1
|
Veale R, Takahashi M. Pathways for Naturalistic Looking Behavior in Primate II. Superior Colliculus Integrates Parallel Top-down and Bottom-up Inputs. Neuroscience 2024; 545:86-110. [PMID: 38484836 DOI: 10.1016/j.neuroscience.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Volitional signals for gaze control are provided by multiple parallel pathways converging on the midbrain superior colliculus (SC), whose deeper layers output to the brainstem gaze circuits. In the first of two papers (Takahashi and Veale, 2023), we described the properties of gaze behavior of several species under both laboratory and natural conditions, as well as the current understanding of the brainstem and spinal cord circuits implementing gaze control in primate. In this paper, we review the parallel pathways by which sensory and task information reaches SC and how these sensory and task signals interact within SC's multilayered structure. This includes both bottom-up (world statistics) signals mediated by sensory cortex, association cortex, and subcortical structures, as well as top-down (goal and task) influences which arrive via either direct excitatory pathways from cerebral cortex, or via indirect basal ganglia relays resulting in inhibition or dis-inhibition as appropriate for alternative behaviors. Models of attention such as saliency maps serve as convenient frameworks to organize our understanding of both the separate computations of each neural pathway, as well as the interaction between the multiple parallel pathways influencing gaze. While the spatial interactions between gaze's neural pathways are relatively well understood, the temporal interactions between and within pathways will be an important area of future study, requiring both improved technical methods for measurement and improvement of our understanding of how temporal dynamics results in the observed spatiotemporal allocation of gaze.
Collapse
Affiliation(s)
- Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
2
|
Khanna SB, Scott JA, Smith MA. Dynamic shifts of visual and saccadic signals in prefrontal cortical regions 8Ar and FEF. J Neurophysiol 2020; 124:1774-1791. [PMID: 33026949 DOI: 10.1152/jn.00669.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Active vision is a fundamental process by which primates gather information about the external world. Multiple brain regions have been studied in the context of simple active vision tasks in which a visual target's appearance is temporally separated from saccade execution. Most neurons have tight spatial registration between visual and saccadic signals, and in areas such as prefrontal cortex (PFC), some neurons show persistent delay activity that links visual and motor epochs and has been proposed as a basis for spatial working memory. Many PFC neurons also show rich dynamics, which have been attributed to alternative working memory codes and the representation of other task variables. Our study investigated the transition between processing a visual stimulus and generating an eye movement in populations of PFC neurons in macaque monkeys performing a memory guided saccade task. We found that neurons in two subregions of PFC, the frontal eye fields (FEF) and area 8Ar, differed in their dynamics and spatial response profiles. These dynamics could be attributed largely to shifts in the spatial profile of visual and motor responses in individual neurons. This led to visual and motor codes for particular spatial locations that were instantiated by different mixtures of neurons, which could be important in PFC's flexible role in multiple sensory, cognitive, and motor tasks.NEW & NOTEWORTHY A central question in neuroscience is how the brain transitions from sensory representations to motor outputs. The prefrontal cortex contains neurons that have long been implicated as important in this transition and in working memory. We found evidence for rich and diverse tuning in these neurons, which was often spatially misaligned between visual and saccadic responses. This feature may play an important role in flexible working memory capabilities.
Collapse
Affiliation(s)
- Sanjeev B Khanna
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan A Scott
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew A Smith
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Carnegie Mellon Neuroscience Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Balan PF, Gerits A, Zhu Q, Kolster H, Orban GA, Wardak C, Vanduffel W. Fast Compensatory Functional Network Changes Caused by Reversible Inactivation of Monkey Parietal Cortex. Cereb Cortex 2020; 29:2588-2606. [PMID: 29901747 DOI: 10.1093/cercor/bhy128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 11/13/2022] Open
Abstract
The brain has a remarkable capacity to recover after lesions. However, little is known about compensatory neural adaptations at the systems level. We addressed this question by investigating behavioral and (correlated) functional changes throughout the cortex that are induced by focal, reversible inactivations. Specifically, monkeys performed a demanding covert spatial attention task while the lateral intraparietal area (LIP) was inactivated with muscimol and whole-brain fMRI activity was recorded. The inactivation caused LIP-specific decreases in task-related fMRI activity. In addition, these local effects triggered large-scale network changes. Unlike most studies in which animals were mainly passive relative to the stimuli, we observed heterogeneous effects with more profound muscimol-induced increases of task-related fMRI activity in areas connected to LIP, especially FEF. Furthermore, in areas such as FEF and V4, muscimol-induced changes in fMRI activity correlated with changes in behavioral performance. Notably, the activity changes in remote areas did not correlate with the decreased activity at the site of the inactivation, suggesting that such changes arise via neuronal mechanisms lying in the intact portion of the functional task network, with FEF a likely key player. The excitation-inhibition dynamics unmasking existing excitatory connections across the functional network might initiate these rapid adaptive changes.
Collapse
Affiliation(s)
- Puiu F Balan
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Annelies Gerits
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium
| | - Qi Zhu
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Hauke Kolster
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium
| | - Guy A Orban
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium.,Department of Medicine and Surgery, University of Parma, via Volturno, 39E Parma, Italy
| | - Claire Wardak
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium
| | - Wim Vanduffel
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
4
|
Viswanathan P, Nieder A. Comparison of visual receptive fields in the dorsolateral prefrontal cortex and ventral intraparietal area in macaques. Eur J Neurosci 2017; 46:2702-2712. [DOI: 10.1111/ejn.13740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Pooja Viswanathan
- Animal Physiology; Institute of Neurobiology; University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Andreas Nieder
- Animal Physiology; Institute of Neurobiology; University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| |
Collapse
|
5
|
Abstract
The superior colliculus is one of the most well-studied structures in the brain, and with each new report, its proposed role in behavior seems to increase in complexity. Forty years of evidence show that the colliculus is critical for reorienting an organism toward objects of interest. In monkeys, this involves saccadic eye movements. Recent work in the monkey colliculus and in the homologous optic tectum of the bird extends our understanding of the role of the colliculus in higher mental functions, such as attention and decision making. In this review, we highlight some of these recent results, as well as those capitalizing on circuit-based methodologies using transgenic mice models, to understand the contribution of the colliculus to attention and decision making. The wealth of information we have about the colliculus, together with new tools, provides a unique opportunity to obtain a detailed accounting of the neurons, circuits, and computations that underlie complex behavior.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095;
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
6
|
Excitatory synaptic feedback from the motor layer to the sensory layers of the superior colliculus. J Neurosci 2014; 34:6822-33. [PMID: 24828636 DOI: 10.1523/jneurosci.3137-13.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural circuits that translate sensory information into motor commands are organized in a feedforward manner converting sensory information into motor output. The superior colliculus (SC) follows this pattern as it plays a role in converting visual information from the retina and visual cortex into motor commands for rapid eye movements (saccades). Feedback from movement to sensory regions is hypothesized to play critical roles in attention, visual image stability, and saccadic suppression, but in contrast to feedforward pathways, motor feedback to sensory regions has received much less attention. The present study used voltage imaging and patch-clamp recording in slices of rat SC to test the hypothesis of an excitatory synaptic pathway from the motor layers of the SC back to the sensory superficial layers. Voltage imaging revealed an extensive depolarization of the superficial layers evoked by electrical stimulation of the motor layers. A pharmacologically isolated excitatory synaptic potential in the superficial layers depended on stimulus strength in the motor layers in a manner consistent with orthodromic excitation. Patch-clamp recording from neurons in the sensory layers revealed excitatory synaptic potentials in response to glutamate application in the motor layers. The location, size, and morphology of responsive neurons indicated they were likely to be narrow-field vertical cells. This excitatory projection from motor to sensory layers adds an important element to the circuitry of the SC and reveals a novel feedback pathway that could play a role in enhancing sensory responses to attended targets as well as visual image stabilization.
Collapse
|
7
|
Subramanian J, Colby CL. Shape selectivity and remapping in dorsal stream visual area LIP. J Neurophysiol 2013; 111:613-27. [PMID: 24225538 DOI: 10.1152/jn.00841.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We explore the visual world by making rapid eye movements (saccades) to focus on objects and locations of interest. Despite abrupt retinal image shifts, we see the world as stable. Remapping contributes to visual stability by updating the internal image with every saccade. Neurons in macaque lateral intraparietal cortex (LIP) and other brain areas update information about salient locations around the time of a saccade. The depth of information transfer remains to be thoroughly investigated. Area LIP, as part of the dorsal visual stream, is regarded as a spatially selective area, yet there is evidence that LIP neurons also encode object features. We sought to determine whether LIP remaps shape information. This knowledge is important for understanding what information is retained from each glance. We identified 82 remapping neurons. First, we presented shapes within the receptive field and tested for shape selectivity in a fixation task. Among the remapping neurons, 28 neurons (34%) were selective for shape. Second, we presented the same shapes in the future location of the receptive field around the time of the saccade and tested for shape selectivity during remapping. Thirty-one (38%) neurons were selective for shape. Of 11 neurons that were shape selective in both tasks, 5 showed significant correlation between shape selectivity in the two tasks. Across the population, there was a weak but significant correlation between responses to shape in the two tasks. Our results provide neurophysiological evidence that remapped responses in area LIP can encode shape information as well as spatial information.
Collapse
Affiliation(s)
- Janani Subramanian
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|