1
|
Betrie AH, Brock JA, Harraz OF, Bush AI, He GW, Nelson MT, Angus JA, Wright CE, Ayton S. Zinc drives vasorelaxation by acting in sensory nerves, endothelium and smooth muscle. Nat Commun 2021; 12:3296. [PMID: 34075043 PMCID: PMC8169932 DOI: 10.1038/s41467-021-23198-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
Zinc, an abundant transition metal, serves as a signalling molecule in several biological systems. Zinc transporters are genetically associated with cardiovascular diseases but the function of zinc in vascular tone regulation is unknown. We found that elevating cytoplasmic zinc using ionophores relaxed rat and human isolated blood vessels and caused hyperpolarization of smooth muscle membrane. Furthermore, zinc ionophores lowered blood pressure in anaesthetized rats and increased blood flow without affecting heart rate. Conversely, intracellular zinc chelation induced contraction of selected vessels from rats and humans and depolarized vascular smooth muscle membrane potential. We demonstrate three mechanisms for zinc-induced vasorelaxation: (1) activation of transient receptor potential ankyrin 1 to increase calcitonin gene-related peptide signalling from perivascular sensory nerves; (2) enhancement of cyclooxygenase-sensitive vasodilatory prostanoid signalling in the endothelium; and (3) inhibition of voltage-gated calcium channels in the smooth muscle. These data introduce zinc as a new target for vascular therapeutics.
Collapse
Affiliation(s)
- Ashenafi H. Betrie
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia ,grid.1008.90000 0001 2179 088XCardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia ,grid.443626.10000 0004 1798 4069Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences; The Institute of Cardiovascular Diseases, Tianjin University, Tianjin; Center for Drug Development, Wannan Medical College, Wuhu, Anhui China
| | - James A. Brock
- grid.1008.90000 0001 2179 088XDepartment of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Osama F. Harraz
- grid.59062.380000 0004 1936 7689Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont USA ,grid.59062.380000 0004 1936 7689Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Ashley I. Bush
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Guo-Wei He
- grid.443626.10000 0004 1798 4069Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences; The Institute of Cardiovascular Diseases, Tianjin University, Tianjin; Center for Drug Development, Wannan Medical College, Wuhu, Anhui China
| | - Mark T. Nelson
- grid.59062.380000 0004 1936 7689Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont USA ,grid.59062.380000 0004 1936 7689Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, VT USA ,grid.5379.80000000121662407Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - James A. Angus
- grid.1008.90000 0001 2179 088XCardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Christine E. Wright
- grid.1008.90000 0001 2179 088XCardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Scott Ayton
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Jänig W. The Lovén reflex: the renaissance of a long-forgotten reflex involving autonomic and nociceptive pathways. Clin Auton Res 2021; 31:149-152. [PMID: 33515141 DOI: 10.1007/s10286-020-00755-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Wilfrid Jänig
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
4
|
Al Dera H, Brock JA. Changes in sympathetic neurovascular function following spinal cord injury. Auton Neurosci 2017; 209:25-36. [PMID: 28209424 DOI: 10.1016/j.autneu.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/31/2017] [Accepted: 02/09/2017] [Indexed: 12/31/2022]
Abstract
The effects of spinal cord injury (SCI) on sympathetic neurovascular transmission have generally been ignored. This review describes changes in sympathetic nerve-mediated activation of arterial vessels to which ongoing sympathetic activity has been reduced or silenced following spinal cord transection in rats. In all vessels studied in rats, SCI markedly enhanced their contractile responses to nerve activity. However, the mechanisms that augment neurovascular transmission differ between the rat tail artery and mesenteric artery. In tail artery, the enhancement of neurovascular transmission cannot be attributed to changes in sensitivity of the vascular muscle to α1- or α2-adrenoceptor agonists. Instead the contribution of L-type Ca2+ channels to activation of the smooth muscle by nerve-released noradrenaline is greatly increased following SCI. By contrast, mesenteric arteries from SCI rats had increased sensitivity to phenylephrine but not to methoxamine. While both phenylephrine and methoxamine are α1-adrenoceptor agonists, only phenylephrine is a substrate for the neuronal noradrenaline transporter. Therefore the selective increase in sensitivity to phenylephrine suggests that the activity of the neuronal noradrenaline transporter is reduced. While present evidence suggests that sympathetic vasoconstrictor neurons do not contribute to the normal regulation of peripheral resistance below a complete SCI in humans, the available evidence does indicate that these experimental findings in animals are likely to apply after SCI in humans and contribute to autonomic dysreflexia.
Collapse
Affiliation(s)
- Hussain Al Dera
- Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - James A Brock
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
5
|
Blessing W, McAllen R, McKinley M. Control of the Cutaneous Circulation by the Central Nervous System. Compr Physiol 2016; 6:1161-97. [PMID: 27347889 DOI: 10.1002/cphy.c150034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016.
Collapse
Affiliation(s)
- William Blessing
- Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, S.A., Australia
| | - Robin McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| | - Michael McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| |
Collapse
|
6
|
Brock JA, McAllen RM. Spinal cord thermosensitivity: An afferent phenomenon? Temperature (Austin) 2016; 3:232-239. [PMID: 27857953 PMCID: PMC4964996 DOI: 10.1080/23328940.2016.1157665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 11/21/2022] Open
Abstract
We review the evidence for thermoregulatory temperature sensors in the mammalian spinal cord and reach the following conclusions. 1) Spinal cord temperature contributes physiologically to temperature regulation. 2) Parallel anterolateral ascending pathways transmit signals from spinal cooling and spinal warming: they overlap with the respective axon pathways of the dorsal horn neurons that are driven by peripheral cold- and warm-sensitive afferents. 3) We hypothesize that these ‘cold’ and ‘warm’ ascending pathways transmit all extracranial thermosensory information to the brain. 4) Cutaneous cold afferents can be activated not only by cooling the skin but also by cooling sites along their axons: we consider that this is functionally insignificant in vivo. 5) By a presynaptic action on their central terminals, local spinal cooling enhances neurotransmission from incoming ‘cold’ afferent action potentials to second order neurons in the dorsal horn; this effect disappears when the spinal cord is warm. 6) Spinal warm sensitivity is due to warm-sensitive miniature vesicular transmitter release from afferent terminals in the dorsal horn: this effect is powerful enough to excite second order neurons in the ‘warm’ pathway independently of any incoming sensory traffic. 7) Distinct but related presynaptic mechanisms at cold- and warm-sensitive afferent terminals can thus account for the thermoregulatory actions of spinal cord temperature.
Collapse
Affiliation(s)
- James A Brock
- Department of Anatomy and Neuroscience, University of Melbourne , Parkville, Victoria, Australia
| | - Robin M McAllen
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|