1
|
Tomassini A, Laroche J, Emanuele M, Nazzaro G, Petrone N, Fadiga L, D'Ausilio A. Interpersonal synchronization of movement intermittency. iScience 2022; 25:104096. [PMID: 35372806 PMCID: PMC8971945 DOI: 10.1016/j.isci.2022.104096] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
Most animal species group together and coordinate their behavior in quite sophisticated manners for mating, hunting, or defense purposes. In humans, coordination at a macroscopic level (the pacing of movements) is evident both in daily life (e.g., walking) and skilled (e.g., music and dance) behaviors. By examining the fine structure of movement, we here show that interpersonal coordination is established also at a microscopic – submovement – level. Natural movements appear as marked by recurrent (2–3 Hz) speed breaks, i.e., submovements, that are traditionally considered the result of intermittency in (visuo)motor feedback-based control. In a series of interpersonal coordination tasks, we show that submovements produced by interacting partners are not independent but alternate tightly over time, reflecting online mutual adaptation. These findings unveil a potential core mechanism for behavioral coordination that is based on between-persons synchronization of the intrinsic dynamics of action-perception cycles. Movements show intermittent speed pulses occurring at 2–3 Hz, called submovements Submovements are actively coordinated in counter-phase by interacting partners Submovements coordination depends on spatial alignment but not movement congruency Behavioral coordination occurs both at macro- and microscopic movement scales
Collapse
Affiliation(s)
- Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Julien Laroche
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Marco Emanuele
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.,Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Giovanni Nazzaro
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.,Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Nicola Petrone
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.,Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.,Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Human low-threshold mechanoafferent responses to pure changes in friction controlled using an ultrasonic haptic device. Sci Rep 2021; 11:11227. [PMID: 34045550 PMCID: PMC8160007 DOI: 10.1038/s41598-021-90533-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Abstract
The forces that are developed when manipulating objects generate sensory cues that inform the central nervous system about the qualities of the object’s surface and the status of the hand/object interaction. Afferent responses to frictional transients or slips have been studied in the context of lifting/holding tasks. Here, we used microneurography and an innovative tactile stimulator, the Stimtac, to modulate both the friction level of a surface, without changing the surface or adding a lubricant, and, to generate the frictional transients in a pure and net fashion. In three protocols, we manipulated: the frictional transients, the friction levels, the rise times, the alternation of phases of decrease or increase in friction to emulate grating-like stimuli. Afferent responses were recorded in 2 FAIs, 1 FAII, 2 SAIs and 3 SAIIs from the median nerve of human participants. Independently of the unit type, we observed that: single spikes were generated time-locked to the frictional transients, and that reducing the friction level reduced the number of spikes during the stable phase of the stimulation. Our results suggest that those frictional cues are encoded in all the unit types and emphasize the possibility to use the Stimtac device to control mechanoreceptor firing with high temporal precision.
Collapse
|
3
|
Khamis H, Afzal HMN, Sanchez J, Vickery R, Wiertlewski M, Redmond SJ, Birznieks I. Friction sensing mechanisms for perception and motor control: passive touch without sliding may not provide perceivable frictional information. J Neurophysiol 2021; 125:809-823. [PMID: 33439786 DOI: 10.1152/jn.00504.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perception of the frictional properties of a surface contributes to the multidimensional experience of exploring various materials; we slide our fingers over a surface to feel it. In contrast, during object manipulation, we grip objects without such intended exploratory movements. Given that we are aware of the slipperiness of objects or tools that are held in the hand, we investigated whether the initial contact between the fingertip skin and the surface of the object is sufficient to provide this consciously perceived frictional information. Using a two-alternative forced-choice protocol, we examined human capacity to detect frictional differences using touch, when two otherwise structurally identical surfaces were brought in contact with the immobilized finger perpendicularly or under an angle (20° or 30°) to the skin surface (passive touch). An ultrasonic friction reduction device was used to generate three different frictions over each of three flat surfaces with different surface structure: 1) smooth glass, 2) textured surface with dome-shaped features, and 3) surface with sharp asperities (sandpaper). Participants (n = 12) could not reliably indicate which of the two surfaces was more slippery under any of these conditions. In contrast, when slip was induced by moving the surface laterally by a total of 5 mm (passive slip), participants could clearly perceive frictional differences. Thus making contact with the surface, even with moderate tangential forces, was not enough to perceive frictional differences, instead conscious perception required a sufficient size slip.NEW & NOTEWORTHY This study contributes to understanding how frictional information is obtained and used by the brain. When the skin is contacting surfaces of identical topography but varying frictional properties, the deformation pattern is different; however, available sensory cues did not get translated into perception of frictional properties unless a sufficiently large lateral movement was present. These neurophysiological findings may inform how to design and operate haptic devices relying on friction modulation principles.
Collapse
Affiliation(s)
- Heba Khamis
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Hafiz Malik Naqash Afzal
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Jennifer Sanchez
- School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Richard Vickery
- School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Michaël Wiertlewski
- Cognitive Robotics Department, Delft University of Technology, Delft, The Netherlands
| | - Stephen J Redmond
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia.,School of Electrical and Electronic Engineering, University College Dublin, Belfield, Ireland
| | - Ingvars Birznieks
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| |
Collapse
|