1
|
Wolpaw JR, Thompson AK. Enhancing neurorehabilitation by targeting beneficial plasticity. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1198679. [PMID: 37456795 PMCID: PMC10338914 DOI: 10.3389/fresc.2023.1198679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Neurorehabilitation is now one of the most exciting areas in neuroscience. Recognition that the central nervous system (CNS) remains plastic through life, new understanding of skilled behaviors (skills), and novel methods for engaging and guiding beneficial plasticity combine to provide unprecedented opportunities for restoring skills impaired by CNS injury or disease. The substrate of a skill is a distributed network of neurons and synapses that changes continually through life to ensure that skill performance remains satisfactory as new skills are acquired, and as growth, aging, and other life events occur. This substrate can extend from cortex to spinal cord. It has recently been given the name "heksor." In this new context, the primary goal of rehabilitation is to enable damaged heksors to repair themselves so that their skills are once again performed well. Skill-specific practice, the mainstay of standard therapy, often fails to optimally engage the many sites and kinds of plasticity available in the damaged CNS. New noninvasive technology-based interventions can target beneficial plasticity to critical sites in damaged heksors; these interventions may thereby enable much wider beneficial plasticity that enhances skill recovery. Targeted-plasticity interventions include operant conditioning of a spinal reflex or corticospinal motor evoked potential (MEP), paired-pulse facilitation of corticospinal connections, and brain-computer interface (BCI)-based training of electroencephalographic (EEG) sensorimotor rhythms. Initial studies in people with spinal cord injury, stroke, or multiple sclerosis show that these interventions can enhance skill recovery beyond that achieved by skill-specific practice alone. After treatment ends, the repaired heksors maintain the benefits.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, United States
| | - Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
2
|
Johnson KA, Petrie MA, Shields RK. Biomarkers for rapid H-reflex operant conditioning among females. J Neurophysiol 2023; 129:685-699. [PMID: 36791051 PMCID: PMC10010925 DOI: 10.1152/jn.00188.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Operant conditioning of a spinal monosynaptic pathway using the Hoffman reflex (H-reflex) is well established in animal and human studies. There is a subset within the human population (∼20% nonresponders) who are unable to up train this pathway suggesting some distinct or unique identifying characteristics. Importantly, females, who have a nine times higher rate of injury during human performance activities than men, have been understudied in areas of CNS neuroplasticity. Our long-term goal is to understand if innate ability to rapidly up train the H-reflex is predictive of future performance-based injury among females. In this study, we primarily determined whether healthy, young females could rapidly increase the H-reflex within a single session of operant conditioning and secondarily determined if electro-physiological, humoral, cognitive, anthropometric, or anxiety biomarkers distinguished the responders from nonresponders. Eighteen females (mean age: 24) participated in the study. Overall, females showed a group main effect for up training the H-reflex (P < 0.05). Of the cohort, 10 of 18 females met the criteria for up training the H-reflex (responders). The responders showed lower levels of estradiol (P < 0.05). A multivariate stepwise regression model supported that extracellular to intracellular water ratio (ECW/ICW) and H-max/M-max ratio explained 60% of the variation in up training among females. These findings support that females can acutely upregulate the H-reflex with training and that electro-physiological and hormonal factors may be associated with the up training.NEW & NOTEWORTHY Young females who acutely increase their H-reflexes with operant conditioning had lower levels of estradiol. However, the best predictors of those who could up-train the H-reflex were baseline H-reflex excitability (H-max/M-max) and extracellular to intracellular water ratio (ECW/ICW). Future studies are warranted to understand the complex relationship between operant conditioning, human performance, and injury among active young females.
Collapse
Affiliation(s)
- Kristin A Johnson
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, United States
| | - Michael A Petrie
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, United States
| | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
3
|
Hill NJ, Gupta D, Eftekhar A, Brangaccio JA, Norton JJS, McLeod M, Fake T, Wolpaw JR, Thompson AK. The Evoked Potential Operant Conditioning System (EPOCS): A Research Tool and an Emerging Therapy for Chronic Neuromuscular Disorders. J Vis Exp 2022:10.3791/63736. [PMID: 36094287 PMCID: PMC9948679 DOI: 10.3791/63736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Evoked Potential Operant Conditioning System (EPOCS) is a software tool that implements protocols for operantly conditioning stimulus-triggered muscle responses in people with neuromuscular disorders, which in turn can improve sensorimotor function when applied appropriately. EPOCS monitors the state of specific target muscles-e.g., from surface electromyography (EMG) while standing, or from gait cycle measurements while walking on a treadmill-and automatically triggers calibrated stimulation when pre-defined conditions are met. It provides two forms of feedback that enable a person to learn to modulate the targeted pathway's excitability. First, it continuously monitors ongoing EMG activity in the target muscle, guiding the person to produce a consistent level of activity suitable for conditioning. Second, it provides immediate feedback of the response size following each stimulation and indicates whether it has reached the target value. To illustrate its use, this article describes a protocol through which a person can learn to decrease the size of the Hoffmann reflex-the electrically-elicited analog of the spinal stretch reflex-in the soleus muscle. Down-conditioning this pathway's excitability can improve walking in people with spastic gait due to incomplete spinal cord injury. The article demonstrates how to set up the equipment; how to place stimulating and recording electrodes; and how to use the free software to optimize electrode placement, measure the recruitment curve of direct motor and reflex responses, measure the response without operant conditioning, condition the reflex, and analyze the resulting data. It illustrates how the reflex changes over multiple sessions and how walking improves. It also discusses how the system can be applied to other kinds of evoked responses and to other kinds of stimulation, e.g., motor evoked potentials to transcranial magnetic stimulation; how it can address various clinical problems; and how it can support research studies of sensorimotor function in health and disease.
Collapse
Affiliation(s)
- N Jeremy Hill
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center; Electrical & Computer Engineering Department, State University of New York at Albany;
| | - Disha Gupta
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center; Electrical & Computer Engineering Department, State University of New York at Albany
| | - Amir Eftekhar
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center
| | - Jodi A Brangaccio
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center
| | - James J S Norton
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center; Electrical & Computer Engineering Department, State University of New York at Albany
| | - Michelle McLeod
- College of Health Professions, Medical University of South Carolina
| | - Tim Fake
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center; Electrical & Computer Engineering Department, State University of New York at Albany; Department of Biomedical Sciences, State University of New York at Albany
| | - Aiko K Thompson
- College of Health Professions, Medical University of South Carolina
| |
Collapse
|
4
|
Wolpaw JR, Kamesar A. Heksor: The CNS substrate of an adaptive behavior. J Physiol 2022; 600:3423-3452. [PMID: 35771667 PMCID: PMC9545119 DOI: 10.1113/jp283291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past half‐century, the largely hardwired central nervous system (CNS) of 1970 has become the ubiquitously plastic CNS of today, in which change is the rule not the exception. This transformation complicates a central question in neuroscience: how are adaptive behaviours – behaviours that serve the needs of the individual – acquired and maintained through life? It poses a more basic question: how do many adaptive behaviours share the ubiquitously plastic CNS? This question compels neuroscience to adopt a new paradigm. The core of this paradigm is a CNS entity with unique properties, here given the name heksor from the Greek hexis. A heksor is a distributed network of neurons and synapses that changes itself as needed to maintain the key features of an adaptive behaviour, the features that make the behaviour satisfactory. Through their concurrent changes, the numerous heksors that share the CNS negotiate the properties of the neurons and synapses that they all use. Heksors keep the CNS in a state of negotiated equilibrium that enables each heksor to maintain the key features of its behaviour. The new paradigm based on heksors and the negotiated equilibrium they create is supported by animal and human studies of interactions among new and old adaptive behaviours, explains otherwise inexplicable results, and underlies promising new approaches to restoring behaviours impaired by injury or disease. Furthermore, the paradigm offers new and potentially important answers to extant questions, such as the generation and function of spontaneous neuronal activity, the aetiology of muscle synergies, and the control of homeostatic plasticity.
![]()
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Director, National Center for Adaptive Neurotechnologies, Professor of Biomedical Sciences, State University of New York at Albany, Albany Stratton VA Medical Center, Albany, NY, 12208
| | - Adam Kamesar
- Professor of Judaeo-Hellenistic Literature, Hebrew Union College, Cincinnati, Ohio, 45220
| |
Collapse
|
5
|
Thompson AK, Sinkjær T. Can Operant Conditioning of EMG-Evoked Responses Help to Target Corticospinal Plasticity for Improving Motor Function in People With Multiple Sclerosis? Front Neurol 2020; 11:552. [PMID: 32765389 PMCID: PMC7381136 DOI: 10.3389/fneur.2020.00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022] Open
Abstract
Corticospinal pathway and its function are essential in motor control and motor rehabilitation. Multiple sclerosis (MS) causes damage to the brain and descending connections, and often diminishes corticospinal function. In people with MS, neural plasticity is available, although it does not necessarily remain stable over the course of disease progress. Thus, inducing plasticity to the corticospinal pathway so as to improve its function may lead to motor control improvements, which impact one's mobility, health, and wellness. In order to harness plasticity in people with MS, over the past two decades, non-invasive brain stimulation techniques have been examined for addressing common symptoms, such as cognitive deficits, fatigue, and spasticity. While these methods appear promising, when it comes to motor rehabilitation, just inducing plasticity or having a capacity for it does not guarantee generation of better motor functions. Targeting plasticity to a key pathway, such as the corticospinal pathway, could change what limits one's motor control and improve function. One of such neural training methods is operant conditioning of the motor-evoked potential that aims to train the behavior of the corticospinal-motoneuron pathway. Through up-conditioning training, the person learns to produce the rewarded neuronal behavior/state of increased corticospinal excitability, and through iterative training, the rewarded behavior/state becomes one's habitual, daily motor behavior. This minireview introduces operant conditioning approach for people with MS. Guiding beneficial CNS plasticity on top of continuous disease progress may help to prolong the duration of maintained motor function and quality of life in people living with MS.
Collapse
Affiliation(s)
- Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Thomas Sinkjær
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Lundbeck Foundation, Copenhagen, Denmark
| |
Collapse
|
6
|
Pearcey GEP, Zehr EP. Repeated and patterned stimulation of cutaneous reflex pathways amplifies spinal cord excitability. J Neurophysiol 2020; 124:342-351. [PMID: 32579412 DOI: 10.1152/jn.00072.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Priming with patterned stimulation of antagonist muscle afferents induces modulation of spinal cord excitability as evidenced by changes in group Ia reciprocal inhibition. When assessed transiently with a condition-test pulse paradigm, stimulating cutaneous afferents innervating the foot reduces Ia presynaptic inhibition and facilitates soleus Hoffmann (H)-reflex amplitudes. Modulatory effects (i.e., priming) of longer lasting sensory stimulation of cutaneous afferents innervating the foot have yet to be examined. As a first step, we examined how priming with 20 min of patterned and alternating stimulation between the left and right foot affects spinal cord excitability. During priming, stimulus trains (550 ms; consisting of twenty-eight 1-ms pulses at 51 Hz, 1.2 times the radiating threshold) were applied simultaneously to the sural and plantar nerves of the ankle. Stimulation to the left and right ankle was out of phase by 500 ms. We evoked soleus H-reflexes and muscle compound action potentials (M waves) before and following priming stimulation to provide a proxy measure of spinal cord excitability. H-reflex and M-wave recruitment curves were recorded at rest, during brief (<2 min) arm cycling, and with sural conditioning [train of five 1-ms pulses at 2 times the radiating threshold (RT) with a condition-test interval (C-T) = 80 ms]. Data indicate an increase in H-reflex excitability following priming via patterned sensory stimulation. Transient sural conditioning was less effective following priming, indicating that the increased excitability of the H-reflex is partially attributable to reductions in group Ia presynaptic inhibition. Sensory stimulation to cutaneous afferents, which enhances spinal cord excitability, may prove useful in both rehabilitation and performance settings.NEW & NOTEWORTHY Priming via patterned stimulation of the nervous system induces neuroplasticity. Yet, accessing previously known cutaneous reflex pathways to alter muscle reflex excitability has not yet been examined. Here, we show that sensory stimulation of the cutaneous afferents that innervate the foot sole can amplify spinal cord excitability, which, in this case, is attributed to reductions in presynaptic inhibition.
Collapse
Affiliation(s)
- Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
7
|
Thompson AK, Wolpaw JR. H-reflex conditioning during locomotion in people with spinal cord injury. J Physiol 2019; 599:2453-2469. [PMID: 31215646 PMCID: PMC7241089 DOI: 10.1113/jp278173] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Key points In people or animals with incomplete spinal cord injury (SCI), changing a spinal reflex through an operant conditioning protocol can improve locomotion. All previous studies conditioned the reflex during steady‐state maintenance of a specific posture. By contrast, the present study down‐conditioned the reflex during the swing‐phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The aim was to modify the functioning of the reflex in a specific phase of a dynamic movement. This novel swing‐phase conditioning protocol decreased the reflex much faster and farther than did the steady‐state protocol in people or animals with or without SCI, and it also improved locomotion. The reflex decrease persisted for at least 6 months after conditioning ended. The results suggest that conditioning reflex function in a specific phase of a dynamic movement offers a new approach to enhancing and/or accelerating recovery after SCI or in other disorders.
Abstract In animals and people with incomplete spinal cord injury, appropriate operant conditioning of a spinal reflex can improve impaired locomotion. In all previous conditioning studies, the reflex was conditioned during steady‐state maintenance of a stable posture; this steady‐state protocol aimed to change the excitability of the targeted reflex pathway; reflex size gradually changed over 8–10 weeks. The present study introduces a new protocol, comprising a dynamic protocol that aims to change the functioning of the reflex pathway during a specific phase of a complex movement. Specifically, we down‐conditioned the soleus H‐reflex during the swing‐phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The swing‐phase H‐reflex, which is absent or very small in neurologically normal individuals, is abnormally large in this patient population. The results were clear. With swing‐phase down‐conditioning, the H‐reflex decreased much faster and farther than did the H‐reflex in all previous animal or human studies with the steady‐state protocol, and the decrease persisted for at least 6 months after conditioning ended. The H‐reflex decrease was accompanied by improvements in walking speed and in the modulation of locomotor electromyograph activity in proximal and distal muscles of both legs. These results provide new insight into the factors controlling spinal reflex conditioning; they suggest that the conditioning protocols targeting reflex function in a specific movement phase provide a promising new opportunity to enhance functional recovery after SCI or in other disorders. In people or animals with incomplete spinal cord injury (SCI), changing a spinal reflex through an operant conditioning protocol can improve locomotion. All previous studies conditioned the reflex during steady‐state maintenance of a specific posture. By contrast, the present study down‐conditioned the reflex during the swing‐phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The aim was to modify the functioning of the reflex in a specific phase of a dynamic movement. This novel swing‐phase conditioning protocol decreased the reflex much faster and farther than did the steady‐state protocol in people or animals with or without SCI, and it also improved locomotion. The reflex decrease persisted for at least 6 months after conditioning ended. The results suggest that conditioning reflex function in a specific phase of a dynamic movement offers a new approach to enhancing and/or accelerating recovery after SCI or in other disorders.
Collapse
Affiliation(s)
- Aiko K Thompson
- College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Jonathan R Wolpaw
- Wadsworth Center, NYS Department of Health, Albany, NY, USA.,Department of Neurology, Stratton VA Medical Center, Albany, NY, USA.,Department of Biomedical Sciences, State University of New York, Albany, NY, USA
| |
Collapse
|
8
|
Mrachacz-Kersting N, Kersting UG, de Brito Silva P, Makihara Y, Arendt-Nielsen L, Sinkjær T, Thompson AK. Acquisition of a simple motor skill: task-dependent adaptation and long-term changes in the human soleus stretch reflex. J Neurophysiol 2019; 122:435-446. [PMID: 31166816 DOI: 10.1152/jn.00211.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Changing the H reflex through operant conditioning leads to CNS multisite plasticity and can affect previously learned skills. To further understand the mechanisms of this plasticity, we operantly conditioned the initial component (M1) of the soleus stretch reflex. Unlike the H reflex, the stretch reflex is affected by fusimotor control, comprises several bursts of activity resulting from temporally dispersed afferent inputs, and may activate spinal motoneurons via several different spinal and supraspinal pathways. Neurologically normal participants completed 6 baseline sessions and 24 operant conditioning sessions in which they were encouraged to increase (M1up) or decrease (M1down) M1 size. Five of eight M1up participants significantly increased M1; the final M1 size of those five participants was 143 ± 15% (mean ± SE) of the baseline value. All eight M1down participants significantly decreased M1; their final M1 size was 62 ± 6% of baseline. Similar to the previous H-reflex conditioning studies, conditioned reflex change consisted of within-session task-dependent adaptation and across-session long-term change. Task-dependent adaptation was evident in conditioning session 1 with M1up and by session 4 with M1down. Long-term change was evident by session 10 with M1up and by session 16 with M1down. Task-dependent adaptation was greater with M1up than with the previous H-reflex upconditioning. This may reflect adaptive changes in muscle spindle sensitivity, which affects the stretch reflex but not the H reflex. Because the stretch reflex is related to motor function more directly than the H reflex, M1 conditioning may provide a valuable tool for exploring the functional impact of reflex conditioning and its potential therapeutic applications. NEW & NOTEWORTHY Since the activity of stretch reflex pathways contributes to locomotion, changing it through training may improve locomotor rehabilitation in people with CNS disorders. Here we show for the first time that people can change the size of the soleus spinal stretch reflex through operant conditioning. Conditioned stretch reflex change is the sum of task-dependent adaptation and long-term change, consistent with H-reflex conditioning yet different from it in the composition and amount of the two components.
Collapse
Affiliation(s)
- N Mrachacz-Kersting
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - U G Kersting
- Institute for Biomechanics and Orthopaedics, German Sport University Cologne , Cologne , Germany
| | - P de Brito Silva
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - Y Makihara
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare , Narita, Chiba , Japan
| | - L Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - T Sinkjær
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare , Narita, Chiba , Japan
| | - A K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
9
|
Thompson AK, Fiorenza G, Smyth L, Favale B, Brangaccio J, Sniffen J. Operant conditioning of the motor-evoked potential and locomotion in people with and without chronic incomplete spinal cord injury. J Neurophysiol 2019; 121:853-866. [PMID: 30625010 DOI: 10.1152/jn.00557.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foot drop is very common among people with chronic incomplete spinal cord injury (SCI) and likely stems from SCI that disturbs the corticospinal activation of the ankle dorsiflexor tibialis anterior (TA). Thus, if one can recover or increase the corticospinal excitability reduced by SCI, motor function recovery may be facilitated. Here, we hypothesized that in people suffering from weak dorsiflexion due to chronic incomplete SCI, increasing the TA motor-evoked potential (MEP) through operant up-conditioning can improve dorsiflexion during locomotion, while in people without any injuries, it would have little impact on already normal locomotion. Before and after 24 MEP conditioning or control sessions, locomotor electromyography (EMG) and kinematics were measured. This study reports the results of these locomotor assessments. In participants without SCI, locomotor EMG activity, soleus Hoffmann reflex modulation, and joint kinematics did not change, indicating that MEP up-conditioning or repeated single-pulse transcranial magnetic stimulation (i.e., control protocol) does not influence normal locomotion. In participants with SCI, MEP up-conditioning increased TA activity during the swing-to-swing stance transition phases and ankle joint motion during locomotion in the conditioned leg and increased walking speed consistently. In addition, the swing-phase TA activity and ankle joint motion also improved in the contralateral leg. The results are consistent with our hypothesis. Together with the previous operant conditioning studies in humans and rats, the present study suggests that operant conditioning can be a useful therapeutic tool for enhancing motor function recovery in people with SCI and other central nervous system disorders. NEW & NOTEWORTHY This study examined the functional impact of operant conditioning of motor-evoked potential (MEP) to transcranial magnetic stimulation that aimed to increase corticospinal excitability for the ankle dorsiflexor tibialis anterior (TA). In people with chronic incomplete spinal cord injury (SCI), MEP up-conditioning increased TA activity and improved dorsiflexion during locomotion, while in people without injuries, it had little impact on already normal locomotion. MEP conditioning may potentially be used to enhance motor function recovery after SCI.
Collapse
Affiliation(s)
- Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina , Charleston, South Carolina
| | - Gina Fiorenza
- United Technologies Aerospace Systems, Windsor Locks, Connecticut
| | - Lindsay Smyth
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York
| | - Briana Favale
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York
| | - Jodi Brangaccio
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York
| | - Janice Sniffen
- Department of Physical Therapy, School of Health Technology and Management, Stony Brook University , Stony Brook, New York
| |
Collapse
|
10
|
Wolpaw JR. The negotiated equilibrium model of spinal cord function. J Physiol 2018; 596:3469-3491. [PMID: 29663410 PMCID: PMC6092289 DOI: 10.1113/jp275532] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and ageing, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long-recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications.
Collapse
Affiliation(s)
- Jonathan R. Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth CenterNYS Department of HealthAlbanyNYUSA
- Department of NeurologyStratton VA Medical CenterAlbanyNYUSA
- Department of Biomedical SciencesSchool of Public HealthSUNY AlbanyNYUSA
- Department of Neurology, Neurological InstituteColumbia UniversityNew YorkNYUSA
| |
Collapse
|
11
|
Eftekhar A, Norton JJS, McDonough CM, Wolpaw JR. Retraining Reflexes: Clinical Translation of Spinal Reflex Operant Conditioning. Neurotherapeutics 2018; 15:669-683. [PMID: 29987761 PMCID: PMC6095771 DOI: 10.1007/s13311-018-0643-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurological disorders, such as spinal cord injury, stroke, traumatic brain injury, cerebral palsy, and multiple sclerosis cause motor impairments that are a huge burden at the individual, family, and societal levels. Spinal reflex abnormalities contribute to these impairments. Spinal reflex measurements play important roles in characterizing and monitoring neurological disorders and their associated motor impairments, such as spasticity, which affects nearly half of those with neurological disorders. Spinal reflexes can also serve as therapeutic targets themselves. Operant conditioning protocols can target beneficial plasticity to key reflex pathways; they can thereby trigger wider plasticity that improves impaired motor skills, such as locomotion. These protocols may complement standard therapies such as locomotor training and enhance functional recovery. This paper reviews the value of spinal reflexes and the therapeutic promise of spinal reflex operant conditioning protocols; it also considers the complex process of translating this promise into clinical reality.
Collapse
Affiliation(s)
- Amir Eftekhar
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - James J S Norton
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Christine M McDonough
- School of Health and Rehabilitation Services, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Neurology, Stratton VA Medical Center, Albany, NY, USA
| |
Collapse
|
12
|
Norton JJS, Wolpaw JR. Acquisition, Maintenance, and Therapeutic Use of a Simple Motor Skill. Curr Opin Behav Sci 2018; 20:138-144. [PMID: 30480059 PMCID: PMC6251313 DOI: 10.1016/j.cobeha.2017.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Operant conditioning of the spinal stretch reflex (SSR) or its electrical analog, the H-reflex, is a valuable experimental paradigm for studying the acquisition and maintenance of a simple motor skill. The CNS substrate of this skill consists of brain and spinal cord plasticity that operates as a hierarchy-the learning experience induces plasticity in the brain that guides and maintains plasticity in the spinal cord. This is apparent in the two components of the skill acquisition: task-dependent adaptation, reflecting brain plasticity; and long-term change, reflecting gradual development of spinal plasticity. The inferior olive, cerebellum, sensorimotor cortex, and corticospinal tract (CST) are essential components of this hierarchy. The neuronal and synaptic mechanisms of the spinal plasticity are under study. Because acquisition of this skill changes the spinal cord, it can affect other skills, such as locomotion. Thus, it enables investigation of how the highly plastic spinal cord supports the acquisition and maintenance of a broad repertoire of motor skills throughout life. These studies have resulted in the negotiated equilibrium model of spinal cord function, which reconciles the spinal cord's long-recognized reliability as the final common pathway for behaviors with its recently recognized ongoing plasticity. In accord with this model, appropriate H-reflex conditioning in a person with spasticity due to an incomplete spinal cord injury can trigger wider beneficial plasticity that markedly improves walking. H-reflex operant conditioning appears to provide a valuable new method for enhancing functional recovery in people with spinal cord injury and possibly other disorders as well.
Collapse
Affiliation(s)
- James J. S. Norton
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY 12201, USA
- Department of Neurology, Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208, USA
| | - Jonathan R. Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY 12201, USA
- Department of Neurology, Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208, USA
| |
Collapse
|
13
|
Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors. J Neurosci 2017; 37:8198-8206. [PMID: 28743726 DOI: 10.1523/jneurosci.0767-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
When new motor learning changes the spinal cord, old behaviors are not impaired; their key features are preserved by additional compensatory plasticity. To explore the mechanisms responsible for this compensatory plasticity, we transected the spinal dorsal ascending tract before or after female rats acquired a new behavior-operantly conditioned increase or decrease in the right soleus H-reflex-and examined an old behavior-locomotion. Neither spinal dorsal ascending tract transection nor H-reflex conditioning alone impaired locomotion. Nevertheless, when spinal dorsal ascending tract transection and H-reflex conditioning were combined, the rats developed a limp and a tilted posture that correlated in direction and magnitude with the H-reflex change. When the right H-reflex was increased by conditioning, the right step lasted longer than the left and the right hip was higher than the left; when the right H-reflex was decreased by conditioning, the opposite occurred. These results indicate that ascending sensory input guides the compensatory plasticity that normally prevents the plasticity underlying H-reflex change from impairing locomotion. They support the concept of the state of the spinal cord as a negotiated equilibrium that reflects the concurrent influences of all the behaviors in an individual's repertoire; and they support the new therapeutic strategies this concept introduces.SIGNIFICANCE STATEMENT The spinal cord provides a reliable final common pathway for motor behaviors throughout life. Until recently, its reliability was explained by the assumption that it is hardwired; but it is now clear that the spinal cord changes continually as new behaviors are acquired. Nevertheless, old behaviors are preserved. This study shows that their preservation depends on sensory feedback from the spinal cord to the brain: if feedback is removed, the acquisition of a new behavior may disrupt an old behavior. In sum, when a new behavior changes the spinal cord, sensory feedback to the brain guides further change that preserves old behaviors. This finding contributes to a new understanding of spinal cord function and to development of new rehabilitation therapies.
Collapse
|
14
|
Chen XY, Wang Y, Chen Y, Chen L, Wolpaw JR. Ablation of the inferior olive prevents H-reflex down-conditioning in rats. J Neurophysiol 2016; 115:1630-6. [PMID: 26792888 DOI: 10.1152/jn.01069.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/16/2016] [Indexed: 01/01/2023] Open
Abstract
We evaluated the role of the inferior olive (IO) in acquisition of the spinal cord plasticity that underlies H-reflex down-conditioning, a simple motor skill. The IO was chemically ablated before a 50-day exposure to an operant conditioning protocol that rewarded a smaller soleus H-reflex. In normal rats, down-conditioning succeeds (i.e., H-reflex size decreases at least 20%) in 80% of animals. Down-conditioning failed in every IO-ablated rat (P< 0.001 vs. normal rats). IO ablation itself had no long-term effect on H-reflex size. These results indicate that the IO is essential for acquisition of a down-conditioned H-reflex. With previous data, they support the hypothesis that IO and cortical inputs to cerebellum enable the cerebellum to guide sensorimotor cortex plasticity that produces and maintains the spinal cord plasticity that underlies the down-conditioned H-reflex. They help to further define H-reflex conditioning as a model for understanding motor learning and as a new approach to enhancing functional recovery after trauma or disease.
Collapse
Affiliation(s)
- Xiang Yang Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York; Department of Biomedical Sciences, State University of New York, Albany, New York;
| | - Yu Wang
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Yi Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Lu Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York; Department of Biomedical Sciences, State University of New York, Albany, New York; Department of Neurology, Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
15
|
Mrachacz-Kersting N, Jiang N, Stevenson AJT, Niazi IK, Kostic V, Pavlovic A, Radovanovic S, Djuric-Jovicic M, Agosta F, Dremstrup K, Farina D. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J Neurophysiol 2015; 115:1410-21. [PMID: 26719088 DOI: 10.1152/jn.00918.2015] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/18/2015] [Indexed: 01/12/2023] Open
Abstract
Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here we evaluated the effect and the underlying mechanisms of three BCI training sessions in a double-blind sham-controlled design. The applied BCI is based on Hebbian principles of associativity that hypothesize that neural assemblies activated in a correlated manner will strengthen synaptic connections. Twenty-two chronic stroke patients were divided into two training groups. Movement-related cortical potentials (MRCPs) were detected by electroencephalography during repetitions of foot dorsiflexion. Detection triggered a single electrical stimulation of the common peroneal nerve timed so that the resulting afferent volley arrived at the peak negative phase of the MRCP (BCIassociative group) or randomly (BCInonassociative group). Fugl-Meyer motor assessment (FM), 10-m walking speed, foot and hand tapping frequency, diffusion tensor imaging (DTI) data, and the excitability of the corticospinal tract to the target muscle [tibialis anterior (TA)] were quantified. The TA motor evoked potential (MEP) increased significantly after the BCIassociative intervention, but not for the BCInonassociative group. FM scores (0.8 ± 0.46 point difference, P = 0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. Corticospinal tract integrity on DTI did not correlate with clinical or physiological changes. For the BCI as applied here, the precise coupling between the brain command and the afferent signal was imperative for the behavioral, clinical, and neurophysiological changes reported. This association may become the driving principle for the design of BCI rehabilitation in the future. Indeed, no available BCIs can match this degree of functional improvement with such a short intervention.
Collapse
Affiliation(s)
- Natalie Mrachacz-Kersting
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark;
| | - Ning Jiang
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Andrew James Thomas Stevenson
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Imran Khan Niazi
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Vladimir Kostic
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Pavlovic
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sasa Radovanovic
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Kim Dremstrup
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dario Farina
- Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
16
|
Brownstone RM, Bui TV, Stifani N. Spinal circuits for motor learning. Curr Opin Neurobiol 2015; 33:166-73. [PMID: 25978563 DOI: 10.1016/j.conb.2015.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022]
Abstract
Studies of motor learning have largely focussed on the cerebellum, and have provided key concepts about neural circuits required. However, other parts of the nervous system are involved in learning, as demonstrated by the capacity to 'train' spinal circuits to produce locomotion following spinal cord injury. While somatosensory feedback is necessary for spinal motor learning, feed forward circuits within the spinal cord must also contribute. In fact, motoneurons themselves could act as comparators that integrate feed forward and feedback inputs, and thus contribute to motor learning. Application of cerebellar-derived principles to spinal circuitry leads to testable predictions of spinal organization required for motor learning.
Collapse
Affiliation(s)
- Robert M Brownstone
- Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2.
| | - Tuan V Bui
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5; Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Nicolas Stifani
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
17
|
Gonzalez-Rothi EJ, Rombola AM, Rousseau CA, Mercier LM, Fitzpatrick GM, Reier PJ, Fuller DD, Lane MA. Spinal interneurons and forelimb plasticity after incomplete cervical spinal cord injury in adult rats. J Neurotrauma 2015; 32:893-907. [PMID: 25625912 DOI: 10.1089/neu.2014.3718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cervical spinal cord injury (cSCI) disrupts bulbospinal projections to motoneurons controlling the upper limbs, resulting in significant functional impairments. Ongoing clinical and experimental research has revealed several lines of evidence for functional neuroplasticity and recovery of upper extremity function after SCI. The underlying neural substrates, however, have not been thoroughly characterized. The goals of the present study were to map the intraspinal motor circuitry associated with a defined upper extremity muscle, and evaluate chronic changes in the distribution of this circuit following incomplete cSCI. Injured animals received a high cervical (C2) lateral hemisection (Hx), which compromises supraspinal input to ipsilateral spinal motoneurons controlling the upper extremities (forelimb) in the adult rat. A battery of behavioral tests was used to characterize the time course and extent of forelimb motor recovery over a 16 week period post-injury. A retrograde transneuronal tracer - pseudorabies virus - was used to define the motor and pre-motor circuitry controlling the extensor carpi radialis longus (ECRL) muscle in spinal intact and injured animals. In the spinal intact rat, labeling was observed unilaterally within the ECRL motoneuron pool and within spinal interneurons bilaterally distributed within the dorsal horn and intermediate gray matter. No changes in labeling were observed 16 weeks post-injury, despite a moderate degree of recovery of forelimb motor function. These results suggest that recovery of the forelimb function assessed following C2Hx injury does not involve recruitment of new interneurons into the ipsilateral ECRL motor pathway. However, the functional significance of these existing interneurons to motor recovery requires further exploration.
Collapse
Affiliation(s)
- Elisa Janine Gonzalez-Rothi
- 1 Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Angela M Rombola
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Celeste A Rousseau
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Lynne M Mercier
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Garrett M Fitzpatrick
- 1 Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Paul J Reier
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - David D Fuller
- 1 Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Michael A Lane
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
18
|
Abstract
An operant-conditioning protocol that bases reward on the electromyographic response produced by a specific CNS pathway can change that pathway. For example, in both animals and people, an operant-conditioning protocol can increase or decrease the spinal stretch reflex or its electrical analog, the H-reflex. Reflex change is associated with plasticity in the pathway of the reflex as well as elsewhere in the spinal cord and brain. Because these pathways serve many different behaviors, the plasticity produced by this conditioning can change other behaviors. Thus, in animals or people with partial spinal cord injuries, appropriate reflex conditioning can improve locomotion. Furthermore, in people with spinal cord injuries, appropriate reflex conditioning can trigger widespread beneficial plasticity. This wider plasticity appears to reflect an iterative process through which the multiple behaviors in the individual's repertoire negotiate the properties of the spinal neurons and synapses that they all use. Operant-conditioning protocols are a promising new therapeutic method that could complement other rehabilitation methods and enhance functional recovery. Their successful use requires strict adherence to appropriately designed procedures, as well as close attention to accommodating and engaging the individual subject in the conditioning process.
Collapse
|
19
|
Chen Y, Chen L, Wang Y, Wolpaw JR, Chen XY. Persistent beneficial impact of H-reflex conditioning in spinal cord-injured rats. J Neurophysiol 2014; 112:2374-81. [PMID: 25143542 DOI: 10.1152/jn.00422.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Operant conditioning of a spinal cord reflex can improve locomotion in rats and humans with incomplete spinal cord injury. This study examined the persistence of its beneficial effects. In rats in which a right lateral column contusion injury had produced asymmetric locomotion, up-conditioning of the right soleus H-reflex eliminated the asymmetry while down-conditioning had no effect. After the 50-day conditioning period ended, the H-reflex was monitored for 100 [±9 (SD)] (range 79-108) more days and locomotion was then reevaluated. After conditioning ended in up-conditioned rats, the H-reflex continued to increase, and locomotion continued to improve. In down-conditioned rats, the H-reflex decrease gradually disappeared after conditioning ended, and locomotion at the end of data collection remained as impaired as it had been before and immediately after down-conditioning. The persistence (and further progression) of H-reflex increase but not H-reflex decrease in these spinal cord-injured rats is consistent with the fact that up-conditioning improved their locomotion while down-conditioning did not. That is, even after up-conditioning ended, the up-conditioned H-reflex pathway remained adaptive because it improved locomotion. The persistence and further enhancement of the locomotor improvement indicates that spinal reflex conditioning protocols might supplement current therapies and enhance neurorehabilitation. They may be especially useful when significant spinal cord regeneration becomes possible and precise methods for retraining the regenerated spinal cord are needed.
Collapse
Affiliation(s)
- Yi Chen
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Lu Chen
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Yu Wang
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Jonathan R Wolpaw
- Wadsworth Center, New York State Department of Health, Albany, New York; Department of Biomedical Sciences, State University of New York, Albany, New York; and Department of Neurology, Neurological Institute, Columbia University, New York, New York
| | - Xiang Yang Chen
- Wadsworth Center, New York State Department of Health, Albany, New York; Department of Biomedical Sciences, State University of New York, Albany, New York; and
| |
Collapse
|
20
|
Makihara Y, Segal RL, Wolpaw JR, Thompson AK. Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans. J Neurophysiol 2014; 112:1439-46. [PMID: 24944216 DOI: 10.1152/jn.00225.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion.
Collapse
Affiliation(s)
- Yukiko Makihara
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York; Program in Human Movement Science, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard L Segal
- Program in Human Movement Science, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Health Professions, Medical University of South Carolina, Charleston, South Carolina
| | - Jonathan R Wolpaw
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York; Wadsworth Center, New York State Department of Health, Albany, New York; Department of Neurology, Neurological Institute, Columbia University, New York, New York; and Department of Biomedical Sciences, State University of New York, Albany, New York
| | - Aiko K Thompson
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York; Wadsworth Center, New York State Department of Health, Albany, New York; Department of Neurology, Neurological Institute, Columbia University, New York, New York; and Department of Biomedical Sciences, State University of New York, Albany, New York
| |
Collapse
|
21
|
Thompson AK, Wolpaw JR. Operant conditioning of spinal reflexes: from basic science to clinical therapy. Front Integr Neurosci 2014; 8:25. [PMID: 24672441 PMCID: PMC3957063 DOI: 10.3389/fnint.2014.00025] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/20/2014] [Indexed: 12/26/2022] Open
Abstract
New appreciation of the adaptive capabilities of the nervous system, recent recognition that most spinal cord injuries are incomplete, and progress in enabling regeneration are generating growing interest in novel rehabilitation therapies. Here we review the 35-year evolution of one promising new approach, operant conditioning of spinal reflexes. This work began in the late 1970’s as basic science; its purpose was to develop and exploit a uniquely accessible model for studying the acquisition and maintenance of a simple behavior in the mammalian central nervous system (CNS). The model was developed first in monkeys and then in rats, mice, and humans. Studies with it showed that the ostensibly simple behavior (i.e., a larger or smaller reflex) rests on a complex hierarchy of brain and spinal cord plasticity; and current investigations are delineating this plasticity and its interactions with the plasticity that supports other behaviors. In the last decade, the possible therapeutic uses of reflex conditioning have come under study, first in rats and then in humans. The initial results are very exciting, and they are spurring further studies. At the same time, the original basic science purpose and the new clinical purpose are enabling and illuminating each other in unexpected ways. The long course and current state of this work illustrate the practical importance of basic research and the valuable synergy that can develop between basic science questions and clinical needs.
Collapse
Affiliation(s)
- Aiko K Thompson
- Helen Hayes Hospital, New York State Department of Health West Haverstraw, NY, USA ; Wadsworth Center, New York State Department of Health Albany, NY, USA ; Department of Neurology, Neurological Institute, Columbia University New York, NY, USA ; Department of Biomedical Sciences, University at Albany, State University of New York Albany, NY, USA
| | - Jonathan R Wolpaw
- Helen Hayes Hospital, New York State Department of Health West Haverstraw, NY, USA ; Wadsworth Center, New York State Department of Health Albany, NY, USA ; Department of Neurology, Neurological Institute, Columbia University New York, NY, USA ; Department of Biomedical Sciences, University at Albany, State University of New York Albany, NY, USA
| |
Collapse
|
22
|
Thompson AK, Wolpaw JR. Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help. Neuroscientist 2014; 21:203-15. [PMID: 24636954 DOI: 10.1177/1073858414527541] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
People with incomplete spinal cord injury (SCI) frequently suffer motor disabilities due to spasticity and poor muscle control, even after conventional therapy. Abnormal spinal reflex activity often contributes to these problems. Operant conditioning of spinal reflexes, which can target plasticity to specific reflex pathways, can enhance recovery. In rats in which a right lateral column lesion had weakened right stance and produced an asymmetrical gait, up-conditioning of the right soleus H-reflex, which increased muscle spindle afferent excitation of soleus, strengthened right stance and eliminated the asymmetry. In people with hyperreflexia due to incomplete SCI, down-conditioning of the soleus H-reflex improved walking speed and symmetry. Furthermore, modulation of electromyographic activity during walking improved bilaterally, indicating that a protocol that targets plasticity to a specific pathway can trigger widespread plasticity that improves recovery far beyond that attributable to the change in the targeted pathway. These improvements were apparent to people in their daily lives. They reported walking faster and farther, and noted less spasticity and better balance. Operant conditioning protocols could be developed to modify other spinal reflexes or corticospinal connections; and could be combined with other therapies to enhance recovery in people with SCI or other neuromuscular disorders.
Collapse
Affiliation(s)
- Aiko K Thompson
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY, USA Wadsworth Center, New York State Department of Health, Albany, NY, USA Department of Neurology, Neurological Institute, Columbia University, New York, NY, USA Department of Biomedical Sciences, State University of New York, Albany, NY, USA
| | - Jonathan R Wolpaw
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY, USA Wadsworth Center, New York State Department of Health, Albany, NY, USA Department of Neurology, Neurological Institute, Columbia University, New York, NY, USA Department of Biomedical Sciences, State University of New York, Albany, NY, USA
| |
Collapse
|