1
|
Gerwin L, Rossmanith S, Haupt C, Schultheiß J, Brinkmeier H, Bittner RE, Kröger S. Impaired muscle spindle function in murine models of muscular dystrophy. J Physiol 2020; 598:1591-1609. [PMID: 32003874 DOI: 10.1113/jp278563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Muscular dystrophy patients suffer from progressive degeneration of skeletal muscle fibres, sudden spontaneous falls, balance problems, as well as gait and posture abnormalities. Dystrophin- and dysferlin-deficient mice, models for different types of muscular dystrophy with different aetiology and molecular basis, were characterized to investigate if muscle spindle structure and function are impaired. The number and morphology of muscle spindles were unaltered in both dystrophic mouse lines but muscle spindle resting discharge and their responses to stretch were altered. In dystrophin-deficient muscle spindles, the expression of the paralogue utrophin was substantially upregulated, potentially compensating for the dystrophin deficiency. The results suggest that muscle spindles might contribute to the motor problems observed in patients with muscular dystrophy. ABSTRACT Muscular dystrophies comprise a heterogeneous group of hereditary diseases characterized by progressive degeneration of extrafusal muscle fibres as well as unstable gait and frequent falls. To investigate if muscle spindle function is impaired, we analysed their number, morphology and function in wildtype mice and in murine model systems for two distinct types of muscular dystrophy with very different disease aetiology, i.e. dystrophin- and dysferlin-deficient mice. The total number and the overall structure of muscle spindles in soleus muscles of both dystrophic mouse mutants appeared unchanged. Immunohistochemical analyses of wildtype muscle spindles revealed a concentration of dystrophin and β-dystroglycan in intrafusal fibres outside the region of contact with the sensory neuron. While utrophin was absent from the central part of intrafusal fibres of wildtype mice, it was substantially upregulated in dystrophin-deficient mice. Single-unit extracellular recordings of sensory afferents from muscle spindles of the extensor digitorum longus muscle revealed that muscle spindles from both dystrophic mouse strains have an increased resting discharge and a higher action potential firing rate during sinusoidal vibrations, particularly at low frequencies. The response to ramp-and-hold stretches appeared unaltered compared to the respective wildtype mice. We observed no exacerbated functional changes in dystrophin and dysferlin double mutant mice compared to the single mutant animals. These results show alterations in muscle spindle afferent responses in both dystrophic mouse lines, which might cause an increased muscle tone, and might contribute to the unstable gait and frequent falls observed in patients with muscular dystrophy.
Collapse
Affiliation(s)
- Laura Gerwin
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany.,Institute for Stem Cell Research, German Research Center for Environmental Health, Helmholtz Centre Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Sarah Rossmanith
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany
| | - Corinna Haupt
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany
| | - Jürgen Schultheiß
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany
| | - Heinrich Brinkmeier
- Institute for Pathophysiology, University Medicine Greifswald, Martin-Luther-Str. 6, 17489, Greifswald, Germany
| | - Reginald E Bittner
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Waehringerstrasse 13, 1090, Vienna, Austria
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Gerwin L, Haupt C, Wilkinson KA, Kröger S. Acetylcholine receptors in the equatorial region of intrafusal muscle fibres modulate mouse muscle spindle sensitivity. J Physiol 2019; 597:1993-2006. [PMID: 30673133 DOI: 10.1113/jp277139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/22/2019] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Acetylcholine receptors are aggregated in the central regions of intrafusal muscle fibres. Single unit muscle spindle afferent responses from isolated mouse extensor digitorum longus muscle were recorded in the absence of fusimotor input to ramp and hold stretches as well as to sinusoidal vibrations in the presence and absence of the acetylcholine receptor blockers d-tubocurarine and α-bungarotoxin. Proprioceptive afferent responses to both types of stretch were enhanced in the presence of either blocker. Blocking acetylcholine uptake and vesicular acetylcholine release by hemicholinium-3 also enhanced stretch-evoked responses. These results represent the first evidence that acetylcholine receptors negatively modulate muscle spindle responses to stretch. The data support the hypothesis that the sensory nerve terminal is able to release vesicles to fine-tune proprioceptive afferent sensitivity. ABSTRACT Muscle spindles are complex stretch-sensitive mechanoreceptors. They consist of specialized skeletal muscle fibres, called intrafusal fibres, which are innervated in the central (equatorial) region by afferent sensory axons and in both polar regions by efferent γ-motoneurons. Previously it was shown that acetylcholine receptors (AChR) are concentrated in the equatorial region at the contact site between the sensory neuron and the intrafusal muscle fibre. To address the function of these AChRs, single unit sensory afferents were recorded from an isolated mouse extensor digitorum longus muscle in the absence of γ-motoneuron activity. Specifically, we investigated the responses of individual sensory neurons to ramp-and-hold stretches and sinusoidal vibrations before and after the addition of the competitive and non-competitive AChR blockers d-tubocurarine and α-bungarotoxin, respectively. The presence of either drug did not affect the resting action potential discharge frequency. However, the action potential frequencies in response to stretch were increased. In particular, frequencies of the dynamic peak and dynamic index to ramp-and-hold stretches were significantly higher in the presence of either drug. Treatment of muscle spindle afferents with the high-affinity choline transporter antagonist hemicholinium-3 similarly increased muscle spindle afferent firing frequencies during stretch. Moreover, the firing rate during sinusoidal vibration stimuli at low amplitudes was higher in the presence of α-bungarotoxin compared to control spindles also indicating an increased sensitivity to stretch. Collectively these data suggest a modulation of the muscle spindle afferent response to stretch by AChRs in the central region of intrafusal fibres possibly fine-tuning muscle spindle sensitivity.
Collapse
Affiliation(s)
- Laura Gerwin
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany.,Institute for Stem Cell Research, German Research Center for Environmental Health, Helmholtz Centre Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Corinna Haupt
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany
| | - Katherine A Wilkinson
- Department of Biological Sciences, San Jose State University, One Washington Square, San Jose, CA, 95192, USA
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152, Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Yang W, Zhang H. Effects of hindlimb unloading on neurotrophins in the rat spinal cord and soleus muscle. Brain Res 2015; 1630:1-9. [PMID: 26529644 DOI: 10.1016/j.brainres.2015.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/15/2015] [Accepted: 10/25/2015] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to investigate the effects of hindlimb unloading (HU) on the expression of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF), together with the expression of their high-affinity receptors tropomyosin receptor kinase C (TrkC) and tropomyosin receptor kinase B (TrkB), in lumbar (L4-6) segment of the spinal cord and in the soleus muscle. The mRNA and protein levels of the genes of interest were compared using quantitative PCR and western blot assays. Immunohistochemistry for NT-3 and BDNF was used to detect the levels of protein in the motoneurons in the lateral motor column. In this study, NT-3 and BDNF mRNA and protein expression were significantly increased in the spinal cord and soleus muscle after HU. NT-3 immunoreactivity, but not BDNF immunoreactivity, was significantly increased in the large motoneurons located in lateral motor column after 14 days of HU. The level of TrkC protein in the spinal cord and soleus muscle were significantly elevated after both 7 days and 14 days of HU. However, TrkC mRNA, TrkB mRNA and TrkB protein levels did not change significantly. Elevated BDNF, NT-3 and TrkC levels in the neuromuscular system indicate that neurotrophins are involved in HU-induced neuromuscular plasticity. NT-3 is a candidate to mediate the synaptic efficacy between alpha motoneurons and group Ia afferents.
Collapse
Affiliation(s)
- Wei Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.
| | - Hao Zhang
- Key Laboratory of Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Matthews CC, Fishman PS, Wittenberg GF. Tetanus toxin reduces local and descending regulation of the H-reflex. Muscle Nerve 2014; 49:495-501. [PMID: 24772492 DOI: 10.1002/mus.23938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Skeletal muscles that are under the influence of tetanus toxin show an exaggerated reflex response to stretch. We examined which changes in the stretch reflex may underlie the exaggerated response. METHODS H-reflexes were obtained from the tibialis anterior (TA) and flexor digitorum brevis (FDB) muscles in rats 7 days after intramuscular injection of tetanus toxin into the TA. RESULTS We found effects of the toxin on the threshold, amplitude, and duration of H-waves from the TA. The toxin inhibited rate-dependent depression in the FDB between the stimulation frequencies of 0.5–50 HZ and when a conditioning magnetic stimulus applied to the brain preceded a test electrical stimulus delivered to the plantar nerve. CONCLUSIONS Tetanus toxin increased the amplitude of the Hwave and reduced the normal depression of H-wave amplitude that is associated with closely timed stimuli, two phenomena that could contribute to hyperactivity of the stretch reflex.
Collapse
|
5
|
Bojados M, Herbin M, Jamon M. Kinematics of treadmill locomotion in mice raised in hypergravity. Behav Brain Res 2013; 244:48-57. [PMID: 23352767 DOI: 10.1016/j.bbr.2013.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/14/2013] [Indexed: 11/28/2022]
Abstract
The study compared the motor performance of adult C57Bl/6J mice previously exposed to a 2G gravity environment during different periods of their development. 12 mice were housed in a large diameter centrifuge from the conception to Postnatal day 10 (P10). Another group of 10 mice was centrifuged form P10 to P30, and a third group of 9 mice was centrifuged from conception to P30. Their gait parameters, and kinematics of joint excursions were compared with 11 control mice, at the age of 2 months using a video-radiographic apparatus connected to a motorized treadmill. The mice that returned to Earth gravity level at the age of P10 showed a motor pattern similar to control mice. At variance the two groups that were centrifuged from P10 to P30 showed a different motor pattern with smaller and faster strides to walk at the same velocity as controls. On the other hand all the centrifuged mice showed significant postural changes, particularly with a more extended ankle joint, but the mice centrifuged during the whole experimental period differed even more. Our results showed that the exposure to hypergravity before P10 sufficed to modify the posture, suggesting that postural control starts before the onset of locomotion, whereas the gravity constraint perceived between P10 and P30 conditioned the tuning of quadruped locomotion with long term consequences. These results support the existence of a critical period in the acquisition of locomotion in mice.
Collapse
Affiliation(s)
- Mickael Bojados
- Aix-Marseille Univ, INSERM UMR 1106, 13385 Marseille, France
| | | | | |
Collapse
|
6
|
Zhao XH, Fan XL, Song XA, Wu SD, Ren JC, Chen MX. Influence of 14-day hind limb unloading on isolated muscle spindle activity in rats. J Muscle Res Cell Motil 2010; 31:155-61. [PMID: 20661631 DOI: 10.1007/s10974-010-9215-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/25/2010] [Indexed: 11/24/2022]
Abstract
During hind limb unloading (HU), the soleus is often in a shortened position and the natural physiological stimulus of muscle spindles is altered, such that muscle spindle activity also changes. Using isolated spindle conditions, the present study investigates the electrophysiological activity and ultrastructure of muscle spindles following HU. Results show that muscle spindle discharges fall into either of two main patterns, single spikes or spike clusters in shortened positions, with a steady frequency of 18-38 spikes/s (mean 29.08 +/- 2.45) in an extended position. Following 14-day HU, afferent discharge activity was significantly altered in soleus muscle spindles. Duration of individual spikes was significantly prolonged, from 0.54 +/- 0.05 ms for control rats to 1.53 +/- 0.25 ms for rats in the HU group. In a shortened position, regular rhythm afferent discharges were obviously depressed, and the majority of muscle spindles became silent, while in an extended position, the discharges remained continuous but with decreased frequency. Results also show that the ultrastructure of muscle spindles experience degenerative changes during HU. Altered muscle spindle afference could possibly modify the activity of motor neurons and further affect the activity of extrafusal fibers.
Collapse
Affiliation(s)
- Xue Hong Zhao
- Department of Physiology and Pathophysiology, Medical School, Xi'an JiaoTong University, Xi'an 710061, Shaanxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
7
|
A 3D analysis of fore- and hindlimb motion during overground and ladder walking: Comparison of control and unloaded rats. Exp Neurol 2009; 218:98-108. [DOI: 10.1016/j.expneurol.2009.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/18/2009] [Accepted: 04/14/2009] [Indexed: 11/22/2022]
|
8
|
Effects of hindlimb unloading and reloading on c-fos expression of spinal cord evoked by vibration of rat Achille tendon. Neurosci Lett 2008; 439:1-6. [DOI: 10.1016/j.neulet.2007.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/28/2007] [Accepted: 09/12/2007] [Indexed: 11/20/2022]
|
9
|
De-Doncker L, Kasri M, Picquet F, Falempin M. Physiologically adaptive changes of the L5 afferent neurogram and of the rat soleus EMG activity during 14 days of hindlimb unloading and recovery. ACTA ACUST UNITED AC 2006; 208:4585-92. [PMID: 16326940 DOI: 10.1242/jeb.01931] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hindlimb unloading rat model (HU, Morey's model) is usually used to mimic and study neuromuscular changes that develop during spaceflights. This Earth-based model of microgravity induces a muscular atrophy of the slow postural muscle of hindlimbs, such as the soleus, a loss of strength, modifications of contraction kinetics, changes in histochemical and electrophoretical profiles and modifications of the tonic EMG activity. It has been suggested in the literature that some of these neuromuscular effects were due to a reduction of afferent feedback during HU. However, no direct data have confirmed this hypothesis. The aim of this study was to clearly establish if changes of the L5 afferent neurogram are closely related to the soleus EMG activity during and after 14 days of HU. Immediately after HU, the EMG activity of the soleus muscle disappeared and was associated with a decrease in the afferent neurogram. The soleus electromyographic and afferent activities remained lower than the pre-suspension levels until the sixth day of HU and were recovered between the sixth and the ninth day. On the twelfth and fourteenth days, they were increased beyond the pre-suspension levels. During the first recovery day, these activities were significantly higher than those on the fourteenth HU day and returned to the pre-suspension levels between the third and sixth recovery days. To conclude, our study directly demonstrates that the HU conditions cannot be considered as a functional deafferentation, as suggested in the literature, but only as a reduction of afferent information at the beginning of the HU period.
Collapse
Affiliation(s)
- L De-Doncker
- Laboratoire de Plasticité Neuromusculaire, EA 1032, IFR 118, Bât. SN4, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | |
Collapse
|
10
|
Rosant C, Nagel MD, Pérot C. Adaptation of rat soleus muscle spindles after 21 days of hindlimb unloading. Exp Neurol 2006; 200:191-9. [PMID: 16624292 DOI: 10.1016/j.expneurol.2006.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/16/2006] [Accepted: 02/06/2006] [Indexed: 10/24/2022]
Abstract
Spindle discharges are affected by muscle unloading, and changes in passive stiffness of the muscle-tendon unit may contribute to the changes in spindle solicitation. To test this hypothesis, we determined the spindle sensitivity from electroneurograms of the soleus nerve, and, concomitantly, we measured the incremental passive muscle tension. Both measurements were done from ramp and hold stretches imposed to the soleus muscle after the Achilles tendon was severed. The ratio between the spindle sensitivity and the passive stiffness gave a "spindle efficacy index" (SEI). The experiments were conducted on control rats (C, n = 12) and on rats that had undergone hindlimb unloading (HU, n = 12) for 21 days. The muscle threshold lengths for electroneurogram to discharge (neurogram length, Ln) and for detecting passive tension (slack length, Ls) were determined, and, when these lengths differed, the stretches were imposed at these two initial lengths. The contralateral muscles were used to count muscle spindles and spindle fibers (ATPase staining) and to identify MyHC isoforms by immunostaining. Ln and Ls values were identical for the C muscles, while after HU, Ln was significantly shorter than Ls, which indicated that spindle afferents were more sensitive since they discharged before any passive tension was developed by the soleus muscle. At Ln, spindle sensitivity and passive stiffness did not differ for C and HU muscles. Consequently, when calculated at this relatively short initial muscle length, the SEI was maintained (or even slightly increased) after HU. This held under dynamic conditions (ramp phase of the stretch) and under static conditions (hold phase of the stretch). At Ls, the dynamic and static incremental stiffness values increased significantly after HU. Under dynamic conditions, the spindle sensitivity also increased after HU but to a less degree than incremental stiffness, which led to a significant decrease in SEI. Under static conditions, the spindle sensitivity presented a high increase, and, consequently, SEI was not modified. These functional changes were associated with structural adaptations: HU did not alter the total number of muscle spindles, but the number of spindles containing three nuclear chain fibers increased significantly. The main change in intrafusal MyHC content concerned the slow type I MyHC isoform. In conclusion, after a period of muscle unloading, the spindle discharges were maintained or even enhanced in several experimental conditions. This may be due to a better transmission of the external stretch to muscle spindles through stiffer elastic structures but also to own muscle spindle adaptations which reinforce the spindle sensitivity, notably under static conditions.
Collapse
Affiliation(s)
- C Rosant
- UMR-CNRS 6600 Biomécanique et Génie Biomédical, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne, France
| | | | | |
Collapse
|
11
|
Rosant C, Pérot C. An index of spindle efficacy obtained by measuring electroneurographic activity and passive tension in the rat soleus muscle. J Neurosci Methods 2006; 150:272-8. [PMID: 16122808 DOI: 10.1016/j.jneumeth.2005.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 06/27/2005] [Accepted: 07/10/2005] [Indexed: 11/27/2022]
Abstract
While muscle spindle afferent discharges are known to change with altered muscle use, the way in which the changes in spindle discharge are affected by modifications to the elastic properties of the muscle-tendon unit remains to analyze. This paper describes a methodology to define, in the rat, a spindle efficacy index. This index relates the spindle afferent discharges recorded from electroneurograms (ENG) due to muscle stretch to the passive elastic properties of the muscle-tendon unit quantified during the stretch imposed for the ENGs recordings. The stretches were applied to the rat soleus muscle after the Achilles tendon was severed. The spindle afferent discharges were characterized from the root mean square (RMS) values of electroneurograms (ENGs) recorded from the soleus nerve. The first step of the study was to validate the definition of dynamic and static indices (DI and SI) of spindle discharges from RMS-ENG as classically done when isolated afferents are studied. The slopes of the DI-stretch velocity or SI-stretch amplitude relationships gave the indices of spindle sensitivity under dynamic and static conditions, respectively. Incremental stiffness was calculated to describe the passive elastic properties during the dynamic and static phases of ramp and hold stretches applied at different amplitudes and velocities. The spindle efficacy index (SEI) is the ratio between the indices of spindle sensitivity and incremental stiffness values. Both spindle discharges and incremental stiffness increased with stretch amplitude under dynamic and static conditions. The corresponding SEI values were constant whatever the stretch amplitude. This result validates the relationship between spindle discharges and passive incremental stiffness. This method can be proposed to study, in the rat, the spindle function when the muscles are suspected to present changes in their neuromechanical properties.
Collapse
Affiliation(s)
- Cédric Rosant
- Laboratoire de Biomécanique et Génie Biomédical, UMR-CNRS 6600, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne, France
| | | |
Collapse
|
12
|
Bigbee AJ, Grindeland RE, Roy RR, Zhong H, Gosselink KL, Arnaud S, Edgerton VR. Basal and evoked levels of bioassayable growth hormone are altered by hindlimb unloading. J Appl Physiol (1985) 2005; 100:1037-42. [PMID: 16339349 DOI: 10.1152/japplphysiol.00615.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bioassayable growth hormone (BGH) in rats is released in large quantities from the pituitary in response to the activation of large, proprioceptive afferent fibers from fast and mixed fiber-type hindlimb musculature. We hypothesized that hindlimb unloading (HU) of adult male rats would 1) reduce the basal levels of plasma BGH, and 2) abolish stimulus-induced BGH release. Rats were exposed to HU for 1, 4, or 8 wk. Plasma and pituitaries were collected under isoflurane anesthesia for hormone analyses. Additionally, at 4 and 8 wk, a subset of rats underwent an in situ electrical stimulation (Stim) of tibial nerve proprioceptive afferents. Basal plasma BGH levels were significantly reduced (-51 and -23%) after 1 and 8 wk of HU compared with ambulatory controls (Amb). Although Amb-Stim rats exhibited increased plasma BGH levels (88 and 143%) and decreased pituitary BGH levels (-27 and -22%) at 4 and 8 wk, respectively, stimulation in HU rats had the opposite effect, reducing plasma BGH (-25 and -33%) and increasing pituitary BGH levels (47 and 10%) relative to HU alone at 4 and 8 wk. The 22-kDa form of GH measured by immunoassay and the plasma corticosterone, T3, T4, and testosterone levels were unchanged by HU or Stim at all time points. These data suggest that BGH synthesis and release from the pituitary are sensitive both to chronically reduced neuromuscular loading and to acute changes in neuromuscular activation, independent of changes in other circulating hormones. Thus BGH may play a role in muscle, bone, and metabolic adaptations that occur in response to chronically unloaded states.
Collapse
Affiliation(s)
- A J Bigbee
- Department of Neurobiology, Univ. of California, Los Angeles, 1804 Life Science Bldg., 621 Charles E Young Dr., Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Fortin A, Belhamadia Y. Numerical prediction of freezing fronts in cryosurgery: comparison with experimental results. Comput Methods Biomech Biomed Engin 2005; 8:241-9. [PMID: 16298846 DOI: 10.1080/10255840512331389154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent developments in scientific computing now allow to consider realistic applications of numerical modelling to medicine. In this work, a numerical method is presented for the simulation of phase change occurring in cryosurgery applications. The ultimate goal of these simulations is to accurately predict the freezing front position and the thermal history inside the ice ball which is essential to determine if cancerous cells have been completely destroyed. A semi-phase field formulation including blood flow considerations is employed for the simulations. Numerical results are enhanced by the introduction of an anisotropic remeshing strategy. The numerical procedure is validated by comparing the predictions of the model with experimental results.
Collapse
Affiliation(s)
- André Fortin
- GIREF, Département de mathématiques et de statistique, Université Laval, Québec, Canada, G1K 7P4.
| | | |
Collapse
|
14
|
Picquet F, Bouet V, Cochon L, Lacour M, Falempin M. Changes in rat soleus muscle phenotype consecutive to a growth in hypergravity followed by normogravity. Am J Physiol Regul Integr Comp Physiol 2005; 289:R217-24. [PMID: 15774767 DOI: 10.1152/ajpregu.00596.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been demonstrated that a long-term stay in hypergravity (HG: 2G) modified the phenotype and the contractile properties of rat soleus muscle. The ability of this muscle to contract was drastically reduced, which is a sign of anticipated aging. Consequently, our aim was to determine whether rats conceived, born, and reared in hypergravity showed adaptative capacities in normogravity (NG: 1G). This study was performed on rats divided into two series: the first was reared in HG until 100 days and was submitted to normogravity until 115 to 220 postnatal days (HG-NG rats); the second was made up of age paired groups reared in normogravity (NG rats). The contractile, morphological, and phenotypical properties of soleus muscle were studied. Our results showed that the NG rats were characterized by coexpressions of slow and fast myosin, respectively, 76.5 and 23.5% at 115 days. During their postnatal maturation, the fast isoform was gradually replaced by slow myosin. At 220 days, the relative proportions were respectively 91.05% and 8.95%. From 115 to 220 days, the HG-NG rats expressed 100% of slow myosin isoform and they presented a slower contractile behavior compared with their age-matched groups; at 115 days, the whole muscle contraction time was increased by 35%, and by 15%, at 220 days. Our study underlined the importance of gravity in the muscular development and suggested the existence of critical periods in muscle phenotype installation.
Collapse
Affiliation(s)
- F Picquet
- Laboratoire de Plasticité Neuromusculaire, UPRES EA 1032, IFR 118, Université des Sciences et Technologies de Lille, Bat SN4, 59655 Villeneuve d'Ascq cedex, France.
| | | | | | | | | |
Collapse
|
15
|
Kawano F, Ishihara A, Stevens JL, Wang XD, Ohshima S, Horisaka M, Maeda Y, Nonaka I, Ohira Y. Tension- and afferent input-associated responses of neuromuscular system of rats to hindlimb unloading and/or tenotomy. Am J Physiol Regul Integr Comp Physiol 2004; 287:R76-86. [PMID: 15031139 DOI: 10.1152/ajpregu.00694.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Responses of electromyogram (EMG) in soleus muscle and both afferent and efferent neurograms at the fifth lumbar (L5) segmental level of spinal cord were investigated during acute and chronic unloading induced by hindlimb suspension and/or tenotomy in adult rats. The soleus EMG and afferent neurogram decreased 88 and 37%, respectively, relative to those at quadrupedal posture on the floor after acute hindlimb suspension that causes passive shortening of soleus due to ankle plantarflexion. However, the afferent neurogram ( P < 0.05) and soleus EMG ( P > 0.05) recorded on the floor increased after tenotomy of synergists. Furthermore, the afferent input was inhibited when the soleus EMG disappeared after tenotomy of soleus. The afferent neurogram and EMG of the soleus showed correlated responses to a variety of treatments, suggesting that the afferent neurogram recorded at the L5segmental level reflects the neural input associated with the activity level of the soleus predominantly. The level of efferent neurogram decreased after acute hindlimb suspension but was not influenced significantly by tenotomy of synergists and/or soleus itself. The EMG and afferent neurograms remained low up to the 4th day but recovered to the preexperimental levels within 14 days, due to reorganization of sarcomere number and length, as well as the shortening of muscle fiber length and recovery of tension development. It is suggested that the levels of EMG and afferent neurogram associated with antigravity muscle are closely related to the tension development of the muscle.
Collapse
Affiliation(s)
- F Kawano
- School of Health and Sport Sciences, Osaka Univ., Toyonaka City, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gosselink KL, Roy RR, Zhong H, Grindeland RE, Bigbee AJ, Edgerton VR. Vibration-induced activation of muscle afferents modulates bioassayable growth hormone release. J Appl Physiol (1985) 2004; 96:2097-102. [PMID: 14766785 DOI: 10.1152/japplphysiol.00855.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of tendon vibration on bioassayable growth hormone (BGH) secretion from the pituitary gland were investigated in anesthetized adult male rats. The tendons from predominantly fast-twitch ankle extensor muscles (gastrocnemius and plantaris) or a predominantly slow-twitch ankle extensor (soleus) were vibrated by using a paradigm that selectively activates group Ia afferent fibers from muscle spindles. The lower hindlimb was secured with the muscles near physiological length, and the tendons were vibrated for 15 min at 150 Hz and a displacement of 1 mm. Control rats were prepared similarly, but the tendons were not vibrated. Compared with control, vibration of the tendons of the fast ankle extensors markedly increased (160%), whereas vibration of the slow soleus decreased (68%), BGH secretion. Complete denervation of the hindlimb had no independent effects on the normal resting levels of BGH, but it prevented the effects of tendon vibration on BGH secretion. The results are consistent with previous findings showing modulation of BGH release in response to in vivo activation or in situ electrical stimulation of muscle afferents (Bigbee AJ, Gosselink KL, Grindeland RE, Roy RR, Zhong H, and Edgerton VR. J Appl Physiol 89: 2174–2178, 2000; Gosselink KL, Grindeland RE, Roy RR, Zhong H, Bigbee AJ, and Edgerton VR. J Appl Physiol 88: 142–148, 2000; Gosselink KL, Grindeland RE, Roy RR, Zhong H, Bigbee AJ, Grossman EJ, and Edgerton VR. J Appl Physiol 84: 1425–1430, 1998). These data provide evidence that this previously described muscle afferent-pituitary axis is neurally mediated via group Ia afferents from peripheral skeletal muscle. Furthermore, these data show that activation of this group Ia afferent pathway from fast muscles enhances, whereas the same sensory afferent input from a slow muscle depresses, BGH release.
Collapse
Affiliation(s)
- K L Gosselink
- Department of Physiological Science, University of California, Los Angeles 90095, USA
| | | | | | | | | | | |
Collapse
|
17
|
Picquet F, De-Doncker L, Falempin M. Expression of Myosin heavy chain isoforms in rat soleus muscle spindles after 19 days of hypergravity. J Histochem Cytochem 2003; 51:1479-89. [PMID: 14566020 PMCID: PMC3957557 DOI: 10.1177/002215540305101108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine whether a period of 19 days in hypergravity was long enough to induce changes in the expression of myosin heavy chain (MyHC) isoforms in the muscle spindles. The soleus muscle of 10 male Wistar rats (control: CONT, n=5; hypergravity: HG, n=5) was frozen, cut into serial sections, and labeled with antibodies against MyHCs: I, IIA, IIA + IIX + IIB, slow-tonic, and alpha-cardiac. Forty CONT and 45 HG spindles were analyzed. The results from HG spindles compared to CONT showed that there was no change in the cross-sectional area of intrafusal fibers. However, along the entire length of B1 fibers, the expression of both MyHC I and alpha-cardiac was increased significantly, whereas the labeling against MyHC IIA and MyHC slow-tonic was decreased. In B2 fibers, the labeling against MyHC IIA (region A), slow-tonic (region A), and fast myosins (regions A-C) was statistically decreased. In chain fibers, the labeling against both MyHC IIA and fast MyHC was reduced significantly. We conclude that hypergravity has a real impact on the MyHC content in the muscle spindles and induces some inverse changes of those observed in hypogravity for MyHCs I, alpha-cardiac, and slow-tonic.
Collapse
Affiliation(s)
- Florence Picquet
- Laboratoire de Plasticité Neuromusculaire, EA 1032, IFR 118, Université des Sciences et Technologies de Lille, Bâtiment SN4, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | |
Collapse
|