minotti L, Benabid AL, Kahane P. Middle short gyrus of the insula implicated in pain processing. Pain 2008; 138:546-555. [PMID: 18367333 DOI: 10.1016/j.pain.2008.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 12/26/2007] [Accepted: 02/04/2008] [Indexed: 11/30/2022]
Abstract
Different lines of evidence have suggested an involvement of the insular cortex in pain processing. Direct electrical stimulation (ES) of the human insular cortex during surgical procedure sometimes induces painful sensations and painful stimuli induce activation of the insular cortex as shown by functional neuroimaging. Invasive evaluation of epileptic patients by deep brain stereotactically implanted electrodes provides an opportunity to analyze responses induced by ES of the insular cortex in awake and fully conscious patients. For this study, we included 25 patients suffering from drug refractory focal epilepsy with at least one electrode stereotactically implanted in the insular cortex using an oblique approach (transfrontal or transparietal). Out of the 83 responses induced by insular ES, eight (9.6%) were reported by five patients as painful sensations. Four were restricted to the cephalic region and four were felt on the ipsilateral or bilateral upper limbs, the shoulders and the trunk (pinprick sensations). The eight stimulation sites were anatomically localized via image fusion between pre-implantation 3D MRI and post-implantation 3D CT scans revealing the electrode contacts. All sites inducing painful sensations were restricted to the upper portion of the middle short gyrus of the insula. The findings of this study suggest that middle short gyrus is involved in the processing of pain-producing stimuli.
Collapse
Affiliation(s)
- Afif Afif
- Neurosurgery Department, INSERM U318, Grenoble University Hospital, BP 217, 38043 Grenoble Cedex 9, France Neurology Department, INSERM U704, Grenoble University Hospital, BP 217, 38043 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|