1
|
Hayman O, Ansdell P, Angius L, Thomas K, Horsbrough L, Howatson G, Kidgell DJ, Škarabot J, Goodall S. Changes in motor unit behaviour across repeated bouts of eccentric exercise. Exp Physiol 2024; 109:1896-1908. [PMID: 39226215 PMCID: PMC11522828 DOI: 10.1113/ep092070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Unaccustomed eccentric exercise (EE) is protective against muscle damage following a subsequent bout of similar exercise. One hypothesis suggests the existence of an alteration in motor unit (MU) behaviour during the second bout, which might contribute to the adaptive response. Accordingly, the present study investigated MU changes during repeated bouts of EE. During two bouts of exercise where maximal lengthening dorsiflexion (10 repetitions × 10 sets) was performed 3 weeks apart, maximal voluntary isometric torque (MVIC) and MU behaviour (quantified using high-density electromyography; HDsEMG) were measured at baseline, during (after set 5), and post-EE. The HDsEMG signals were decomposed into individual MU discharge timings, and a subset were tracked across each time point. MVIC was reduced similarly in both bouts post-EE (Δ27 vs. 23%, P = 0.144), with a comparable amount of total work performed (∼1,300 J; P = 0.905). In total, 1,754 MUs were identified and the decline in MVIC was accompanied by a stepwise increase in discharge rate (∼13%; P < 0.001). A decrease in relative recruitment was found immediately after EE in Bout 1 versus baseline (∼16%; P < 0.01), along with reductions in derecruitment thresholds immediately after EE in Bout 2. The coefficient of variation of inter-spike intervals was lower in Bout 2 (∼15%; P < 0.001). Our data provide new information regarding a change in MU behaviour during the performance of a repeated bout of EE. Importantly, such changes in MU behaviour might contribute, at least in part, to the repeated bout phenomenon.
Collapse
Affiliation(s)
- Oliver Hayman
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Center, College of Medical, Veterinary, and Life SciencesUniversity of GlasgowGlasgowUK
| | - Paul Ansdell
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Luca Angius
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Kevin Thomas
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Lauren Horsbrough
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Glyn Howatson
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
- Water Research GroupNorth West UniversityPotchefstroomSouth Africa
| | - Dawson J. Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneAustralia
| | - Jakob Škarabot
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Stuart Goodall
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
- Physical Activity, Sport and Recreation Research Focus Area, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
2
|
Doma K, Matoso B, Protzen G, Singh U, Boullosa D. The Repeated Bout Effect of Multiarticular Exercises on Muscle Damage Markers and Physical Performances: A Systematic Review and Meta-Analyses. J Strength Cond Res 2023; 37:2504-2515. [PMID: 38015738 DOI: 10.1519/jsc.0000000000004628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
ABSTRACT Doma, K, Matoso, B, Protzen, G, Singh, U, and Boullosa, D. The repeated bout effect of multiarticular exercises on muscle damage markers and physical performances: a systematic review and meta-analyses. J Strength Cond Res 37(12): 2504-2515, 2023-This systematic review and meta-analysis compared muscle damage markers and physical performance measures between 2 bouts of multiarticular exercises and determined whether intensity and volume of muscle-damaging exercises affected the outcomes. The eligibility criteria consisted of (a) healthy male and female adults; (b) multiarticular exercises to cause muscle damage across 2 bouts; (c) outcome measures were compared at 24-48 hours after the first and second bouts of muscle-damaging exercise; (d) at least one of the following outcome measures: creatine kinase (CK), delayed onset of muscle soreness (DOMS), muscle strength, and running economy. Study appraisal was conducted using the Kmet tool, whereas forest plots were derived to calculate standardized mean differences (SMDs) and statistical significance and alpha set a 0.05. After screening, 20 studies were included. The levels of DOMS and CK were significantly greater during the first bout when compared with the second bout at T24 and T48 (p < 0.001; SMD = 0.51-1.23). Muscular strength and vertical jump performance were significantly lower during the first bout compared with the second bout at T24 and T48 (p ≤ 0.05; SMD = -0.27 to -0.40), whereas oxygen consumption and rating of perceived exertion were significantly greater during the first bout at T24 and T48 (p < 0.05; SMD = 0.28-0.65) during running economy protocols. The meta-analyses were unaffected by changes in intensity and volume of muscle-damaging exercises between bouts. Multiarticular exercises exhibited a repeated bout effect, suggesting that a single bout of commonly performed exercises involving eccentric contractions may provide protection against exercise-induced muscle damage for subsequent bouts.
Collapse
Affiliation(s)
- Kenji Doma
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
- Orthopeadic Research Institute of Queensland, Townsville, Australia
| | - Bruno Matoso
- Integrated Institute of Health, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Gabriel Protzen
- Physical Education College, Federal University of Pelotas, Pelotas, Brazil; and
| | - Utkarsh Singh
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
| | - Daniel Boullosa
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
- Integrated Institute of Health, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- Faculty of Physical Activity and Sports Sciences, Universidad de León, Ponferrada, Spain
| |
Collapse
|
3
|
Naruse M, Trappe S, Trappe TA. Human skeletal muscle-specific atrophy with aging: a comprehensive review. J Appl Physiol (1985) 2023; 134:900-914. [PMID: 36825643 PMCID: PMC10069966 DOI: 10.1152/japplphysiol.00768.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Age-related skeletal muscle atrophy appears to be a muscle group-specific process, yet only a few specific muscles have been investigated and our understanding in this area is limited. This review provides a comprehensive summary of the available information on age-related skeletal muscle atrophy in a muscle-specific manner, nearly half of which comes from the quadriceps. Decline in muscle-specific size over ∼50 yr of aging was determined from 47 cross-sectional studies of 982 young (∼25 yr) and 1,003 old (∼75 yr) individuals and nine muscle groups: elbow extensors (-20%, -0.39%/yr), elbow flexors (-19%, -0.38%/yr), paraspinals (-24%, -0.47%/yr), psoas (-29%, -0.58%/yr), hip adductors (-13%, -0.27%/yr), hamstrings (-19%, -0.39%/yr), quadriceps (-27%, -0.53%/yr), dorsiflexors (-9%, -0.19%/yr), and triceps surae (-14%, -0.28%/yr). Muscle-specific atrophy rate was also determined for each of the subcomponent muscles in the hamstrings, quadriceps, and triceps surae. Of all the muscles included in this review, there was more than a fivefold difference between the least (-6%, -0.13%/yr, soleus) to the most (-33%, -0.66%/yr, rectus femoris) atrophying muscles. Muscle activity level, muscle fiber type, sex, and timeline of the aging process all appeared to have some influence on muscle-specific atrophy. Given the large range of muscle-specific atrophy and the large number of muscles that have not been investigated, more muscle-specific information could expand our understanding of functional deficits that develop with aging and help guide muscle-specific interventions to improve the quality of life of aging women and men.
Collapse
Affiliation(s)
- Masatoshi Naruse
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
4
|
Jeon S, Kang M, Ye X. Contralateral protective effect against repeated bout of damaging exercise: A meta-analysis. Res Sports Med 2023; 31:137-156. [PMID: 34304646 DOI: 10.1080/15438627.2021.1954512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose was to summarize the studies examining the contralateral protective effect on the maximal strength in the subsequent bout of muscle-damaging exercise. The literature search was conducted through CINAHL plus, SportDiscus, and PubMed. Hedge's g effect size (ES) and 95% confidence intervals (CIs) were computed using a random effects model. From 14 papers and 25 ESs, the mean ES for contralateral repeated bout effect (CL-RBE) on 1-, 2-, and 3-day post maximal strength were -0.61 (95% CI = -0.80, -0.41), -0.50 (95% CI = -0.67, -0.33), and -0.74 (95% CI = -1.01, -0.48), respectively. For moderator analyses, the mean ESs were not influenced by type (isometric vs. isokinetic) of strength, but CL-RBE on maximal strength was influenced by duration (≤6 weeks) between bouts. Therefore, the meta-analysis demonstrated that an initial bout of exercise induces the protective effect on contralateral limb muscles regardless of the different type of strength, but can be affected by different duration (≤6 weeks) between exercise bouts.
Collapse
Affiliation(s)
- Sunggun Jeon
- School of Kinesiology, Applied Health and Recreation, Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, OK, USA
| | - Minsoo Kang
- Department of Health, Exercise Science, and Recreation Management, Health and Sport Analytics Lab, University of Mississippi, University, MS, USA
| | - Xin Ye
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT, USA
| |
Collapse
|
5
|
Chalchat E, Siracusa J, Bourrilhon C, Charlot K, Martin V, Garcia-Vicencio S. Muscle Shear Elastic Modulus Provides an Indication of the Protection Conferred by the Repeated Bout Effect. Front Physiol 2022; 13:877485. [PMID: 35574495 PMCID: PMC9098813 DOI: 10.3389/fphys.2022.877485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The neuromuscular system is able to quickly adapt to exercise-induced muscle damage (EIMD), such that it is less affected by subsequent damaging exercise, a phenomenon known as the repeated bout effect (RBE). The objective was to determine whether the mechanical properties of the quadriceps, as evaluated by shear wave elastography (SWE), were less affected when a second bout of eccentric-biased exercise was performed 2 weeks later. It was hypothesized that the first bout would confer protection against extensive muscle damage through an adaptation of the muscle stiffness before the second bout (i.e., higher muscle stiffness).Methods: Sixteen males performed two identical bouts of downhill walking separated by 2 weeks (45 min at 4.5 km.h−1; gradient: 25%; load: 30% of the body mass). Rectus femoris (RF) and vastus lateralis (VL) resting shear elastic modulus (µ) and EIMD symptoms were measured before and up to 7 days following the exercise bouts. Changes in neuromuscular function was evaluated by maximal voluntary contraction torque, voluntary activation level, evoked mechanical response to single and double (10 and 100 Hz doublets) electrical stimulation. An index of protection (IP) was calculated for EIMD symptoms to assess magnitude the RBE.Results: EIMD symptoms were less affected after the second than the first exercise bout. RF and VL-µ increased (p < 0.001) only after the first exercise. RF µ was elevated up to 2 weeks after the end of the first exercise (p < 0.001) whereas VL µ was only increased up to 24 h. The increase in µ observed 2 weeks after the end of the first exercise was correlated with the IP; i.e., attenuation of alterations in muscle µ, 10 Hz-doublet amplitude and rate of torque development after the second exercise bout (p < 0.05).Conclusion: We showed that muscle µ assessed by SWE was sensitive to the RBE, with a differential effect between VL and RF. The persistent increase in µ was associated with the attenuation of neuromuscular impairments observed after the second bout, suggesting that the increased muscle stiffness could be a “protective” adaptation making muscles more resistant to the mechanical strain associated to eccentric contractions.
Collapse
Affiliation(s)
- Emeric Chalchat
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
- AME2P, Université Clermont Auvergne, Clermont-Ferrand, France
- *Correspondence: Emeric Chalchat,
| | - Julien Siracusa
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Cyprien Bourrilhon
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Keyne Charlot
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Vincent Martin
- AME2P, Université Clermont Auvergne, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sebastian Garcia-Vicencio
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Bretigny-Sur-Orge, France
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| |
Collapse
|
6
|
Elgueta-Cancino E, Evans E, Martinez-Valdes E, Falla D. The Effect of Resistance Training on Motor Unit Firing Properties: A Systematic Review and Meta-Analysis. Front Physiol 2022; 13:817631. [PMID: 35295567 PMCID: PMC8918924 DOI: 10.3389/fphys.2022.817631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
While neural changes are thought to be responsible for early increases in strength following resistance training (RT), the exact changes in motor unit (MU) firing properties remain unclear. This review aims to synthesize the available evidence on the effect of RT on MU firing properties. MEDLINE (OVID interface), EMBASE (OVID interface), Web of Science (all databases), Cochrane Library, EBSCO CINAHL Plus, PubMed, and EBSCO SportDiscus were searched from inception until June 2021. Randomized controlled trials and non-randomized studies of interventions that compared RT to no intervention (control) were included. Two reviewers independently extracted data from each trial, assessed the risk of bias and rated the cumulative quality of evidence. Motor unit discharge rate (MUDR), motor unit recruitment threshold (MURT), motor unit discharge rate variability (MUDRV), MU discharge rate at recruitment vs. recruitment threshold relationship, and MU discharge rate vs. recruitment threshold relationship were assessed. Seven trials including 167 participants met the inclusion criteria. Meta-analysis (four studies) revealed that MUDR did not change significantly (P = 0.43), but with considerable heterogeneity likely to be present (I 2 = 91). Low to moderate evidence supports changes in MUDRV, MUDR at recruitment vs. recruitment threshold relationship, and the MUDR vs. recruitment threshold relationship. Overall, this systematic review revealed that there is a lack of high-quality evidence for the effect of RT on MU firing properties. Heterogeneity across studies undermines the quality of the evidence for multiple outcomes and affects the conclusions that can be drawn.
Collapse
Affiliation(s)
| | | | | | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Jeon S, Ye X, Miller WM, Song JS. Effect of repeated eccentric exercise on muscle damage markers and motor unit control strategies in arm and hand muscle. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 4:44-53. [PMID: 35782782 PMCID: PMC9219313 DOI: 10.1016/j.smhs.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022] Open
Abstract
To examine the contralateral repeated bout effect (CL-RBE) on muscle damage markers and motor unit (MU) control strategies, seventeen healthy adults performed two bouts of 60 eccentric contractions with elbow flexor (EF group; n = 9) or index finger abductor (IA group; n = 8) muscles, separated by 1 week. All participants randomly performed eccentric exercise on either the right or left arm or hand muscles, and muscle damage markers and submaximal trapezoid contraction tests were conducted pre, post, 1- and 2-day post eccentric protocol. One week after the first bout, the same exercise protocol and measurements were performed on the contralateral muscles. Surface electromyographic (EMG) signals were collected from biceps brachii (BB) or first dorsal interosseous (FDI) during maximal and submaximal tests. The linear regression analyses were used to examine MU recruitment threshold versus mean firing rate and recruitment threshold versus derecruitment threshold relationships. EMG amplitude from BB (bout 1 vs. bout 2 = 65.71% ± 22.92% vs. 43.05% ± 18.97%, p = 0.015, d = 1.077) and the y-intercept (group merged) from the MU recruitment threshold versus derecruitment threshold relationship (bout 1 vs. bout 2 = −7.10 ± 14.20 vs. 0.73 ± 16.24, p = 0.029, d = 0.513) at 50% MVIC were significantly different between two bouts. However, other muscle damage markers did not show any CL-RBE in both muscle groups. Therefore, despite changes in muscle excitation and MU firing behavior, our results do not support the existence of CL-RBE on BB and FDI muscles.
Collapse
|
8
|
Huang C, Chen M, Li X, Zhang Y, Li S, Zhou P. Neurophysiological Factors Affecting Muscle Innervation Zone Estimation Using Surface EMG: A Simulation Study. BIOSENSORS-BASEL 2021; 11:bios11100356. [PMID: 34677312 PMCID: PMC8534086 DOI: 10.3390/bios11100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
Surface electromyography (EMG) recorded by a linear or 2-dimensional electrode array can be used to estimate the location of muscle innervation zones (IZ). There are various neurophysiological factors that may influence surface EMG and thus potentially compromise muscle IZ estimation. The objective of this study was to evaluate how surface-EMG-based IZ estimation might be affected by different factors, including varying degrees of motor unit (MU) synchronization in the case of single or double IZs. The study was performed by implementing a model simulating surface EMG activity. Three different MU synchronization conditions were simulated, namely no synchronization, medium level synchronization, and complete synchronization analog to M wave. Surface EMG signals recorded by a 2-dimensional electrode array were simulated from a muscle with single and double IZs, respectively. For each situation, the IZ was estimated from surface EMG and compared with the one used in the model for performance evaluation. For the muscle with only one IZ, the estimated IZ location from surface EMG was consistent with the one used in the model for all the three MU synchronization conditions. For the muscle with double IZs, at least one IZ was appropriately estimated from interference surface EMG when there was no MU synchronization. However, the estimated IZ was different from either of the two IZ locations used in the model for the other two MU synchronization conditions. For muscles with a single IZ, MU synchronization has little effect on IZ estimation from electrode array surface EMG. However, caution is required for multiple IZ muscles since MU synchronization might lead to false IZ estimation.
Collapse
Affiliation(s)
- Chengjun Huang
- Guangdong Work Injury Rehabilitation Center, Guangzhou 510970, China;
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Maoqi Chen
- Faculty of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
| | - Xiaoyan Li
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Ping Zhou
- Faculty of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
- Correspondence:
| |
Collapse
|
9
|
Pincheira PA, Hoffman BW, Cresswell AG, Carroll TJ, Brown NAT, Lichtwark GA. Cyclic eccentric stretching induces more damage and improved subsequent protection than stretched isometric contractions in the lower limb. Eur J Appl Physiol 2021; 121:3349-3360. [PMID: 34436674 DOI: 10.1007/s00421-021-04787-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Controversy remains about whether exercise-induced muscle damage (EIMD) and the subsequent repeated bout effect (RBE) are caused by the stretching of an activated muscle, or the production of high force at long, but constant, muscle lengths. The aim of this study was to determine the influence of muscle fascicle stretch elicited during different muscle contraction types on the magnitude of EIMD and the RBE. METHODS Fourteen participants performed an initial bout of lower limb exercise of the triceps surae. One leg performed sustained static contractions at a constant long muscle length (ISO), whereas the contralateral leg performed a bout of eccentric heel drop exercise (ECC). Time under tension was matched between the ECC and ISO conditions. Seven days later, both legs performed ECC. Plantar flexor twitch torque, medial gastrocnemius (MG) fascicle length and muscle soreness were assessed before, 2 h and 2 days after each exercise bout. MG fascicle length and triceps surae surface electromyography were examined across the bouts of exercise. RESULTS We found that both ECC and ISO conditions elicited EIMD and a RBE. ISO caused less damage 2 h after the initial bout (14% less drop in twitch torque, P = 0.03) and less protection from soreness 2 days after the repeated bout (56% higher soreness, P = 0.01). No differences were found when comparing neuromechanical properties across exercise bouts. CONCLUSION For MG, the action of stretching an active muscle seems to be more important for causing damage than a sustained contraction at a long length.
Collapse
Affiliation(s)
- Patricio A Pincheira
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Ben W Hoffman
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Andrew G Cresswell
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Timothy J Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas A T Brown
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | - Glen A Lichtwark
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
10
|
Lindsay A, Abbott G, Ingalls CP, Baumann CW. Muscle Strength Does Not Adapt From a Second to Third Bout of Eccentric Contractions: A Systematic Review and Meta-Analysis of the Repeated Bout Effect. J Strength Cond Res 2021; 35:576-584. [PMID: 33337696 DOI: 10.1519/jsc.0000000000003924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Lindsay, A, Abbott, G, Ingalls, CP, and Baumann, CW. Muscle strength does not adapt from a second to third bout of eccentric contractions: A systematic review and meta-analysis of the repeated bout effect. J Strength Cond Res 35(2): 576-584, 2021-The greatest muscle strength adaptations to repeated bouts of eccentric contractions (ECC) occur after the initial injury, with little to no change in subsequent bouts. However, because of the disparity in injury models, it is unknown whether three or more bouts provide further adaptation. Therefore, we performed a systematic review of the literature to evaluate whether a third bout of skeletal muscle ECC impacts immediate strength loss and rate of strength recovery compared with a second bout. A search of the literature in Web of Science, SCOPUS, Medline, and the American College of Sports Medicine database was conducted between May and September 2019 using the keywords eccentric contraction or lengthening contraction and muscle and repeated or multiple, and bout. Eleven studies with 12 experimental groups, using 72 human subjects, 48 mice, and 11 rabbits, met the inclusion criteria. A meta-analysis using a random effects model and effect sizes (ESs; Hedges' g) calculated from the standardized mean differences was completed. Calculated ESs for immediate strength loss provided no evidence that a third bout of ECC results in greater loss of strength compared with a second bout (ES = -0.12, 95% confidence interval [CI] = -0.41 to 0.17). Furthermore, the rate of strength recovery was not different between a second and third bout (ES = -0.15, 95% CI = -1.01 to 0.70). These results indicate a third bout of skeletal muscle ECC does not improve indices of strength loss or rate of strength recovery compared with a second bout. Therefore, coaches and athletes should expect some level of persistent weakness after each of their initial training sessions involving ECC, and the faster recovery of strength deficits in the second bout documented by previous research is not different from a third bout.
Collapse
Affiliation(s)
- Angus Lindsay
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Gavin Abbott
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Christopher P Ingalls
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia; and
| | - Cory W Baumann
- Ohio Musculoskeletal and Neurological Institute (OMNI) and Department of Biomedical Sciences, Ohio University, Athens, Ohio
| |
Collapse
|
11
|
A single bout of downhill running attenuates subsequent level running-induced fatigue. Sci Rep 2020; 10:18809. [PMID: 33139834 PMCID: PMC7606541 DOI: 10.1038/s41598-020-76008-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/22/2020] [Indexed: 12/01/2022] Open
Abstract
Fatigue can be defined as exercise-induced strength loss. During running, fatigue can be partially explained by repetitive low-intensity eccentric contractions-induced muscle damage (EIMD). Previous studies showed that a bout of downhill running (DR) attenuated subsequent EIMD. Thus, we tested if a 30-min DR bout would attenuate fatigue induced by subsequent 60-min level running (LR). Twenty-seven male college students were randomly allocated to an experimental (EXP) or a control (CON) group. All participants performed LR on a treadmill at 70% of the velocity (vVO2peak) corresponding to peak oxygen uptake (VO2peak). Only EXP performed a 30-min DR (− 15%) on a treadmill at 70% vVO2peak fourteen days before LR. Indirect EIMD markers and neuromuscular function were assessed before, immediately and 48 h after DR and LR. Knee extension isometric peak torque (IPT) decreased (− 36.3 ± 26%, p < 0.05) immediately following DR with full recovery reached 48 h post-DR. Muscle soreness developed (p < 0.05) immediately (37 ± 25 mm) and 48 h (45 ± 26 mm) post-DR. IPT and rate of torque development (RTD) at late phases (> 150 ms) from the onset of muscle contraction decreased significantly (− 10.7 ± 6.1% and from − 15.4 to − 18.7%, respectively) immediately after LR for the CON group and remained below baseline values (− 5.6 ± 8.5% and from − 13.8 to − 14.9%, respectively) 48 h post-LR. However, IPT and late RTD were not significantly affected by LR for the EXP group, showing a group x time interaction effect. We concluded that a single DR bout can be used to attenuate fatigue induced by a LR performed fourteen days after.
Collapse
|
12
|
Tseng WC, Nosaka K, Tseng KW, Chou TY, Chen TC. Contralateral Effects by Unilateral Eccentric versus Concentric Resistance Training. Med Sci Sports Exerc 2020; 52:474-483. [PMID: 31524834 DOI: 10.1249/mss.0000000000002155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Unilateral resistance training increases muscle strength of the contralateral homologous muscle by the cross-education effect. Muscle damage induced by second eccentric exercise bout is attenuated, even when it is performed by the contralateral limb. The present study compared the effects of unilateral eccentric training (ET) and concentric training (CT) of the elbow flexors (EF) on maximal voluntary isometric contraction (MVC) strength and muscle damage of the contralateral untrained EF. METHODS Young men were placed into ET, CT, ipsilateral repeated bout (IL-RB), and contralateral repeated bout (CL-RB) groups (n = 12 per group). The ET and CT groups performed unilateral EF training consisting of five sets of six eccentric and concentric contractions, respectively, once a week for 5 wk by increasing the intensity from 10% to 100% of MVC, followed by 30 maximal eccentric contractions (30MaxEC) of the opposite EF 1 wk later. The IL-RB group performed two bouts of 30MaxEC separated by 2 wk using the nondominant arm, and CL-RB group performed two bouts of 30MaxEC with a different arm for each bout in 1-wk apart. RESULTS The MVC increased (P < 0.05) greater for the trained (19% ± 8%) and untrained (11% ± 5%) arms in ET when compared with those in CT (10% ± 6%, 5% ± 2%). The magnitude of changes in muscle damage markers was reduced by 71% ± 19% after the second than the first bout for IL-RB group, and by 48% ± 21% for CL-RB group. Eccentric training and CT attenuated the magnitude by 58% ± 25% and 13% ± 13%, respectively, and the protective effect of ET was greater (P < 0.05) than CL-RB, but smaller (P < 0.05) than IL-RB. CONCLUSIONS These results showed that cross-education effect was stronger for ET than CT, and progressive ET produced greater contralateral muscle damage protective effect than a single eccentric exercise bout.
Collapse
Affiliation(s)
- Wei-Chin Tseng
- Department of Exercise and Health Sciences, University of Taipei, Taipei City, TAIWAN
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Western Australia, AUSTRALIA
| | - Kuo-Wei Tseng
- Department of Exercise and Health Sciences, University of Taipei, Taipei City, TAIWAN
| | - Tai-Ying Chou
- Department of Athletic Performance, National Taiwan Normal University, Taipei City, TAIWAN
| | - Trevor C Chen
- Department of Physical Education, National Taiwan Normal University, Taipei City, TAIWAN
| |
Collapse
|
13
|
Stožer A, Vodopivc P, Križančić Bombek L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol Res 2020; 69:565-598. [PMID: 32672048 DOI: 10.33549/physiolres.934371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extreme or unaccustomed eccentric exercise can cause exercise-induced muscle damage, characterized by structural changes involving sarcomere, cytoskeletal, and membrane damage, with an increased permeability of sarcolemma for proteins. From a functional point of view, disrupted force transmission, altered calcium homeostasis, disruption of excitation-contraction coupling, as well as metabolic changes bring about loss of strength. Importantly, the trauma also invokes an inflammatory response and clinically presents itself by swelling, decreased range of motion, increased passive tension, soreness, and a transient decrease in insulin sensitivity. While being damaging and influencing heavily the ability to perform repeated bouts of exercise, changes produced by exercise-induced muscle damage seem to play a crucial role in myofibrillar adaptation. Additionally, eccentric exercise yields greater hypertrophy than isometric or concentric contractions and requires less in terms of metabolic energy and cardiovascular stress, making it especially suitable for the elderly and people with chronic diseases. This review focuses on our current knowledge of the mechanisms underlying exercise-induced muscle damage, their dependence on genetic background, as well as their consequences at the structural, functional, metabolic, and clinical level. A comprehensive understanding of these is a prerequisite for proper inclusion of eccentric training in health promotion, rehabilitation, and performance enhancement.
Collapse
Affiliation(s)
- A Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia.
| | | | | |
Collapse
|
14
|
Škarabot J, Ansdell P, Temesi J, Howatson G, Goodall S, Durbaba R. Neurophysiological responses and adaptation following repeated bouts of maximal lengthening contractions in young and older adults. J Appl Physiol (1985) 2019; 127:1224-1237. [DOI: 10.1152/japplphysiol.00494.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A bout of maximal lengthening contractions is known to produce muscle damage, but confers protection against subsequent damaging bouts, with both tending to be lower in older adults. Neural factors contribute to this adaptation, but the role of the corticospinal pathway remains unclear. Twelve young (27 ± 5 yr) and 11 older adults (66 ± 4 yr) performed two bouts of 60 maximal lengthening dorsiflexions 2 weeks apart. Neuromuscular responses were measured preexercise, immediately postexercise, and at 24 and 72 h following both bouts. The initial bout resulted in prolonged reductions in maximal voluntary torque (MVC; immediately postexercise onward, P < 0.001) and increased creatine kinase (from 24 h onward, P = 0.001), with both responses being attenuated following the second bout ( P < 0.015), demonstrating adaptation. Smaller reductions in MVC following both bouts occurred in older adults ( P = 0.005). Intracortical facilitation showed no changes ( P ≥ 0.245). Motor-evoked potentials increased 24 and 72 h postexercise in young ( P ≤ 0.038). Torque variability ( P ≤ 0.041) and H-reflex size ( P = 0.024) increased, while short-interval intracortical inhibition (SICI; P = 0.019) and the silent period duration (SP) decreased ( P = 0.001) in both groups immediately postexercise. The SP decrease was smaller following the second bout ( P = 0.021), and there was an association between the change in SICI and reduction in MVC 24 h postexercise in young adults ( R = −0.47, P = 0.036). Changes in neurophysiological responses were mostly limited to immediately postexercise, suggesting a modest role in adaptation. In young adults, neural inhibitory changes are linked to the extent of MVC reduction, possibly mediated by the muscle damage–related afferent feedback. Older adults incurred less muscle damage, which has implications for exercise prescription. NEW & NOTEWORTHY This is the first study to have collectively assessed the role of corticospinal, spinal, and intracortical activity in muscle damage attenuation following repeated bouts of exercise in young and older adults. Lower levels of muscle damage in older adults are not related to their neurophysiological responses. Neural inhibition transiently changed, which might be related to the extent of muscle damage; however, the role of processes along the corticospinal pathway in the adaptive response is limited.
Collapse
Affiliation(s)
- Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, England, United Kingdom
| | - Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, England, United Kingdom
| | - John Temesi
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, England, United Kingdom
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, England, United Kingdom
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, England, United Kingdom
| | - Rade Durbaba
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, England, United Kingdom
| |
Collapse
|
15
|
Škarabot J, Ansdell P, Brownstein CG, Hicks KM, Howatson G, Goodall S, Durbaba R. Reduced corticospinal responses in older compared with younger adults during submaximal isometric, shortening, and lengthening contractions. J Appl Physiol (1985) 2019; 126:1015-1031. [PMID: 30730812 DOI: 10.1152/japplphysiol.00987.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess differences in motor performance, as well as corticospinal and spinal responses to transcranial magnetic and percutaneous nerve stimulation, respectively, during submaximal isometric, shortening, and lengthening contractions between younger and older adults. Fifteen younger [26 yr (SD 4); 7 women, 8 men] and 14 older [64 yr (SD 3); 5 women, 9 men] adults performed isometric and shortening and lengthening dorsiflexion on an isokinetic dynamometer (5°/s) at 25% and 50% of contraction type-specific maximums. Motor evoked potentials (MEPs) and H reflexes were recorded at anatomical zero. Maximal dorsiflexor torque was greater during lengthening compared with shortening and isometric contractions ( P < 0.001) but was not age dependent ( P = 0.158). However, torque variability was greater in older compared with young adults ( P < 0.001). Background electromyographic (EMG) activity was greater in older compared with younger adults ( P < 0.005) and was contraction type dependent ( P < 0.001). As evoked responses are influenced by both the maximal level of excitation and background EMG activity, the responses were additionally normalized {[MEP/maximum M wave (Mmax)]/root-mean-square EMG activity (RMS) and [H reflex (H)/Mmax]/RMS}. (MEP/Mmax)/RMS and (H/Mmax)/RMS were similar across contraction types but were greater in young compared with older adults ( P < 0.001). Peripheral motor conduction times were prolonged in older adults ( P = 0.003), whereas peripheral sensory conduction times and central motor conduction times were not age dependent ( P ≥ 0.356). These data suggest that age-related changes throughout the central nervous system serve to accommodate contraction type-specific motor control. Moreover, a reduction in corticospinal responses and increased torque variability seem to occur without a significant reduction in maximal torque-producing capacity during older age. NEW & NOTEWORTHY This is the first study to have explored corticospinal and spinal responses with aging during submaximal contractions of different types (isometric, shortening, and lengthening) in lower limb musculature. It is demonstrated that despite preserved maximal torque production capacity corticospinal responses are reduced in older compared with younger adults across contraction types along with increased torque variability during dynamic contractions. This suggests that the age-related corticospinal changes serve to accommodate contraction type-specific motor control.
Collapse
Affiliation(s)
- Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Callum G Brownstein
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom.,Université Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom.,Water Research Group, School of Environmental Sciences and Development, Northwest University , Potchefstroom , South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Rade Durbaba
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| |
Collapse
|
16
|
Pethick J, Whiteaway K, Winter SL, Burnley M. Prolonged depression of knee-extensor torque complexity following eccentric exercise. Exp Physiol 2018; 104:100-111. [DOI: 10.1113/ep087295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Jamie Pethick
- Endurance Research Group; School of Sport and Exercise Sciences; University of Kent; UK
| | - Katherine Whiteaway
- Endurance Research Group; School of Sport and Exercise Sciences; University of Kent; UK
| | - Samantha L. Winter
- Endurance Research Group; School of Sport and Exercise Sciences; University of Kent; UK
| | - Mark Burnley
- Endurance Research Group; School of Sport and Exercise Sciences; University of Kent; UK
| |
Collapse
|
17
|
Macgregor LJ, Hunter AM. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise. PLoS One 2018; 13:e0195051. [PMID: 29630622 PMCID: PMC5890972 DOI: 10.1371/journal.pone.0195051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/11/2018] [Indexed: 11/18/2022] Open
Abstract
Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.
Collapse
Affiliation(s)
- Lewis J. Macgregor
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, Scotland
| | - Angus M. Hunter
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, Scotland
- * E-mail:
| |
Collapse
|
18
|
Hight RE, Beck TW, Bemben DA, Black CD. Adaptations in antagonist co-activation: Role in the repeated-bout effect. PLoS One 2017; 12:e0189323. [PMID: 29216288 PMCID: PMC5720767 DOI: 10.1371/journal.pone.0189323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/22/2017] [Indexed: 11/23/2022] Open
Abstract
Eccentric exercise results in an adaptation which attenuates muscle damage from subsequent exercise—termed the “repeated-bout effect (RBE).” Purpose: Study examined antagonist co-activation and motor-unit recruitment strategy, assessed via dEMG, concomitant to the RBE. Methods: Nine participants performed 5 sub-maximal isometric trapezoid (ramp-up, hold, ramp-down) contractions at force levels corresponding to 50% and 80% of maximal isometric strength (MVC). Surface EMG signals of the biceps brachii were decomposed into individual motor-unit action potential trains. The relationship between mean firing rate (MFR) of each motor-unit and its recruitment threshold (RT) was examined using linear regression. Eccentric exercise was then performed until biceps brachii MVC had decreased by ~40%. Surface EMG of the biceps and triceps were collected during eccentric exercise. MVC, range-of-motion (ROM), and delayed onset muscle soreness (DOMS) were measured 24-hours, 72-hours, and 1-week following eccentric exercise. Three weeks later all procedures were repeated. Results: Changes in MVC (-32±14% vs -25±10%; p = 0.034), ROM (-11% vs 6%; p = 0.01), and DOMS (31.0±19mm vs 19±12mm; p = 0.015) were attenuated following the second bout of exercise. Triceps EMG was reduced (16.8±9.5% vs. 12.6±7.2%; p = 0.03) during the second bout of eccentric exercise. The slope (-0.60±0.13 vs -0.70±0.18; p = 0.029) and y-intercept (46.5±8.3 vs 53.3±8.8; p = 0.020) of the MFR vs. RT relationship was altered during contractions at 80% of MVC prior to the second bout of eccentric exercise. No changes were observed at 50% of MVC. Conclusion: A reduction in antagonist co-activation during the second bout of eccentric exercise suggests less total force was required to move an identical external load. This finding is supported by the increased negative slope coefficient and an increased y-intercept of the linear relationship between RT and MFR.
Collapse
Affiliation(s)
- Robert E. Hight
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Travis W. Beck
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Debra A. Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Christopher D. Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
19
|
Hyldahl RD, Chen TC, Nosaka K. Mechanisms and Mediators of the Skeletal Muscle Repeated Bout Effect. Exerc Sport Sci Rev 2017; 45:24-33. [PMID: 27782911 DOI: 10.1249/jes.0000000000000095] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Skeletal muscle adapts to exercise-induced damage by orchestrating several but still poorly understood mechanisms that endow protection from subsequent damage. Known widely as the repeated bout effect, we propose that neural adaptations, alterations to muscle mechanical properties, structural remodeling of the extracellular matrix, and biochemical signaling work in concert to coordinate the protective adaptation.
Collapse
Affiliation(s)
- Robert D Hyldahl
- 1Department of Exercise Sciences, Brigham Young University, Provo, UT; 2Department of Physical Education, National Taiwan Normal University, Taipei City, Taiwan; and 3Centre for Exercise and Sports Sciences, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | | | | |
Collapse
|
20
|
Köhne JL, Ormsbee MJ, McKune AJ. The effects of a multi-ingredient supplement on markers of muscle damage and inflammation following downhill running in females. J Int Soc Sports Nutr 2016; 13:44. [PMID: 27924138 PMCID: PMC5123227 DOI: 10.1186/s12970-016-0156-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/19/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The effects of a multi-ingredient performance supplement (MIPS) on markers of inflammation and muscle damage, perceived soreness and lower limb performance are unknown in endurance-trained female athletes. The purpose of this study was to determine the impact of MIPS (NO-Shotgun®) pre-loaded 4 weeks prior to a single-bout of downhill running (DHR) on hsC-Reactive Protein (hsCRP), interleukin (IL)-6, creatine kinase (CK), muscle soreness, lower limb circumferences and performance. METHOD Trained female runners (n = 8; 29 ± 5.9 years) (VO2max: ≥ 50 ml-1.kg-1.min-1, midfollicular phase (7-11 days post-menses) were randomly assigned in a double-blind manner into two groups: MIPS (n = 4) ingested one serving of NO Shotgun daily for 28 days prior to DHR and 30 min prior to all post-testing visits; Control (CON) (n = 4) consumed an isocaloric maltodextrin placebo in an identical manner to MIPS. hsCRP, IL-6, CK, perceived soreness, limb circumferences, and performance measures (flexibility, squat jump peak power) were tested on 5 occasions; immediately before (PRE), immediately post-DHR, 24, 48 and 72 h post-DHR. RESULTS There were main effects of time for CK (p = 0.05), pain pressure threshold (right tibialis anterior (p = 0.010), right biceps femoris (p = 0.01), and left iliotibial band (ITB) (p = 0.05) across all time points), and maximum squat jump power (p = 0.04). Compared with 24 h post-DHR, maximum squat jump power was significantly lower at 48 h post-DHR (p = 0.05). Lower body perceived soreness was significantly increased at 24 h (p = 0.02) and baseline to 48 h (p = 0.02) post DHR. IL-6 peaked immediately post-DHR (p = 0.03) and hsCRP peaked at 24 h post-DHR (p = 0.06). Calculation of effect sizes indicated a moderate attenuation of hsCRP in MIPS at 72 h post-DHR. CONCLUSIONS Consumption of MIPS for 4 weeks prior to a single bout of DHR attenuated inflammation three days post, but did not affect perceived soreness and muscle damage markers in endurance trained female runners following a single bout of DHR.
Collapse
Affiliation(s)
- Jessica L Köhne
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Michael J Ormsbee
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa ; Department of Nutrition, Food and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, USA
| | - Andrew J McKune
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa ; Department of Nutrition, Food and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, USA ; Discipline of Sport and Exercise Science, University of Canberra Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Canberra, Australia
| |
Collapse
|
21
|
Walker S, Blazevich AJ, Haff GG, Tufano JJ, Newton RU, Häkkinen K. Greater Strength Gains after Training with Accentuated Eccentric than Traditional Isoinertial Loads in Already Strength-Trained Men. Front Physiol 2016; 7:149. [PMID: 27199764 PMCID: PMC4847223 DOI: 10.3389/fphys.2016.00149] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022] Open
Abstract
As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque increased equally in both the accentuated eccentric load (10 ± 9%, p < 0.01) and traditional (9 ± 6%, p < 0.01) resistance training groups; however, the increase in the accentuated eccentric load group was significantly greater (p < 0.05) than control (1 ± 7%). Knee extension repetition-to-failure improved in the accentuated eccentric load group only (28%, p < 0.05). Similar increases in muscle mass occurred in both intervention groups. In summary, accentuated eccentric load training led to greater increases in maximum force production, work capacity and muscle activation, but not muscle hypertrophy, in strength-trained individuals.
Collapse
Affiliation(s)
- Simon Walker
- Department of Biology of Physical Activity and Neuromuscular Research Center, University of JyväskyläJyväskylä, Finland; School of Medical and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan UniversityJoondalup, WA, Australia
| | - Anthony J Blazevich
- School of Medical and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan University Joondalup, WA, Australia
| | - G Gregory Haff
- School of Medical and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan University Joondalup, WA, Australia
| | - James J Tufano
- School of Medical and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan University Joondalup, WA, Australia
| | - Robert U Newton
- School of Medical and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan UniversityJoondalup, WA, Australia; Institute of Human Performance, The University of Hong KongHong Kong, China
| | - Keijo Häkkinen
- Department of Biology of Physical Activity and Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| |
Collapse
|
22
|
Kline JC, De Luca CJ. Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs. J Neurophysiol 2015; 115:178-92. [PMID: 26490288 DOI: 10.1152/jn.00452.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/16/2015] [Indexed: 01/21/2023] Open
Abstract
Synchronous motor unit firing instances have been attributed to anatomical inputs shared by motoneurons. Yet, there is a lack of empirical evidence confirming the notion that common inputs elicit synchronization under voluntary conditions. We tested this notion by measuring synchronization between motor unit action potential trains (MUAPTs) as their firing rates progressed within a contraction from a relatively low force level to a higher one. On average, the degree of synchronization decreased as the force increased. The common input notion provides no empirically supported explanation for the observed synchronization behavior. Therefore, we investigated a more probable explanation for synchronization. Our data set of 17,546 paired MUAPTs revealed that the degree of synchronization varies as a function of two characteristics of the motor unit firing rate: the similarity and the slope as a function of force. Both are measures of the excitation of the motoneurons. As the force generated by the muscle increases, the firing rate slope decreases, and the synchronization correspondingly decreases. Different muscles have motor units with different firing rate characteristics and display different amounts of synchronization. Although this association is not proof of causality, it consistently explains our observations and strongly suggests further investigation. So viewed, synchronization is likely an epiphenomenon, subject to countless unknown neural interactions. As such, synchronous firing instances may not be the product of a specific design and may not serve a specific physiological purpose. Our explanation for synchronization has the advantage of being supported by empirical evidence, whereas the common input does not.
Collapse
Affiliation(s)
- Joshua C Kline
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; and Delsys Incorporated, Natick, Massachusetts
| | - Carlo J De Luca
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; and Delsys Incorporated, Natick, Massachusetts
| |
Collapse
|
23
|
Ye X, Beck TW, DeFreitas JM, Wages NP. Acute effects of dynamic exercises on the relationship between the motor unit firing rate and the recruitment threshold. Hum Mov Sci 2014; 40:24-37. [PMID: 25514631 DOI: 10.1016/j.humov.2014.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 10/23/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
Abstract
The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss.
Collapse
Affiliation(s)
- Xin Ye
- Department of Health and Exercise Science, 1401 Asp Ave. Room 104, University of Oklahoma, Norman, OK 73019, USA.
| | - Travis W Beck
- Department of Health and Exercise Science, 1401 Asp Ave. Room 104, University of Oklahoma, Norman, OK 73019, USA
| | - Jason M DeFreitas
- Health and Human Performance, Oklahoma State University, 198 Colvin Rec Center, Stillwater, OK 74078, USA
| | - Nathan P Wages
- Department of Health and Exercise Science, 1401 Asp Ave. Room 104, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
24
|
De Luca CJ, Kline JC. Statistically rigorous calculations do not support common input and long-term synchronization of motor-unit firings. J Neurophysiol 2014; 112:2729-44. [PMID: 25210152 PMCID: PMC4254878 DOI: 10.1152/jn.00725.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 09/08/2014] [Indexed: 11/22/2022] Open
Abstract
Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles--a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization.
Collapse
Affiliation(s)
- Carlo J De Luca
- NeuroMuscular Research Center, Boston University, Boston, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts; Department of Neurology, Boston University, Boston, Massachusetts; Department of Physical Therapy, Boston University, Boston, Massachusetts; and Delsys, Natick, Massachusetts
| | - Joshua C Kline
- NeuroMuscular Research Center, Boston University, Boston, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
25
|
Semmler JG. Motor unit activity after eccentric exercise and muscle damage in humans. Acta Physiol (Oxf) 2014; 210:754-67. [PMID: 24761463 DOI: 10.1111/apha.12232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.
Collapse
Affiliation(s)
- J. G. Semmler
- Discipline of Physiology; School of Medical Sciences; The University of Adelaide; Adelaide SA Australia
| |
Collapse
|
26
|
|
27
|
Barss TS, Magnus CR, Clarke N, Lanovaz JL, Chilibeck PD, Kontulainen SA, Arnold BE, Farthing JP. Velocity-Specific Strength Recovery After a Second Bout of Eccentric Exercise. J Strength Cond Res 2014; 28:339-49. [DOI: 10.1519/jsc.0b013e31829d23dd] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Isner-Horobeti ME, Dufour SP, Vautravers P, Geny B, Coudeyre E, Richard R. Eccentric Exercise Training: Modalities, Applications and Perspectives. Sports Med 2013; 43:483-512. [DOI: 10.1007/s40279-013-0052-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Pitman BM, Semmler JG. Reduced short-interval intracortical inhibition after eccentric muscle damage in human elbow flexor muscles. J Appl Physiol (1985) 2012; 113:929-36. [DOI: 10.1152/japplphysiol.00361.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to use paired-pulse transcranial magnetic stimulation (TMS) to examine the effect of eccentric exercise on short-interval intracortical inhibition (SICI) after damage to elbow flexor muscles. Nine young (22.5 ± 0.6 yr; mean ± SD) male subjects performed maximal eccentric exercise of the elbow flexor muscles until maximal voluntary contraction (MVC) force was reduced by ∼40%. TMS was performed before, 2 h after, and 2 days after exercise under Rest and Active (5% MVC) conditions with motor-evoked potentials (MEPs) recorded from the biceps brachii (BB) muscle. Peripheral electrical stimulation of the brachial plexus was used to assess maximal M-waves, and paired-pulse TMS with a 3-ms interstimulus interval was used to assess changes in SICI at each time point. The eccentric exercise resulted in a 34% decline in strength ( P < 0.001), a 41% decline in resting M-wave ( P = 0.01), changes in resting elbow joint angle (10°, P < 0.001), and a shift in the optimal elbow joint angle for force production (18°, P < 0.05) 2 h after exercise. This was accompanied by impaired muscle strength (27%, P < 0.001) and increased muscle soreness ( P < 0.001) 2 days after exercise, which is indicative of muscle damage. When the test MEP amplitudes were matched between sessions, we found that SICI was reduced by 27% in resting and 23% in active BB muscle 2 h after exercise. SICI recovered 2 days after exercise when muscle pain and soreness were present, suggesting that delayed onset muscle soreness from eccentric exercise does not influence SICI. The change in SICI observed 2 h after exercise suggests that eccentric muscle damage has widespread effects throughout the motor system that likely includes changes in motor cortex.
Collapse
Affiliation(s)
- Bradley M. Pitman
- Discipline of Physiology, School of Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - John G. Semmler
- Discipline of Physiology, School of Medical Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
30
|
Beck TW, Kasishke PR, Stock MS, DeFreitas JM. Eccentric exercise does not affect common drive in the biceps brachii. Muscle Nerve 2012; 46:759-66. [DOI: 10.1002/mus.23386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2012] [Indexed: 11/07/2022]
|
31
|
|
32
|
Dimitrov VG, Arabadzhiev TI, Dimitrova NA, Dimitrov GV. The spectral changes in EMG during a second bout eccentric contraction could be due to adaptation in muscle fibres themselves: a simulation study. Eur J Appl Physiol 2011; 112:1399-409. [PMID: 21818623 DOI: 10.1007/s00421-011-2095-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
Abstract
The mechanism of marked reduction in damage symptoms after repeated bout of similar eccentric contractions is still unknown. The neuronal adaptation leading to reduction of muscle fibre propagation velocity (MFPV) due to increased activation of slow-twitch motor units (MUs), decrease in activation of fast-twitch MUs, and/or increase in MU synchronization was suggested as a cause for lower EMG frequency characteristics. However, the repeated bout effect could occur also after electrically stimulated exercise. Prolonged elevation of cytoplasmic Ca(2+) due to the increased membrane permeability after eccentric contractions was reported. Elevated Ca(2+) induced peripheral changes that included alteration of intracellular action potential and MFPV reduction. We simulated and compared changes in EMG frequency characteristics related to effects of central nervous system (CNS) or to peripheral changes. The simulations were performed for different electrode arrangements and positions. The results showed that the peripheral effects could be similar or even stronger than the effects related to CNS. We hypothesised that the repeated bout effect was a consequence of the adaptation in muscle fibres necessary for avoiding Ca(2+)-induced protein and lipid degradation due to Ca(2+) overload resulting from the increased membrane permeability after eccentric contraction. The possibilities for noninvasive testing of this hypothesis were discussed.
Collapse
Affiliation(s)
- V G Dimitrov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G.Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
| | | | | | | |
Collapse
|