1
|
Ding Y, Lei M, Cao C. The relationship between interaural delay in binaural gap detection and sensitivity to temporal fine structure in young adults with or without musical training experience. Front Neurosci 2022; 16:957012. [PMID: 36117638 PMCID: PMC9475116 DOI: 10.3389/fnins.2022.957012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Humans can detect the presence of a break in interaural correlation (BIC, also called binaural gap) even if a large interaural time delay (ITD) is introduced, which is important for detecting, recognizing, and localizing sounds in everyday environments. To investigate the relationship between interaural delay in binaural gap detection and the sensitivity of temporal fine structure (TFS), 40 young college students with normal hearing took the BIC delay threshold test, the TFS1 test (the test of monaural TFS sensitivity), and the TFS-AF test (the test of binaural TFS sensitivity). All participants were asked whether they had any musical training experience in their childhood. Results showed that the BIC delay threshold was significantly correlated with the TFS1 test (r =-0.426, p = 0.006), but not with the TFS-AF performance (r =-0.005, p = 0.997). The correlation between BIC delay threshold and monaural TFS sensitivity was observed in the non-music training group (r =-0.508, p = 0.010), but not in the music training group (r =-0.290, p = 0.295). These findings suggest that the interaural delay in binaural gap detection is related to the monaural sensitivity of TFS, this significant correlation was mainly found in young adults without musical training experience.
Collapse
Affiliation(s)
- Yu Ding
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Ming Lei
- Laboratory of Artificial Intelligence and Cognition, School of Tourism Sciences, Beijing International Studies University, Beijing, China
| | - Chunmei Cao
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Xu N, Luo L, Chen L, Ding Y, Li L. Different binaural processing of the envelope component and the temporal fine structure component of a narrowband noise in rat inferior colliculus. Hear Res 2021; 411:108354. [PMID: 34583218 DOI: 10.1016/j.heares.2021.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022]
Abstract
Complex broadband sounds are decomposed by peripheral auditory filters into a series of relatively narrowband signals, each with a slowly varying envelope (ENV) and a rapidly fluctuating temporal fine structure (TFS). ENV and TFS information at the bilateral ears contribute differentially to auditory perception. However, whether the difference could attribute to mechanisms of binaural integration remains an open question. As a potential neural correlate, subsets of neurons in the central nucleus of the inferior colliculus (ICC) are known to integrate binaural information with binaural inhibition or binaural summation. Therefore, we recorded the frequency-following responses (FFRs) to the ENV and TFS components of narrowband noises in the ICC of anesthetized rats and examined changes in FFR amplitude and stimulus-response coherence under various sound-delivery settings. We showed that binaural FFRENV was predominantly elicited by contralateral inputs and inhibited by ipsilateral inputs, exhibiting a "binaural-inhibition" like property. On the other hand, binaural FFRTFS received a balanced contribution from both sides, echoing the "binaural-summation" mechanism. What is more, binaural FFRENV was significantly correlated with contralateral-evoked but not ipsilateral-evoked FFRENV, while binaural FFRTFS correlated with both contralateral- and ipsilateral-evoked FFRTFS. Overall, these results suggest distinct binaural processing of ENV and TFS information at the midbrain level.
Collapse
Affiliation(s)
- Na Xu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Lu Luo
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China; School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Liangjie Chen
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China
| | - Yu Ding
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China; Division of Sports Science and physical education, Tsinghua University, Beijing 100084, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China; Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; Beijing Institute for Brain Disorders, Beijing 100096, China.
| |
Collapse
|
3
|
Zheng Y, Liu L, Li R, Wu Z, Chen L, Li J, Wu C, Kong L, Zhang C, Lei M, She S, Ning Y, Li L. Impaired interaural correlation processing in people with schizophrenia. Eur J Neurosci 2021; 54:6646-6662. [PMID: 34494695 DOI: 10.1111/ejn.15449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/05/2023]
Abstract
Detection of transient changes in interaural correlation is based on the temporal precision of the central representations of acoustic signals. Whether schizophrenia impairs the temporal precision in the interaural correlation process is not clear. In both participants with schizophrenia and matched healthy-control participants, this study examined the detection of a break in interaural correlation (BIC, a change in interaural correlation from 1 to 0 and back to 1), including the longest interaural delay at which a BIC was just audible, representing the temporal extent of the primitive auditory memory (PAM). Moreover, BIC-induced electroencephalograms (EEGs) and the relationships between the early binaural psychoacoustic processing and higher cognitive functions, which were assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), were examined. The results showed that compared to healthy controls, participants with schizophrenia exhibited poorer BIC detection, PAM and RBANS score. Both the BIC-detection accuracy and the PAM extent were correlated with the RBANS score. Moreover, participants with schizophrenia showed weaker BIC-induced N1-P2 amplitude which was correlated with both theta-band power and inter-trial phase coherence. These results suggested that schizophrenia impairs the temporal precision of the central representations of acoustic signals, affecting both interaural correlation processing and higher-order cognitions.
Collapse
Affiliation(s)
- Yingjun Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Liu
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Ruikeng Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhemeng Wu
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Liangjie Chen
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Juanhua Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Wu
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Lingzhi Kong
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Changxin Zhang
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Ming Lei
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Shenglin She
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Key Laboratory on Machine Perception (Ministry of Education), Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
4
|
Luo L, Xu N, Wang Q, Li L. Disparity in interaural time difference improves the accuracy of neural representations of individual concurrent narrowband sounds in rat inferior colliculus and auditory cortex. J Neurophysiol 2020; 123:695-706. [PMID: 31891521 DOI: 10.1152/jn.00284.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central mechanisms underlying binaural unmasking for spectrally overlapping concurrent sounds, which are unresolved in the peripheral auditory system, remain largely unknown. In this study, frequency-following responses (FFRs) to two binaurally presented independent narrowband noises (NBNs) with overlapping spectra were recorded simultaneously in the inferior colliculus (IC) and auditory cortex (AC) in anesthetized rats. The results showed that for both IC FFRs and AC FFRs, introducing an interaural time difference (ITD) disparity between the two concurrent NBNs enhanced the representation fidelity, reflected by the increased coherence between the responses evoked by double-NBN stimulation and the responses evoked by single NBNs. The ITD disparity effect varied across frequency bands, being more marked for higher frequency bands in the IC and lower frequency bands in the AC. Moreover, the coherence between IC responses and AC responses was also enhanced by the ITD disparity, and the enhancement was most prominent for low-frequency bands and the IC and the AC on the same side. These results suggest a critical role of the ITD cue in the neural segregation of spectrotemporally overlapping sounds.NEW & NOTEWORTHY When two spectrally overlapped narrowband noises are presented at the same time with the same sound-pressure level, they mask each other. Introducing a disparity in interaural time difference between these two narrowband noises improves the accuracy of the neural representation of individual sounds in both the inferior colliculus and the auditory cortex. The lower frequency signal transformation from the inferior colliculus to the auditory cortex on the same side is also enhanced, showing the effect of binaural unmasking.
Collapse
Affiliation(s)
- Lu Luo
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Na Xu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Qian Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,Beijing Key Laboratory of Epilepsy, Epilepsy Center, Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
5
|
Xu N, Luo L, Wang Q, Li L. Binaural unmasking of the accuracy of envelope-signal representation in rat auditory cortex but not auditory midbrain. Hear Res 2019; 377:224-233. [PMID: 30991272 DOI: 10.1016/j.heares.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 01/16/2023]
Abstract
Accurate neural representations of acoustic signals under noisy conditions are critical for animals' survival. Detecting signal against background noise can be improved by binaural hearing particularly when an interaural-time-difference (ITD) disparity is introduced between the signal and the noise, a phenomenon known as binaural unmasking. Previous studies have mainly focused on the binaural unmasking effect on response magnitudes, and it is not clear whether binaural unmasking affects the accuracy of central representations of target acoustic signals and the relative contributions of different central auditory structures to this accuracy. Frequency following responses (FFRs), which are sustained phase-locked neural activities, can be used for measuring the accuracy of the representation of signals. Using intracranial recordings of local field potentials, this study aimed to assess whether the binaural unmasking effects include an improvement of the accuracy of neural representations of sound-envelope signals in the rat IC and/or auditory cortex (AC). The results showed that (1) when a narrow-band noise was presented binaurally, the stimulus-response (S-R) coherence of the FFRs to the envelope (FFRenvelope) of the narrow-band noise recorded in the IC was higher than that recorded in the AC. (2) Presenting a broad-band masking noise caused a larger reduction of the S-R coherence for FFRenvelope in the IC than that in the AC. (3) Introducing an ITD disparity between the narrow-band signal noise and the broad-band masking noise did not affect the IC S-R coherence, but enhanced both the AC S-R coherence and the coherence between the IC FFRenvelope and AC FFRenvelope. Thus, although the accuracy of representing envelope signals in the AC is lower than that in the IC, it can be binaurally unmasked, indicating a binaural-unmasking mechanism that is formed during the signal transmission from the IC to the AC.
Collapse
Affiliation(s)
- Na Xu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100080, China
| | - Lu Luo
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100080, China
| | - Qian Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100080, China; Beijing Key Laboratory of Epilepsy, Epilepsy Center, Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100080, China; Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100871, China; Beijing Institute for Brain Disorders, Beijing, 100096, China.
| |
Collapse
|
6
|
Human scalp evoked potentials related to the fusion between a sound source and its simulated reflection. PLoS One 2019; 14:e0209173. [PMID: 30625162 PMCID: PMC6326413 DOI: 10.1371/journal.pone.0209173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/01/2018] [Indexed: 11/19/2022] Open
Abstract
The auditory system needs to fuse the direct wave (lead) from a sound source and its time-delayed reflections (lag) to achieve a single sound image perception. This lead-lag fusion plays crucial roles in auditory processing in reverberant environments. Here, we investigated neural correlates of the lead-lag fusion by tracking human cortical potentials evoked by a break in the correlation (BIC) between the lead and lag when the time delay between the two was 0, 2, or 4 ms. The BIC evoked a scalp potential consisting of an N1 and a P2 component. Both components were modulated by the delay. The effects of the delay on the amplitude of the two components were similar, an increase of the delay resulting in a decrease of the amplitude. In contrast, the delay differently modulated the latency of the two components, an increase of the delay resulting in an increase of the P2 latency but not an increase of the N1 latency. Similar to the P2 latency, the reaction time for subjective detection of the BIC also increased with the delay. These findings suggest that both the N1 and the P2 evoked by the BIC are neural correlates of the lead-lag fusion and that, relative to the N1, the P2 may be more closely related to listeners' perception of the fusion. Our study thus provides a neurophysiological and objective approach for investigating the fusion between the direct sound wave from a sound source and its reflections.
Collapse
|
7
|
Hao W, Wang Q, Li L, Qiao Y, Gao Z, Ni D, Shang Y. Effects of Phase-Locking Deficits on Speech Recognition in Older Adults With Presbycusis. Front Aging Neurosci 2018; 10:397. [PMID: 30574084 PMCID: PMC6291518 DOI: 10.3389/fnagi.2018.00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/19/2018] [Indexed: 12/05/2022] Open
Abstract
Objective: People with presbycusis (PC) often report difficulties in speech recognition, especially under noisy listening conditions. Investigating the PC-related changes in central representations of envelope signals and temporal fine structure (TFS) signals of speech sounds is critical for understanding the mechanism underlying the PC-related deficit in speech recognition. Frequency-following responses (FFRs) to speech stimulation can be used to examine the subcortical encoding of both envelope and TFS speech signals. This study compared FFRs to speech signals between listeners with PC and those with clinically normal hearing (NH) under either quiet or noise-masking conditions. Methods: FFRs to a 170-ms speech syllable /da/ were recorded under either a quiet or noise-masking (with a signal-to-noise ratio (SNR) of 8 dB) condition in 14 older adults with PC and 13 age-matched adults with NH. The envelope (FFRENV) and TFS (FFRTFS) components of FFRs were analyzed separately by adding and subtracting the alternative polarity responses, respectively. Speech recognition in noise was evaluated in each participant. Results: In the quiet condition, compared with the NH group, the PC group exhibited smaller F0 and H3 amplitudes and decreased stimulus-response (S-R) correlation for FFRENV but not for FFRTFS. Both the H2 and H3 amplitudes and the S-R correlation of FFRENV significantly decreased in the noise condition compared with the quiet condition in the NH group but not in the PC group. Moreover, the degree of hearing loss was correlated with noise-induced changes in FFRTFS morphology. Furthermore, the speech-in-noise (SIN) threshold was negatively correlated with the noise-induced change in H2 (for FFRENV) and the S-R correlation for FFRENV in the quiet condition. Conclusion: Audibility affects the subcortical encoding of both envelope and TFS in PC patients. The impaired ability to adjust the balance between the envelope and TFS in the noise condition may be part of the mechanism underlying PC-related deficits in speech recognition in noise. FFRs can predict SIN perception performance.
Collapse
Affiliation(s)
- Wenyang Hao
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Wang
- Epilepsy Center, Department of Clinical Psychology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Liang Li
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
| | - Yufei Qiao
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiqiang Gao
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Daofeng Ni
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Shang
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Anderson S, Ellis R, Mehta J, Goupell MJ. Age-related differences in binaural masking level differences: behavioral and electrophysiological evidence. J Neurophysiol 2018; 120:2939-2952. [PMID: 30230989 DOI: 10.1152/jn.00255.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of aging and stimulus configuration on binaural masking level differences (BMLDs) were measured behaviorally and electrophysiologically, using the frequency-following response (FFR) to target brainstem/midbrain encoding. The tests were performed in 15 younger normal-hearing (<30 yr) and 15 older normal-hearing (>60 yr) participants. The stimuli consisted of a 500-Hz target tone embedded in a narrowband (50-Hz bandwidth) or wideband (1,500-Hz bandwidth) noise masker. The interaural phase conditions included NoSo (tone and noise presented interaurally in-phase), NoSπ (noise presented interaurally in-phase and tone presented out-of-phase), and NπSo (noise presented interaurally out-of-phase and tone presented in-phase) configurations. In the behavioral experiment, aging reduced the magnitude of the BMLD. The magnitude of the BMLD was smaller for the NoSo-NπSo threshold difference compared with the NoSo-NoSπ threshold difference, and it was also smaller in narrowband compared with wideband conditions, consistent with previous measurements. In the electrophysiology experiment, older participants had reduced FFR magnitudes and smaller differences between configurations. There were significant changes in FFR magnitude between the NoSo to NoSπ configurations but not between the NoSo to NπSo configurations. The age-related reduction in FFR magnitudes suggests a temporal processing deficit, but no correlation was found between FFR magnitudes and behavioral BMLDs. Therefore, independent mechanisms may be contributing to the behavioral and neural deficits. Specifically, older participants had higher behavioral thresholds than younger participants for the NoSπ and NπSo configurations but had equivalent thresholds for the NoSo configuration. However, FFR magnitudes were reduced in older participants across all configurations. NEW & NOTEWORTHY Behavioral and electrophysiological testing reveal an aging effect for stimuli presented in wideband and narrowband noise conditions, such that behavioral binaural masking level differences and subcortical spectral magnitudes are reduced in older compared with younger participants. These deficits in binaural processing may limit the older participant's ability to use spatial cues to understand speech in environments containing competing sound sources.
Collapse
Affiliation(s)
- Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland College Park, Maryland
| | - Robert Ellis
- Department of Hearing and Speech Sciences, University of Maryland College Park, Maryland
| | - Julie Mehta
- Department of Hearing and Speech Sciences, University of Maryland College Park, Maryland
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland College Park, Maryland
| |
Collapse
|
9
|
Neural representation of interaural correlation in human auditory brainstem: Comparisons between temporal-fine structure and envelope. Hear Res 2018; 365:165-173. [PMID: 29853322 DOI: 10.1016/j.heares.2018.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/05/2018] [Accepted: 05/20/2018] [Indexed: 11/24/2022]
Abstract
Central processing of interaural correlation (IAC), which depends on the precise representation of acoustic signals from the two ears, is essential for both localization and recognition of auditory objects. A complex soundwave is initially filtered by the peripheral auditory system into multiple narrowband waves, which are further decomposed into two functionally distinctive components: the quickly-varying temporal-fine structure (TFS) and the slowly-varying envelope. In rats, a narrowband noise can evoke auditory-midbrain frequency-following responses (FFRs) that contain both the TFS component (FFRTFS) and the envelope component (FFREnv), which represent the TFS and envelope of the narrowband noise, respectively. These two components are different in sensitivity to the interaural time disparity. In human listeners, the present study investigated whether the FFRTFS and FFREnv components of brainstem FFRs to a narrowband noise are different in sensitivity to IAC and whether there are potential brainstem mechanisms underlying the integration of the two components. The results showed that although both the amplitude of FFRTFS and that of FFREnv were significantly affected by shifts of IAC between 1 and 0, the stimulus-to-response correlation for FFRTFS, but not that for FFREnv, was sensitive to the IAC shifts. Moreover, in addition to the correlation between the binaurally evoked FFRTFS and FFREnv, the correlation between the IAC-shift-induced change of FFRTFS and that of FFREnv was significant. Thus, the TFS information is more precisely represented in the human auditory brainstem than the envelope information, and the correlation between FFRTFS and FFREnv for the same narrowband noise suggest a brainstem binding mechanism underlying the perceptual integration of the TFS and envelope signals.
Collapse
|
10
|
Differences between auditory frequency-following responses and onset responses: Intracranial evidence from rat inferior colliculus. Hear Res 2017; 357:25-32. [PMID: 29156225 DOI: 10.1016/j.heares.2017.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
Abstract
A periodic sound, such as a pure tone, evokes both transient onset field-potential responses and sustained frequency-following responses (FFRs) in the auditory midbrain, the inferior colliculus (IC). It is not clear whether the two types of responses are based on the same or different neural substrates. Although it has been assumed that FFRs are based on phase locking to the periodic sound, the evidence showing the direct relationship between the FFR amplitude and the phase-locking strength is still lacking. Using intracranial recordings from the rat central nucleus of inferior colliculus (ICC), this study was to examine whether FFRs and onset responses are different in sensitivity to pure-tone frequency and/or response-stimulus correlation, when a tone stimulus is presented either monaurally or binaurally. Particularly, this study was to examine whether the FFR amplitude is correlated with the strength of phase locking. The results showed that with the increase of tone-stimulus frequency from 1 to 2 kHz, the FFR amplitude decreased but the onset-response amplitude increased. Moreover, the FFR amplitude, but not the onset-response amplitude, was significantly correlated with the phase coherence between tone-evoked potentials and the tone stimulus. Finally, the FFR amplitude was negatively correlated with the onset-response amplitude. These results indicate that periodic-sound-evoked FFRs are based on phase-locking activities of sustained-response neurons, but onset responses are based on transient activities of onset-response neurons, suggesting that FFRs and onset responses are associated with different functions.
Collapse
|
11
|
Neural representations of concurrent sounds with overlapping spectra in rat inferior colliculus: Comparisons between temporal-fine structure and envelope. Hear Res 2017; 353:87-96. [PMID: 28655419 DOI: 10.1016/j.heares.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/21/2017] [Accepted: 06/12/2017] [Indexed: 11/24/2022]
Abstract
Perceptual segregation of multiple sounds, which overlap in both time and spectra, into individual auditory streams is critical for hearing in natural environments. Some cues such as interaural time disparities (ITDs) play an important role in the segregation, especially when sounds are separated in space. In this study, we investigated the neural representation of two uncorrelated narrowband noises that shared the identical spectrum in the rat inferior colliculus (IC) using frequency-following-response (FFR) recordings, when the ITD for each noise stimulus was manipulated. The results of this study showed that recorded FFRs exhibited two distinctive components: the fast-varying temporal fine structure (TFS) component (FFRTFS) and the slow-varying envelope component (FFRENV). When a single narrowband noise was presented alone, the FFRTFS, but not the FFRENV, was sensitive to ITDs. When two narrowband noises were presented simultaneously, the FFRTFS took advantage of the ITD disparity that was associated with perceived spatial separation between the two concurrent sounds, and displayed a better linear synchronization to the sound with an ipsilateral-leading ITD. However, no effects of ITDs were found on the FFRENV. These results suggest that the FFRTFS and FFRENV represent two distinct types of signal processing in the auditory brainstem and contribute differentially to sound segregation based on spatial cues: the FFRTFS is more critical to spatial release from masking.
Collapse
|