1
|
Nagata A, Nakayama K, Nakamura S, Mochizuki A, Gemba C, Aoki R, Dantsuji M, Maki K, Inoue T. Serotonin1B receptor-mediated presynaptic inhibition of proprioceptive sensory inputs to jaw-closing motoneurons. Brain Res Bull 2019; 149:260-267. [DOI: 10.1016/j.brainresbull.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
3
|
Kim YS, Kim YB, Kim WB, Lee SW, Oh SB, Han HC, Lee CJ, Colwell CS, Kim YI. Histamine 1 receptor-Gβγ-cAMP/PKA-CFTR pathway mediates the histamine-induced resetting of the suprachiasmatic circadian clock. Mol Brain 2016; 9:49. [PMID: 27153809 PMCID: PMC4858891 DOI: 10.1186/s13041-016-0227-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/15/2016] [Indexed: 11/29/2022] Open
Abstract
Background Recent evidence indicates that histamine, acting on histamine 1 receptor (H1R), resets the circadian clock in the mouse suprachiasmatic nucleus (SCN) by increasing intracellular Ca2+ concentration ([Ca2+]i) through the activation of CaV1.3 L-type Ca2+ channels and Ca2+-induced Ca2+ release from ryanodine receptor-mediated internal stores. Results In the current study, we explored the underlying mechanisms with various techniques including Ca2+- and Cl−-imaging and extracellular single-unit recording. Our hypothesis was that histamine causes Cl− efflux through cystic fibrosis transmembrane conductance regulator (CFTR) to elicit membrane depolarization needed for the activation of CaV1.3 Ca2+ channels in SCN neurons. We found that histamine elicited Cl− efflux and increased [Ca2+]i in dissociated mouse SCN cells. Both of these events were suppressed by bumetanide [Na+-K+-2Cl− cotransporter isotype 1 (NKCC1) blocker], CFTRinh-172 (CFTR inhibitor), gallein (Gβγ protein inhibitor) and H89 [protein kinase A (PKA) inhibitor]. By itself, H1R activation with 2-pyridylethylamine increased the level of cAMP in the SCN and this regulation was prevented by gallein. Finally, histamine-evoked phase shifts of the circadian neural activity rhythm in the mouse SCN slice were blocked by bumetanide, CFTRinh-172, gallein or H89 and were not observed in NKCC1 or CFTR KO mice. Conclusions Taken together, these results indicate that histamine recruits the H1R-Gβγ-cAMP/PKA pathway in the SCN neurons to activate CaV1.3 channels through CFTR-mediated Cl− efflux and ultimately to phase-shift the circadian clock. This pathway and NKCC1 may well be potential targets for agents designed to treat problems resulting from the disturbance of the circadian system.
Collapse
Affiliation(s)
- Yoon Sik Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea.,Department of Psychiatry & Biobehavioral Sciences, University of California-Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Young-Beom Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea
| | - Woong Bin Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea
| | - Seung Won Lee
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea
| | - Seog Bae Oh
- Pain Cognitive Function Research Center, Dental Research Institute and Department of Neurobiology and Physiology, Seoul National University, Seoul, 110-749, Republic of Korea
| | - Hee-Chul Han
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea.
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California-Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Yang In Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seoul, 136-705, Republic of Korea.
| |
Collapse
|