1
|
Dai JS, Ge XY, Zhou M, Xu ZQD, Zhao ZH, Zhang J, Wang NY. Role of the Dorsal Cortex of the Inferior Colliculus in the Precedence Effect. Med Sci Monit 2025; 31:e945605. [PMID: 39800980 PMCID: PMC11737276 DOI: 10.12659/msm.945605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND The precedence effect (PE) is a physiological phenomenon for accurate sound localization in a reverberant environment. Physiological studies of PE have mostly focused on the central nucleus of the inferior colliculus (CNIC), which receives ascending and descending projections, as well as projections from the shell of the inferior colliculus (IC) and contralateral IC. However, the role of the dorsal cortex of the IC (DCIC), which receives ascending and descending projections to ensure sound information processing and conduction on PE formation, remains unclear. Therefore, this study aimed to understand the role, if any, of the DCIC on PE formation in male Sprague Dawley rats. MATERIAL AND METHODS In vivo, 16-channel electrophysiological recordings were performed in anesthetized rats to investigate neuronal responses in the CNIC, after inducing electrolytic lesions in the DCIC. In vitro, the expression of inhibitory gamma-aminobutyric acid (GABA)ergic receptors in the CNIC was analyzed by Western blot. RESULTS After inducing electrolytic lesions in the DCIC, normalized neural responses of the CNIC to lagging stimuli were significantly increased (P<0.05), half-maximal inter-stimuli delays were shortened (P<0.05), and the expression of GABA A receptor a1 and GABA B receptor 2 decreased (P<0.05). Furthermore, neurons in the CNIC showed a contralateral preference when paired sounds in the free field were presented. CONCLUSIONS Our study suggests that the DCIC could modulate PE formation in the CNIC, potentially involving inhibitory GABAergic mechanisms. This study showed the role of the DCIC on PE formation and proposed a potential structure for identifying likely mechanisms of the PE in the IC.
Collapse
Affiliation(s)
- Jin-Sheng Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| | - Xin-Ying Ge
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| | - Mo Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, PR China
- Department of Pathology, Capital Medical University, Beijing, PR China
| | - Zi-Hui Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| | - Juan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| | - Ning-Yu Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
2
|
Rosenthal IA, Bashford L, Kellis S, Pejsa K, Lee B, Liu C, Andersen RA. S1 represents multisensory contexts and somatotopic locations within and outside the bounds of the cortical homunculus. Cell Rep 2023; 42:112312. [PMID: 37002922 PMCID: PMC10544688 DOI: 10.1016/j.celrep.2023.112312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Recent literature suggests that tactile events are represented in the primary somatosensory cortex (S1) beyond its long-established topography; in addition, the extent to which S1 is modulated by vision remains unclear. To better characterize S1, human electrophysiological data were recorded during touches to the forearm or finger. Conditions included visually observed physical touches, physical touches without vision, and visual touches without physical contact. Two major findings emerge from this dataset. First, vision strongly modulates S1 area 1, but only if there is a physical element to the touch, suggesting that passive touch observation is insufficient to elicit neural responses. Second, despite recording in a putative arm area of S1, neural activity represents both arm and finger stimuli during physical touches. Arm touches are encoded more strongly and specifically, supporting the idea that S1 encodes tactile events primarily through its topographic organization but also more generally, encompassing other areas of the body.
Collapse
Affiliation(s)
- Isabelle A Rosenthal
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Luke Bashford
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Spencer Kellis
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Kelsie Pejsa
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brian Lee
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Charles Liu
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Richard A Andersen
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; T&C Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
3
|
Trzcinski NK, Hsiao SS, Connor CE, Gomez-Ramirez M. Multi-finger receptive field properties in primary somatosensory cortex: A revised account of the spatiotemporal integration functions of area 3b. Cell Rep 2023; 42:112176. [PMID: 36867529 PMCID: PMC12120968 DOI: 10.1016/j.celrep.2023.112176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/14/2022] [Accepted: 02/11/2023] [Indexed: 03/04/2023] Open
Abstract
The leading view in the somatosensory system indicates that area 3b serves as a cortical relay site that primarily encodes (cutaneous) tactile features limited to individual digits. Our recent work argues against this model by showing that area 3b cells can integrate both cutaneous and proprioceptive information from the hand. Here, we further test the validity of this model by studying multi-digit (MD) integration properties in area 3b. In contrast to the prevailing view, we show that most cells in area 3b have a receptive field (RF) that extends to multiple digits, with the size of the RF (i.e., the number of responsive digits) increasing across time. Further, we show that MD cells' orientation angle preference is highly correlated across digits. Taken together, these data show that area 3b plays a larger role in generating neural representations of tactile objects, as opposed to just being a "feature detector" relay site.
Collapse
Affiliation(s)
- Natalie K Trzcinski
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven S Hsiao
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Charles E Connor
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Manuel Gomez-Ramirez
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
4
|
Qi HX, Reed JL, Wang F, Gross CL, Liu X, Chen LM, Kaas JH. Longitudinal fMRI measures of cortical reactivation and hand use with and without training after sensory loss in primates. Neuroimage 2021; 236:118026. [PMID: 33930537 PMCID: PMC8409436 DOI: 10.1016/j.neuroimage.2021.118026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022] Open
Abstract
In a series of previous studies, we demonstrated that damage to the dorsal column in the cervical spinal cord deactivates the contralateral somatosensory hand cortex and impairs hand use in a reach-to-grasp task in squirrel monkeys. Nevertheless, considerable cortical reactivation and behavioral recovery occurs over the following weeks to months after lesion. This timeframe may also be a window for targeted therapies to promote cortical reactivation and functional reorganization, aiding in the recovery process. Here we asked if and how task specific training of an impaired hand would improve behavioral recovery and cortical reorganization in predictable ways, and if recovery related cortical changes would be detectable using noninvasive functional magnetic resonance imaging (fMRI). We further asked if invasive neurophysiological mapping reflected fMRI results. A reach-to-grasp task was used to test impairment and recovery of hand use before and after dorsal column lesions (DC-lesion). The activation and organization of the affected primary somatosensory cortex (area 3b) was evaluated with two types of fMRI - either blood oxygenation level dependent (BOLD) or cerebral blood volume (CBV) with a contrast agent of monocrystalline iron oxide nanocolloid (MION) - before and after DC-lesion. At the end of the behavioral and fMRI studies, microelectrode recordings in the somatosensory areas 3a, 3b and 1 were used to characterize neuronal responses and verify the somatotopy of cortical reactivations. Our results indicate that even after nearly complete DC lesions, monkeys had both considerable post-lesion behavioral recovery, as well as cortical reactivation assessed with fMRI followed by extracellular recordings. Generalized linear regression analyses indicate that lesion extent is correlated with the behavioral outcome, as well as with the difference in the percent signal change from pre-lesion peak activation in fMRI. Monkeys showed behavioral recovery and nearly complete cortical reactivation by 9-12 weeks post-lesion (particularly when the DC-lesion was incomplete). Importantly, the specific training group revealed trends for earlier behavioral recovery and had higher magnitude of fMRI responses to digit stimulation by 5-8 weeks post-lesion. Specific kinematic measures of hand movements in the selected retrieval task predicted recovery time and related to lesion characteristics better than overall task performance success. For measures of cortical reactivation, we found that CBV scans provided stronger signals to vibrotactile digit stimulation as compared to BOLD scans, and thereby may be the preferred non-invasive way to study the cortical reactivation process after sensory deprivations from digits. When the reactivation of cortex for each of the digits was considered, the reactivation by digit 2 stimulation as measured with microelectrode maps and fMRI maps was best correlated with overall behavioral recovery.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Jamie L. Reed
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA,Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | | | - Xin Liu
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Li Min Chen
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA,Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA,Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
5
|
Finnie KR, Jones CP, Dupont WD, Salleng KJ, Shuster KA. A Comparison of the Efficacy and Cardiopulmonary Effects of 3 Different Sedation Protocols in Otolemur garnettii. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2020; 59:557-566. [PMID: 32693866 PMCID: PMC7479768 DOI: 10.30802/aalas-jaalas-19-000158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
The Northern greater galago (Otolemur garnettii) is a prosimian primate most commonly used to study the evolutionary development of vision and somatosensation. This study aimed to investigate the efficacy and cardiopulmonary effects of 3 sedation protocols commonly used in other primate species: 1) alfaxalone (Alf; 8 mg/kg IM) 2) ketamine alone (Ket; 20 mg/kg IM) and 3) ketamine + dexmedetomidine (Ket+Dex; 4 mg/kg + 25 μg/kg IM) with reversal (atipamezole; 250 μg/kg IM). A total of 34 animals were evaluated, including 11 juveniles and 23 adults. Cardiopulmonary parameters such as indirect blood pressure, heart rate, respiratory rate, and SpO₂ were measured, and blood was collected for blood gas analysis and a chemistry panel. To examine the efficacy of each sedation protocol, induction time, immobilization time, and recovery time were recorded. Subjective measures of quality and efficacy included quality of induction, pedal withdrawal reflex, palpebral reflex, muscle tension, rectal temperature, and quality of recovery. All 3 protocols successfully immobilized the animals and all animals recovered from sedation. Heart rates were highest among the Ket group and the lowest for the Ket+Dex group. On average, the Alf group was immobilized for twice as long as either the Ket or Ket+Dex groups. The Ket+Dex group had the fastest average recovery time and subjectively had the best quality of recovery. Based on these results, Ket+Dex is recommended over Alf or Ket alone for brief sedation of healthy galagos.
Collapse
Key Words
- be, base excess
- bp, blood pressure
- ck, creatine kinase
- dap, diastolic arterial blood pressure
- hco3, bicarbonate
- hr, heart rate
- map, mean arterial blood pressure
- rr, respiratory rate
- sap, systolic arterial blood pressure
- spo2, oxygen-hemoglobin saturation
- so2, oxygen saturation
- tco2, total blood carbon dioxide
Collapse
Affiliation(s)
- Kelsey R Finnie
- Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;,
| | - Carissa P Jones
- Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kenneth J Salleng
- Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katherine A Shuster
- Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
6
|
Cybulska-Klosowicz A, Tremblay F, Jiang W, Bourgeon S, Meftah EM, Chapman CE. Differential effects of the mode of touch, active and passive, on experience-driven plasticity in the S1 cutaneous digit representation of adult macaque monkeys. J Neurophysiol 2020; 123:1072-1089. [DOI: 10.1152/jn.00014.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study compared the receptive field (RF) properties and firing rates of neurons in the cutaneous hand representation of primary somatosensory cortex (areas 3b, 1, and 2) of 9 awake, adult macaques that were intensively trained in a texture discrimination task using active touch (fingertips scanned over the surfaces using a single voluntary movement), passive touch (surfaces displaced under the immobile fingertips), or both active and passive touch. Two control monkeys received passive exposure to the same textures in the context of a visual discrimination task. Training and recording extended over 1–2 yr per animal. All neurons had a cutaneous receptive field (RF) that included the tips of the stimulated digits (D3 and/or D4). In area 3b, RFs were largest in monkeys trained with active touch, smallest in those trained with passive touch, and intermediate in those trained with both; i.e., the mode of touch differentially modified the cortical representation of the stimulated fingers. The same trends were seen in areas 1 and 2, but the changes were not significant, possibly because a second experience-driven influence was seen in areas 1 and 2, but not in area 3b: smaller RFs with passive exposure to irrelevant tactile inputs compared with recordings from one naive hemisphere. We suggest that added feedback during active touch and higher cortical firing rates were responsible for the larger RFs with behavioral training; this influence was tempered by periods of more restricted sensory feedback during passive touch training in the active + passive monkeys. NEW & NOTEWORTHY We studied experience-dependent sensory cortical plasticity in relation to tactile discrimination of texture using active and/or passive touch. We showed that neuronal receptive fields in primary somatosensory cortex, especially area 3b, are largest in monkeys trained with active touch, smallest in those trained with passive touch, and intermediate in those trained using both modes of touch. Prolonged, irrelevant tactile input had the opposite influence in areas 1 and 2, favoring smaller receptive fields.
Collapse
Affiliation(s)
- Anita Cybulska-Klosowicz
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - François Tremblay
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Wan Jiang
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Stéphanie Bourgeon
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - El-Mehdi Meftah
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - C. Elaine Chapman
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Enander JMD, Spanne A, Mazzoni A, Bengtsson F, Oddo CM, Jörntell H. Ubiquitous Neocortical Decoding of Tactile Input Patterns. Front Cell Neurosci 2019; 13:140. [PMID: 31031596 PMCID: PMC6474209 DOI: 10.3389/fncel.2019.00140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/20/2019] [Indexed: 11/13/2022] Open
Abstract
Whereas functional localization historically has been a key concept in neuroscience, direct neuronal recordings show that input of a particular modality can be recorded well outside its primary receiving areas in the neocortex. Here, we wanted to explore if such spatially unbounded inputs potentially contain any information about the quality of the input received. We utilized a recently introduced approach to study the neuronal decoding capacity at a high resolution by delivering a set of electrical, highly reproducible spatiotemporal tactile afferent activation patterns to the skin of the contralateral second digit of the forepaw of the anesthetized rat. Surprisingly, we found that neurons in all areas recorded from, across all cortical depths tested, could decode the tactile input patterns, including neurons of the primary visual cortex. Within both somatosensory and visual cortical areas, the combined decoding accuracy of a population of neurons was higher than for the best performing single neuron within the respective area. Such cooperative decoding indicates that not only did individual neurons decode the input, they also did so by generating responses with different temporal profiles compared to other neurons, which suggests that each neuron could have unique contributions to the tactile information processing. These findings suggest that tactile processing in principle could be globally distributed in the neocortex, possibly for comparison with internal expectations and disambiguation processes relying on other modalities.
Collapse
Affiliation(s)
- Jonas M. D. Enander
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anton Spanne
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Fredrik Bengtsson
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Enander JM, Jörntell H. Somatosensory Cortical Neurons Decode Tactile Input Patterns and Location from Both Dominant and Non-dominant Digits. Cell Rep 2019; 26:3551-3560.e4. [DOI: 10.1016/j.celrep.2019.02.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/10/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022] Open
|
9
|
Superficial Layers Suppress the Deep Layers to Fine-tune Cortical Coding. J Neurosci 2019; 39:2052-2064. [PMID: 30651326 DOI: 10.1523/jneurosci.1459-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022] Open
Abstract
The descending microcircuit from layer 2/3 (L2/3) to layer 5 (L5) is one of the strongest excitatory pathways in the cortex, presumably forming a core component of its feedforward hierarchy. To date, however, no experiments have selectively tested the impact of L2/3 activity on L5 during active sensation. We used optogenetic, cell-type-specific manipulation of L2/3 neurons in the barrel cortex of actively sensing mice (of either sex) to elucidate the significance of this pathway to sensory coding in L5. Contrary to standard models, activating L2/3 predominantly suppressed spontaneous activity in L5, whereas deactivating L2/3 mainly facilitated touch responses in L5. Somatostatin interneurons are likely important to this suppression because their optogenetic deactivation significantly altered the functional impact of L2/3 onto L5. The net effect of L2/3 was to enhance the stimulus selectivity and expand the range of L5 output. These data imply that the core cortical pathway increases the selectivity and expands the range of cortical output through feedforward inhibition.SIGNIFICANCE STATEMENT The primary sensory cortex contains six distinct layers that interact to form the basis of our perception. While rudimentary patterns of connectivity between the layers have been outlined quite extensively in vitro, functional relationships in vivo, particularly during active sensation, remain poorly understood. We used cell-type-specific optogenetics to test the functional relationship between layer 2/3 and layer 5. Surprisingly, we discovered that L2/3 primarily suppresses cortical output from L5. The recruitment of somatostatin-positive interneurons is likely fundamental to this relationship. The net effect of this translaminar suppression is to enhance the selectivity and expand the range of receptive fields, therefore potentially sharpening the perception of space.
Collapse
|
10
|
O'Shea DJ, Kalanithi P, Ferenczi EA, Hsueh B, Chandrasekaran C, Goo W, Diester I, Ramakrishnan C, Kaufman MT, Ryu SI, Yeom KW, Deisseroth K, Shenoy KV. Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys. Sci Rep 2018; 8:6775. [PMID: 29712920 PMCID: PMC5928036 DOI: 10.1038/s41598-018-24362-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
Optogenetic tools have opened a rich experimental landscape for understanding neural function and disease. Here, we present the first validation of eight optogenetic constructs driven by recombinant adeno-associated virus (AAV) vectors and a WGA-Cre based dual injection strategy for projection targeting in a widely-used New World primate model, the common squirrel monkey Saimiri sciureus. We observed opsin expression around the local injection site and in axonal projections to downstream regions, as well as transduction to thalamic neurons, resembling expression patterns observed in macaques. Optical stimulation drove strong, reliable excitatory responses in local neural populations for two depolarizing opsins in anesthetized monkeys. Finally, we observed continued, healthy opsin expression for at least one year. These data suggest that optogenetic tools can be readily applied in squirrel monkeys, an important first step in enabling precise, targeted manipulation of neural circuits in these highly trainable, cognitively sophisticated animals. In conjunction with similar approaches in macaques and marmosets, optogenetic manipulation of neural circuits in squirrel monkeys will provide functional, comparative insights into neural circuits which subserve dextrous motor control as well as other adaptive behaviors across the primate lineage. Additionally, development of these tools in squirrel monkeys, a well-established model system for several human neurological diseases, can aid in identifying novel treatment strategies.
Collapse
Affiliation(s)
- Daniel J O'Shea
- Neurosciences Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Paul Kalanithi
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Brian Hsueh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Werapong Goo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ilka Diester
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Otophysiologie, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Matthew T Kaufman
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - Kristen W Yeom
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Krishna V Shenoy
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Reed JL, Liao CC, Qi HX, Kaas JH. Plasticity and Recovery After Dorsal Column Spinal Cord Injury in Nonhuman Primates. J Exp Neurosci 2016; 10:11-21. [PMID: 27578996 PMCID: PMC4991577 DOI: 10.4137/jen.s40197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 12/15/2022] Open
Abstract
Here, we review recent work on plasticity and recovery after dorsal column spinal cord injury in nonhuman primates. Plasticity in the adult central nervous system has been established and studied for the past several decades; however, capacities and limits of plasticity are still under investigation. Studies of plasticity include assessing multiple measures before and after injury in animal models. Such studies are particularly important for improving recovery after injury in patients. In summarizing work by our research team and others, we suggest how the findings from plasticity studies in nonhuman primate models may affect therapeutic interventions for conditions involving sensory loss due to spinal cord injury.
Collapse
Affiliation(s)
- Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
12
|
Sathian K. Analysis of haptic information in the cerebral cortex. J Neurophysiol 2016; 116:1795-1806. [PMID: 27440247 DOI: 10.1152/jn.00546.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/20/2016] [Indexed: 11/22/2022] Open
Abstract
Haptic sensing of objects acquires information about a number of properties. This review summarizes current understanding about how these properties are processed in the cerebral cortex of macaques and humans. Nonnoxious somatosensory inputs, after initial processing in primary somatosensory cortex, are partially segregated into different pathways. A ventrally directed pathway carries information about surface texture into parietal opercular cortex and thence to medial occipital cortex. A dorsally directed pathway transmits information regarding the location of features on objects to the intraparietal sulcus and frontal eye fields. Shape processing occurs mainly in the intraparietal sulcus and lateral occipital complex, while orientation processing is distributed across primary somatosensory cortex, the parietal operculum, the anterior intraparietal sulcus, and a parieto-occipital region. For each of these properties, the respective areas outside primary somatosensory cortex also process corresponding visual information and are thus multisensory. Consistent with the distributed neural processing of haptic object properties, tactile spatial acuity depends on interaction between bottom-up tactile inputs and top-down attentional signals in a distributed neural network. Future work should clarify the roles of the various brain regions and how they interact at the network level.
Collapse
Affiliation(s)
- K Sathian
- Departments of Neurology, Rehabilitation Medicine and Psychology, Emory University, Atlanta, Georgia; and Center for Visual and Neurocognitive Rehabilitation, Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|