1
|
Bordia T, Zahr NM. The Inferior Colliculus in Alcoholism and Beyond. Front Syst Neurosci 2020; 14:606345. [PMID: 33362482 PMCID: PMC7759542 DOI: 10.3389/fnsys.2020.606345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Post-mortem neuropathological and in vivo neuroimaging methods have demonstrated the vulnerability of the inferior colliculus to the sequelae of thiamine deficiency as occurs in Wernicke-Korsakoff Syndrome (WKS). A rich literature in animal models ranging from mice to monkeys-including our neuroimaging studies in rats-has shown involvement of the inferior colliculi in the neural response to thiamine depletion, frequently accomplished with pyrithiamine, an inhibitor of thiamine metabolism. In uncomplicated alcoholism (i.e., absent diagnosable neurological concomitants), the literature citing involvement of the inferior colliculus is scarce, has nearly all been accomplished in preclinical models, and is predominately discussed in the context of ethanol withdrawal. Our recent work using novel, voxel-based analysis of structural Magnetic Resonance Imaging (MRI) has demonstrated significant, persistent shrinkage of the inferior colliculus using acute and chronic ethanol exposure paradigms in two strains of rats. We speculate that these consistent findings should be considered from the perspective of the inferior colliculi having a relatively high CNS metabolic rate. As such, they are especially vulnerable to hypoxic injury and may be provide a common anatomical link among a variety of disparate insults. An argument will be made that the inferior colliculi have functions, possibly related to auditory gating, necessary for awareness of the external environment. Multimodal imaging including diffusion methods to provide more accurate in vivo visualization and quantification of the inferior colliculi may clarify the roles of brain stem nuclei such as the inferior colliculi in alcoholism and other neuropathologies marked by altered metabolism.
Collapse
Affiliation(s)
- Tanuja Bordia
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
2
|
Forlano PM, Maruska KP, Sisneros JA, Bass AH. Hormone-Dependent Plasticity of Auditory Systems in Fishes. HEARING AND HORMONES 2016. [DOI: 10.1007/978-3-319-26597-1_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
The Impact of the 5α-Reductase Inhibitors (5α-RIs) on Male Sexual Function and Psychological Well-Being. CURRENT SEXUAL HEALTH REPORTS 2015. [DOI: 10.1007/s11930-015-0061-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Porcu P, Morrow AL. Divergent neuroactive steroid responses to stress and ethanol in rat and mouse strains: relevance for human studies. Psychopharmacology (Berl) 2014; 231:3257-72. [PMID: 24770626 PMCID: PMC4135033 DOI: 10.1007/s00213-014-3564-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/25/2014] [Indexed: 01/09/2023]
Abstract
RATIONALE Neuroactive steroids are endogenous or synthetic steroids that rapidly alter neuronal excitability via membrane receptors, primarily γ-aminobutyric acid type A (GABAA) receptors. Neuroactive steroids regulate many physiological processes including hypothalamic-pituitary-adrenal (HPA) axis function, ovarian cycle, pregnancy, aging, and reward. Moreover, alterations in neuroactive steroid synthesis are implicated in several neuropsychiatric disorders. OBJECTIVES This review will summarize the pharmacological properties and physiological regulation of neuroactive steroids, with a particular focus on divergent neuroactive steroid responses to stress and ethanol in rats, mice, and humans. RESULTS GABAergic neuroactive steroids exert a homeostatic regulation of the HPA axis in rats and humans, whereby the increase in neuroactive steroid levels following acute stress counteracts HPA axis hyperactivity and restores homeostasis. In contrast, in C57BL/6J mice, acute stress decreases neurosteroidogenesis and neuroactive steroids exert paradoxical excitatory effects upon the HPA axis. Rats, mice, and humans also differ in the neuroactive steroid responses to ethanol. Genetic variation in neurosteroidogenesis may explain the different neuroactive steroid responses to stress or ethanol. CONCLUSIONS Rats and mouse strains show divergent effects of stress and ethanol on neuroactive steroids in both plasma and brain. The study of genetic variation in the various processes that determine neuroactive steroids levels as well as their effects on cell signaling may underlie these differences and may play a relevant role for the potential therapeutic benefits of neuroactive steroids.
Collapse
Affiliation(s)
- Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy,
| | | |
Collapse
|
5
|
Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration. J Neurosci 2014; 34:5824-34. [PMID: 24760842 DOI: 10.1523/jneurosci.4733-13.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.
Collapse
|
6
|
Cook JB, Dumitru AMG, O'Buckley TK, Morrow AL. Ethanol administration produces divergent changes in GABAergic neuroactive steroid immunohistochemistry in the rat brain. Alcohol Clin Exp Res 2013; 38:90-9. [PMID: 23906006 DOI: 10.1111/acer.12223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The 5α-reduced pregnane neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP or allopregnanolone) is a potent positive modulator of GABAA receptors capable of modulating neuronal activity. In rats, systemic ethanol (EtOH) administration increases cerebral cortical and hippocampal levels of 3α,5α-THP, but the effects of EtOH on 3α,5α-THP levels in other brain regions are unknown. There is a large body of evidence suggesting that 3α,5α-THP enhances EtOH sensitivity, contributes to some behavioral effects of EtOH, and modulates EtOH reinforcement and motivation to drink. In this study, we used immunohistochemistry (IHC) to determine EtOH-induced changes in cellular 3α,5α-THP expression in brain regions associated with EtOH actions and responses. METHODS Male Wistar rats were administered EtOH (2 g/kg) or saline intraperitoneally and after 60 minutes transcardially perfused. IHC was performed on free-floating sections (3 to 4 sections/animal/brain region) using an affinity purified anti-3α,5α-THP primary antibody, and immunoreactivity was visualized with 3,3'-diaminobenzidine. RESULTS EtOH significantly increased 3α,5α-THP immunoreactivity by 24 ± 6% in the medial prefrontal cortex, 32 ± 12% in the hippocampal Cornu Ammonis area 1 (CA1) pyramidal cell layer, 52 ± 5% in the polymorph cell layer of the dentate gyrus (DG), 44 ± 15% in the bed nucleus of the stria terminalis, and 36 ± 6% in the paraventricular nucleus of the hypothalamus. In contrast, EtOH administration significantly reduced 3α,5α-THP immunoreactivity by 25 ± 5% in the nucleus accumbens "shore" and 21 ± 3% in the central nucleus of the amygdala. No changes were observed in the ventral tegmental area, dorsomedial striatum, granule cell layer of the DG, or the lateral and basolateral amygdala. CONCLUSIONS The results suggest acute EtOH (2 g/kg) produces divergent, brain region specific, effects on cellular 3α,5α-THP levels. Regional differences in the effects of EtOH suggest there may be regional brain synthesis of 3α,5α-THP independent of the adrenal glands and novel mechanisms that reduce cellular 3α,5α-THP. Regional differences in EtOH-induced changes in 3α,5α-THP levels likely contribute to EtOH effects on neuronal function in brain.
Collapse
Affiliation(s)
- Jason B Cook
- Departments of Psychiatry and Pharmacology , Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
7
|
Abstract
OBJECTIVE 5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. METHODS A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. RESULTS 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. CONCLUSION There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.
Collapse
Affiliation(s)
- Abdulmaged M Traish
- Department of Urology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
8
|
|
9
|
Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 2012; 6:10. [PMID: 22347156 PMCID: PMC3274763 DOI: 10.3389/fnins.2012.00010] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/16/2012] [Indexed: 11/15/2022] Open
Abstract
Progesterone is well known as a female reproductive hormone and in particular for its role in uterine receptivity, implantation, and the maintenance of pregnancy. However, neuroendocrine research over the past decades has established that progesterone has multiple functions beyond reproduction. Within the nervous system, its neuromodulatory and neuroprotective effects are much studied. Although progesterone has been shown to also promote myelin repair, its influence and that of other steroids on myelination and remyelination is relatively neglected. Reasons for this are that hormonal influences are still not considered as a central problem by most myelin biologists, and that neuroendocrinologists are not sufficiently concerned with the importance of myelin in neuron functions and viability. The effects of progesterone in the nervous system involve a variety of signaling mechanisms. The identification of the classical intracellular progesterone receptors as therapeutic targets for myelin repair suggests new health benefits for synthetic progestins, specifically designed for contraceptive use and hormone replacement therapies. There are also major advantages to use natural progesterone in neuroprotective and myelin repair strategies, because progesterone is converted to biologically active metabolites in nervous tissues and interacts with multiple target proteins. The delivery of progesterone however represents a challenge because of its first-pass metabolism in digestive tract and liver. Recently, the intranasal route of progesterone administration has received attention for easy and efficient targeting of the brain. Progesterone in the brain is derived from the steroidogenic endocrine glands or from local synthesis by neural cells. Stimulating the formation of endogenous progesterone is currently explored as an alternative strategy for neuroprotection, axonal regeneration, and myelin repair.
Collapse
|
10
|
Charitidi K, Canlon B. Estrogen receptors in the central auditory system of male and female mice. Neuroscience 2009; 165:923-33. [PMID: 19925852 DOI: 10.1016/j.neuroscience.2009.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 11/17/2022]
Abstract
The estrogen receptors in the central auditory system of male and female mice were characterized using immunocytochemical methods. Estrogen receptors alpha and beta (ERalpha, ERbeta) were localized predominantly in the ventral cochlear nucleus, nucleus of the trapezoid body, the lateral- and medio-ventral periolivary nuclei, the dorsal lateral lemniscus, and the inferior colliculus. The medial geniculate nucleus was negative for both ERalpha and ERbeta whereas the auditory cortex was positive for ERalpha. The lateral superior olive, the ventral lateral lemniscus and the central nucleus of the inferior colliculus expressed only ERbeta. The differential localization of ERalpha and ERbeta may indicate distinct roles for these two receptors in auditory processing. No major differences in the pattern, number or intensity of receptor expression was found between male and female animals. The comprehensive anatomic map that is constructed for ERalpha and ERbeta in the central auditory pathway will be a useful foundation to elucidate the complexity of estrogen actions in the auditory system.
Collapse
Affiliation(s)
- K Charitidi
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm 171 77, Sweden
| | | |
Collapse
|
11
|
Forebrain steroid levels fluctuate rapidly during social interactions. Nat Neurosci 2008; 11:1327-34. [PMID: 18820691 PMCID: PMC2577388 DOI: 10.1038/nn.2200] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 08/27/2008] [Indexed: 11/25/2022]
Abstract
Neurosteroids are powerful modulators of brain function and behavior, yet their dynamics within the brain have remained elusive. Using in vivo microdialysis in male zebra finches, we show that local estradiol levels increase rapidly within the forebrain during social interactions with females. Further, when males are exposed to other males’ song, local estradiol levels also increase and testosterone levels drop within a cortical/pallial auditory region that is analogous to mammalian auditory cortex. We also report that local estradiol and testosterone levels are differentially regulated in this same region by the conventional neurotransmitters glutamate and GABA, respectively. This study provides direct evidence that forebrain steroid levels are acutely and differentially regulated during social behavior, in a region-specific manner, and in a rapid time-course akin to that of traditional neuromodulators.
Collapse
|
12
|
Scholl B, Wehr M. Disruption of Balanced Cortical Excitation and Inhibition by Acoustic Trauma. J Neurophysiol 2008; 100:646-56. [DOI: 10.1152/jn.90406.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory deafferentation results in rapid shifts in the receptive fields of cortical neurons, but the synaptic mechanisms underlying these changes remain unknown. The rapidity of these shifts has led to the suggestion that subthreshold inputs may be unmasked by a selective loss of inhibition. To study this, we used in vivo whole cell recordings to directly measure tone-evoked excitatory and inhibitory synaptic inputs in auditory cortical neurons before and after acoustic trauma. Here we report that acute acoustic trauma disrupted the balance of excitation and inhibition by selectively increasing and reducing the strength of inhibition at different positions within the receptive field. Inhibition was abolished for frequencies far below the trauma-tone frequency but was markedly enhanced near the edges of the region of elevated peripheral threshold. These changes occurred for relatively high-level tones. These changes in inhibition led to an expansion of receptive fields but not by a simple unmasking process. Rather, membrane potential responses were delayed and prolonged throughout the receptive field by distinct interactions between synaptic excitation and inhibition. Far below the trauma-tone frequency, decreased inhibition combined with prolonged excitation led to increased responses. Near the edges of the region of elevated peripheral threshold, increased inhibition served to delay rather than abolish responses, which were driven by prolonged excitation. These results show that the rapid receptive field shifts caused by acoustic trauma are caused by distinct mechanisms at different positions within the receptive field, which depend on differential disruption of excitation and inhibition.
Collapse
|
13
|
Tolmacheva EA, van Luijtelaar G. The role of ovarian steroid hormones in the regulation of basal and stress induced absence seizures. J Steroid Biochem Mol Biol 2007; 104:281-8. [PMID: 17493800 DOI: 10.1016/j.jsbmb.2007.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
UNLABELLED Ovarian hormones play an important role in the regulation of absence seizures in patients as well as in animal models. The present study examined whether chronic progesterone exposure would induce tolerance for the occurrence of absence seizures and whether reduction in gonadal steroids (via ovariectomy) would alter the number of basal and stress induced absence seizures in WAG/Rij rats, a genetic model for absence epilepsy. METHODS In Experiment 1, female WAG/Rij rats equipped with EEG electrodes received progesterone (P) (20 mg/kg) or cyclodextrin (CD, solvent) i.p. injections once a day for 3 days while a third group received CD injections on Days 1 and 2 and P on Day 3. The EEG was recorded on the day preceding the injections and at each day after injections. In Experiment 2, female WAG/Rij rats equipped with EEG electrodes, were ovariectomized (OVX) or sham operated. EEG recordings were made before and at the 4th, 8th, 10th, 20th, and 35th day after surgery. Rats were then exposed to three series of 10 foot-shocks (FS, 1.5 mA, 1 s) over 3 days. The EEG was recorded 1 h before and 2 h after each FS series. RESULTS Tolerance developed after a single P injection and the effect of P on SWDs was facilitated by two preceding control injections. No differences were found between OVX and sham-operated females in the occurrence of SWDs either in resting conditions or after acute FS exposure. However, OVX females showed a more prominent day-to-day aggravation in SWDs after repeated FS administration. CONCLUSIONS The data suggest an important interaction between hormones of the hypothalamo-pituitary-adrenal and hypothalamo-pituitary-gonadal axes in seizure control. On the one hand, stress interferes with and facilitates the acute effects of progesterone on the occurrence of SWDs and, on the other hand, rats with an intact hypothalamo-pituitary-gonadal axis can better regulate the stress response and develop tolerance to the stressor.
Collapse
Affiliation(s)
- Elena A Tolmacheva
- Department of Biological Psychology, NICI, Radboud University Nijmegen, 6500 HE Nijmegen, The Netherlands.
| | | |
Collapse
|
14
|
Saalmann YB, Kirkcaldie MTK, Waldron S, Calford MB. Cellular distribution of the GABAA receptor-modulating 3alpha-hydroxy, 5alpha-reduced pregnane steroids in the adult rat brain. J Neuroendocrinol 2007; 19:272-84. [PMID: 17355317 DOI: 10.1111/j.1365-2826.2006.01527.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 3alpha-hydroxy,5alpha-reduced pregnane steroids, allopregnanolone and allotetrahydrodeoxycorticosterone, are the most potent endogenous positive modulators of GABA(A) receptor-mediated inhibition. This study presents the first immunohistochemical examination of the cellular distribution of 3alpha-hydroxy,5alpha-reduced pregnane steroids across the brain. We found a widespread distribution in the adult rat, with dense immunolabelling in the olfactory bulb, striatum and cerebral cortex, and lower density labelling in the brainstem reticular formation. In general terms, this distribution accords with the regional concentrations of 3alpha-hydroxy,5alpha-reduced steroids determined, in other laboratories, by brain region sampling and either gas chromatography-mass fragmentography or radioimmunoassay. However, immunohistochemistry allowed for a more detailed examination of regional distribution and cellular specificity. All immunoreactivity was confined to the cell bodies and thick dendrites of neurones; no identifiable glia were labelled. In most brain areas, the location and morphology of labelled cells identified them as excitatory neurones. In addition, cell populations known to be projecting GABAergic neurones (e.g. cerebellar Purkinje cells) were immunoreactive, whereas local inhibitory neurones generally were not. The cellular distribution of 3alpha-hydroxy,5alpha-reduced steroids suggests that sensory, motor, limbic and homeostatic systems can be influenced by neurosteroids at multiple stages of processing.
Collapse
Affiliation(s)
- Y B Saalmann
- School of Biomedical Sciences, University of Newcastle, Australia.
| | | | | | | |
Collapse
|