1
|
Lou Y, Ma J, Hu Y, Yao X, Liu Y, Wu M, Jia G, Chen Y, Chai R, Xia M, Li W. Integration of Functional Human Auditory Neural Circuits Based on a 3D Carbon Nanotube System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309617. [PMID: 38889308 PMCID: PMC11348147 DOI: 10.1002/advs.202309617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/27/2024] [Indexed: 06/20/2024]
Abstract
The physiological interactions between the peripheral and central auditory systems are crucial for auditory information transmission and perception, while reliable models for auditory neural circuits are currently lacking. To address this issue, mouse and human neural pathways are generated by utilizing a carbon nanotube nanofiber system. The super-aligned pattern of the scaffold renders the axons of the bipolar and multipolar neurons extending in a parallel direction. In addition, the electrical conductivity of the scaffold maintains the electrophysiological activity of the primary mouse auditory neurons. The mouse and human primary neurons from peripheral and central auditory units in the system are then co-cultured and showed that the two kinds of neurons form synaptic connections. Moreover, neural progenitor cells of the cochlea and auditory cortex are derived from human embryos to generate region-specific organoids and these organoids are assembled in the nanofiber-combined 3D system. Using optogenetic stimulation, calcium imaging, and electrophysiological recording, it is revealed that functional synaptic connections are formed between peripheral neurons and central neurons, as evidenced by calcium spiking and postsynaptic currents. The auditory circuit model will enable the study of the auditory neural pathway and advance the search for treatment strategies for disorders of neuronal connectivity in sensorineural hearing loss.
Collapse
Affiliation(s)
- Yiyun Lou
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Jiaoyao Ma
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Xiaoying Yao
- Obstetrics and Gynecology HospitalFudan UniversityShanghai200011China
| | - Yaoqian Liu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Mingxuan Wu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Gaogan Jia
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghai200032China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Mingyu Xia
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghai200032China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghai200032China
| |
Collapse
|
2
|
Jiam NT, Gillard DM, Morshed RA, Bhutada AS, Crawford ED, Braunstein SW, Henderson Sabes J, Theodosopoulos PV, Cheung SW. Treated large posterior fossa vestibular schwannoma and meningioma: Hearing outcome and willingness-to-accept brain implant for unilateral deafness. Laryngoscope Investig Otolaryngol 2022; 7:2057-2063. [PMID: 36544942 PMCID: PMC9764787 DOI: 10.1002/lio2.957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background/Objective To compare functional hearing and tinnitus outcomes in treated large (~ 3 cm) vestibular schwannoma (VS) and posterior fossa meningioma cohorts, and construct willingness-to-accept profiles for an experimental brain implant to treat unilateral hearing loss. Methods A two-way MANOVA model with two independent variables (tumor type; time from treatment) and three dependent variables (hearing effort of tumor ear; abbreviated Speech, Spatial, and Qualities of Hearing scale (SSQ12); Tinnitus Functional Index (TFI)) was used to analyze data from VS (N = 32) and meningioma (N = 50) patients who were treated at a tertiary care center between 2010 and 2020. A query to probe acceptance of experimental treatment for hearing loss relative to expected benefit was used to construct willingness-to-accept profiles. Results Tumor type was statistically significant on the combined dependent variables analysis (F[3, 76] = 19.172, p < .0005, Wilks' Λ = 0.569). Meningioma showed better outcome for hearing effort (F[1, 76] = 14.632, p < .0005) and SSQ12 (F[1, 76] = 16.164, p < .0005), but not for TFI (F[1, 76] = 1.247, p = .268) on univariate two-way ANOVA analyses. Superior hearing effort and SSQ12 indices in the short-term (< 2 years) persisted in the long-term (> 2 years) (p ≤ .017). At the 60% speech understanding level, 77% of respondents would accept an experimental brain implant. Conclusion Hearing outcome is better for posterior fossa meningioma compared to VS. Most patients with hearing loss in the tumor ear would consider a brain implant if the benefit level would be comparable to a cochlear implant. Level of Evidence 2.
Collapse
Affiliation(s)
- Nicole T. Jiam
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Danielle M. Gillard
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ramin A. Morshed
- Department of NeurosurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Ethan D. Crawford
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Steve W. Braunstein
- Department of Radiation OncologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jennifer Henderson Sabes
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Steven W. Cheung
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Surgical Services, San Francisco Veterans Affairs Health Care SystemSan FranciscoCaliforniaUSA
| |
Collapse
|
3
|
Echolocation-related reversal of information flow in a cortical vocalization network. Nat Commun 2022; 13:3642. [PMID: 35752629 PMCID: PMC9233670 DOI: 10.1038/s41467-022-31230-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
The mammalian frontal and auditory cortices are important for vocal behavior. Here, using local-field potential recordings, we demonstrate that the timing and spatial patterns of oscillations in the fronto-auditory network of vocalizing bats (Carollia perspicillata) predict the purpose of vocalization: echolocation or communication. Transfer entropy analyses revealed predominant top-down (frontal-to-auditory cortex) information flow during spontaneous activity and pre-vocal periods. The dynamics of information flow depend on the behavioral role of the vocalization and on the timing relative to vocal onset. We observed the emergence of predominant bottom-up (auditory-to-frontal) information transfer during the post-vocal period specific to echolocation pulse emission, leading to self-directed acoustic feedback. Electrical stimulation of frontal areas selectively enhanced responses to sounds in auditory cortex. These results reveal unique changes in information flow across sensory and frontal cortices, potentially driven by the purpose of the vocalization in a highly vocal mammalian model.
Collapse
|
4
|
Zhang J, Firestone E, Elattma A. Animal Models of Tinnitus Treatment: Cochlear and Brain Stimulation. Curr Top Behav Neurosci 2021; 51:83-129. [PMID: 34282563 DOI: 10.1007/7854_2021_227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuromodulation, via stimulation of a variety of peripheral and central structures, is used to suppress tinnitus. However, investigative limitations in humans due to ethical reasons have made it difficult to decipher the mechanisms underlying treatment-induced tinnitus relief, so a number of animal models have arisen to address these unknowns. This chapter reviews animal models of cochlear and brain stimulation and assesses their modulatory effects on behavioral evidence of tinnitus and its related neural correlates. When a structure is stimulated, localized modulation, often presenting as downregulation of spontaneous neuronal spike firing rate, bursting and neurosynchrony, occurs within the brain area. Through anatomical projections and transmitter pathways, the interventions activate both auditory- and non-auditory structures by taking bottom-up ascending and top-down descending modes to influence their target brain structures. Furthermore, it is the brain oscillations that cochlear or brain stimulation evoke and connect the prefrontal cortex, striatal systems, and other limbic structures to refresh neural networks and relieve auditory, attentive, conscious, as well as emotional reactive aspects of tinnitus. This oscillatory neural network connectivity is achieved via the thalamocorticothalamic circuitry including the lemniscal and non-lemniscal auditory brain structures. Beyond existing technologies, the review also reveals opportunities for developing advanced animal models using new modalities to achieve precision neuromodulation and tinnitus abatement, such as optogenetic cochlear and/or brain stimulation.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Communication Sciences and Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, USA.
| | - Ethan Firestone
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ahmed Elattma
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Sadeghi Najafabadi M, Chen L, Dutta K, Norris A, Feng B, Schnupp JWH, Rosskothen-Kuhl N, Read HL, Escabí MA. Optimal Multichannel Artifact Prediction and Removal for Neural Stimulation and Brain Machine Interfaces. Front Neurosci 2020; 14:709. [PMID: 32765212 PMCID: PMC7379342 DOI: 10.3389/fnins.2020.00709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Neural implants that deliver multi-site electrical stimulation to the nervous systems are no longer the last resort but routine treatment options for various neurological disorders. Multi-site electrical stimulation is also widely used to study nervous system function and neural circuit transformations. These technologies increasingly demand dynamic electrical stimulation and closed-loop feedback control for real-time assessment of neural function, which is technically challenging since stimulus-evoked artifacts overwhelm the small neural signals of interest. We report a novel and versatile artifact removal method that can be applied in a variety of settings, from single- to multi-site stimulation and recording and for current waveforms of arbitrary shape and size. The method capitalizes on linear electrical coupling between stimulating currents and recording artifacts, which allows us to estimate a multi-channel linear Wiener filter to predict and subsequently remove artifacts via subtraction. We confirm and verify the linearity assumption and demonstrate feasibility in a variety of recording modalities, including in vitro sciatic nerve stimulation, bilateral cochlear implant stimulation, and multi-channel stimulation and recording between the auditory midbrain and cortex. We demonstrate a vast enhancement in the recording quality with a typical artifact reduction of 25-40 dB. The method is efficient and can be scaled to arbitrary number of stimulus and recording sites, making it ideal for applications in large-scale arrays, closed-loop implants, and high-resolution multi-channel brain-machine interfaces.
Collapse
Affiliation(s)
- Mina Sadeghi Najafabadi
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, United States
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Kelsey Dutta
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, United States
| | - Ashley Norris
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Jan W. H. Schnupp
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Nicole Rosskothen-Kuhl
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Neurobiological Research Laboratory, Section for Clinical and Experimental Otology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Heather L. Read
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
- Department of Psychology, University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| | - Monty A. Escabí
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
- Department of Psychology, University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
6
|
Voigt MB, Kral A. Cathodic-leading pulses are more effective than anodic-leading pulses in intracortical microstimulation of the auditory cortex. J Neural Eng 2019; 16:036002. [PMID: 30790776 DOI: 10.1088/1741-2552/ab0944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Intracortical microstimulation (ICMS) is widely used in neuroscientific research. Earlier work from our lab showed the possibility to combine ICMS with neuronal recordings on the same shank of multi-electrode arrays and consequently inside the same cortical column in vivo. The standard stimulus pulse shape for ICMS is a symmetric, biphasic current pulse. Here, we investigated the role of the leading-phase polarity (cathodic- versus anodic-leading) of such single ICMS pulses on the activation of the cortical network. APPROACH Local field potentials (LFPs) and multi-unit responses were recorded in the primary auditory cortex (A1) of adult guinea pigs (n = 15) under ketamine/xylazine anesthesia using linear multi-electrode arrays. Physiological responses of A1 were recorded during acoustic stimulation and ICMS. For the ICMS, the leading-phase polarity, the stimulated electrode and the stimulation current where varied systematically on any one of the 16 electrodes while recording at the same time with the 15 remaining electrodes. MAIN RESULTS Cathodic-leading ICMS consistently led to higher response amplitudes. In superficial cortical layers and for a given current amplitude, cathodic-leading and anodic-leading ICMS showed comparable activation patterns, while in deep layers only cathodic-leading ICMS reliably generated local neuronal activity. ICMS had a significantly smaller dynamic range than acoustic stimulation regardless of leading-phase polarity. SIGNIFICANCE The present study provides in vivo evidence for a differential neuronal activation mechanism of the different leading-phase polarities, with cathodic-leading stimulation being more effective, and suggests that the waveform of the stimulus should be considered systematically for cortical neuroprosthesis development.
Collapse
Affiliation(s)
- Mathias Benjamin Voigt
- Department of Experimental Otology, Institute of AudioNeuroTechnology (VIANNA), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany. Cluster of Excellence 'Hearing4all', Hannover, Germany
| | | |
Collapse
|
7
|
Quass GL, Kurt S, Hildebrandt KJ, Kral A. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically. Brain Stimul 2018; 11:1161-1174. [PMID: 29853311 DOI: 10.1016/j.brs.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. OBJECTIVE The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. METHODS Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. RESULTS The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. CONCLUSION The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible.
Collapse
Affiliation(s)
- Gunnar Lennart Quass
- Institute of AudioNeuroTechnology (VIANNA), Dept. of Experimental Otology, ENT Clinics, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all", Germany.
| | - Simone Kurt
- Institute of AudioNeuroTechnology (VIANNA), Dept. of Experimental Otology, ENT Clinics, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all", Germany
| | - K Jannis Hildebrandt
- Cluster of Excellence "Hearing4all", Germany; Research Center Neurosensory Science, University of Oldenburg, 26111 Oldenburg, Germany
| | - Andrej Kral
- Institute of AudioNeuroTechnology (VIANNA), Dept. of Experimental Otology, ENT Clinics, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all", Germany
| |
Collapse
|
8
|
Madi MK, Karameh FN. Adaptive optimal input design and parametric estimation of nonlinear dynamical systems: application to neuronal modeling. J Neural Eng 2018; 15:046028. [PMID: 29749350 DOI: 10.1088/1741-2552/aac3f7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Many physical models of biological processes including neural systems are characterized by parametric nonlinear dynamical relations between driving inputs, internal states, and measured outputs of the process. Fitting such models using experimental data (data assimilation) is a challenging task since the physical process often operates in a noisy, possibly non-stationary environment; moreover, conducting multiple experiments under controlled and repeatable conditions can be impractical, time consuming or costly. The accuracy of model identification, therefore, is dictated principally by the quality and dynamic richness of collected data over single or few experimental sessions. Accordingly, it is highly desirable to design efficient experiments that, by exciting the physical process with smart inputs, yields fast convergence and increased accuracy of the model. APPROACH We herein introduce an adaptive framework in which optimal input design is integrated with square root cubature Kalman filters (OID-SCKF) to develop an online estimation procedure that first, converges significantly quicker, thereby permitting model fitting over shorter time windows, and second, enhances model accuracy when only few process outputs are accessible. The methodology is demonstrated on common nonlinear models and on a four-area neural mass model with noisy and limited measurements. Estimation quality (speed and accuracy) is benchmarked against high-performance SCKF-based methods that commonly employ dynamically rich informed inputs for accurate model identification. MAIN RESULTS For all the tested models, simulated single-trial and ensemble averages showed that OID-SCKF exhibited (i) faster convergence of parameter estimates and (ii) lower dependence on inter-trial noise variability with gains up to around 1000 ms in speed and 81% increase in variability for the neural mass models. In terms of accuracy, OID-SCKF estimation was superior, and exhibited considerably less variability across experiments, in identifying model parameters of (a) systems with challenging model inversion dynamics and (b) systems with fewer measurable outputs that directly relate to the underlying processes. SIGNIFICANCE Fast and accurate identification therefore carries particular promise for modeling of transient (short-lived) neuronal network dynamics using a spatially under-sampled set of noisy measurements, as is commonly encountered in neural engineering applications.
Collapse
Affiliation(s)
- Mahmoud K Madi
- Department of Electrical and Computer Engineering, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
9
|
Central nervous system microstimulation: Towards selective micro-neuromodulation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Connor SEJ. Contemporary imaging of auditory implants. Clin Radiol 2017; 73:19-34. [PMID: 28388970 DOI: 10.1016/j.crad.2017.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
There have been significant advances in the diversity and effectiveness of hearing technologies in recent years. Implanted auditory devices may be divided into those that stimulate the cochlear hair cells (bone conduction devices and middle ear implants), and those that stimulate the neural structures (cochlear implants and central auditory implants). Contemporary preoperative and postoperative imaging may be used to help individualise implant selection, optimise surgical technique and predict auditory outcome. This review will introduce the concepts behind auditory implants, and explains how imaging is increasingly used to aid insertion and evaluation of these devices.
Collapse
Affiliation(s)
- S E J Connor
- Neuroradiology Department, King's College Hospital, London, UK; Radiology Department, Guy's and St Thomas' Hospital, London, UK.
| |
Collapse
|
11
|
Pages DS, Ross DA, Puñal VM, Agashe S, Dweck I, Mueller J, Grill WM, Wilson BS, Groh JM. Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant. J Neurosci 2016; 36:5071-83. [PMID: 27147659 PMCID: PMC4854969 DOI: 10.1523/jneurosci.3540-15.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 μA, 100-300 Hz, n = 172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals' judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site compared with the reference frequency used in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site's response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency-tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated, and to provide a greater range of evoked percepts. SIGNIFICANCE STATEMENT Patients with hearing loss stemming from causes that interrupt the auditory pathway after the cochlea need a brain prosthetic to restore hearing. Recently, prosthetic stimulation in the human inferior colliculus (IC) was evaluated in a clinical trial. Thus far, speech understanding was limited for the subjects and this limitation is thought to be partly due to challenges in harnessing the sound frequency representation in the IC. Here, we tested the effects of IC stimulation in monkeys trained to report the sound frequencies they heard. Our results indicate that the IC can be used to introduce a range of frequency percepts and suggest that placement of a greater number of electrode contacts may improve the effectiveness of such implants.
Collapse
Affiliation(s)
- Daniel S Pages
- Department of Psychology and Neuroscience, Center for Cognitive Neuroscience,
| | | | | | | | | | - Jerel Mueller
- Department of Biomedical Engineering, and School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | | | - Blake S Wilson
- Schools of Medicine and Engineering, Duke University, Durham, North Carolina 27708, and
| | - Jennifer M Groh
- Department of Psychology and Neuroscience, Center for Cognitive Neuroscience, Department of Neurobiology,
| |
Collapse
|
12
|
Castejon C, Barros-Zulaica N, Nuñez A. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function. PLoS One 2016; 11:e0148169. [PMID: 26820514 PMCID: PMC4731153 DOI: 10.1371/journal.pone.0148169] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/13/2016] [Indexed: 11/19/2022] Open
Abstract
Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm) is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1) in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.
Collapse
Affiliation(s)
- Carlos Castejon
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Natali Barros-Zulaica
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Angel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
13
|
Two Laskers and Counting: Learning From the Past Enables Future Innovations With Central Neural Prostheses. Brain Stimul 2015; 8:439-41. [DOI: 10.1016/j.brs.2014.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022] Open
|
14
|
Lim HH, Lenarz T. Auditory midbrain implant: research and development towards a second clinical trial. Hear Res 2015; 322:212-23. [PMID: 25613994 DOI: 10.1016/j.heares.2015.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/04/2014] [Accepted: 01/08/2015] [Indexed: 11/30/2022]
Abstract
The cochlear implant is considered one of the most successful neural prostheses to date, which was made possible by visionaries who continued to develop the cochlear implant through multiple technological and clinical challenges. However, patients without a functional auditory nerve or implantable cochlea cannot benefit from a cochlear implant. The focus of the paper is to review the development and translation of a new type of central auditory prosthesis for this group of patients that is known as the auditory midbrain implant (AMI) and is designed for electrical stimulation within the inferior colliculus. The rationale and results for the first AMI clinical study using a multi-site single-shank array will be presented initially. Although the AMI has achieved encouraging results in terms of safety and improvements in lip-reading capabilities and environmental awareness, it has not yet provided sufficient speech perception. Animal and human data will then be presented to show that a two-shank AMI array can potentially improve hearing performance by targeting specific neurons of the inferior colliculus. A new two-shank array, stimulation strategy, and surgical approach are planned for the AMI that are expected to improve hearing performance in the patients who will be implanted in an upcoming clinical trial funded by the National Institutes of Health. Positive outcomes from this clinical trial will motivate new efforts and developments toward improving central auditory prostheses for those who cannot sufficiently benefit from cochlear implants. This article is part of a Special Issue entitled <Lasker Award>.
Collapse
Affiliation(s)
- Hubert H Lim
- Department of Biomedical Engineering, Department of Otolaryngology, and Institute for Translational Neuroscience, University of Minnesota, 312 Church Street S.E., Minneapolis, MN, 55455, USA.
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, 30625, Germany.
| |
Collapse
|
15
|
Deca D, Koene RA. Experimental enhancement of neurphysiological function. Front Syst Neurosci 2014; 8:189. [PMID: 25339871 PMCID: PMC4189435 DOI: 10.3389/fnsys.2014.00189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/17/2014] [Indexed: 01/27/2023] Open
Affiliation(s)
- Diana Deca
- Center for Integrated Protein Science and SyNergy Cluster, Institute of Neuroscience, Technical University Munich Munich, Germany
| | | |
Collapse
|