1
|
Roeder L, Breakspear M, Kerr GK, Boonstra TW. Dynamics of brain-muscle networks reveal effects of age and somatosensory function on gait. iScience 2024; 27:109162. [PMID: 38414847 PMCID: PMC10897916 DOI: 10.1016/j.isci.2024.109162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Walking is a complex motor activity that requires coordinated interactions between the sensory and motor systems. We used mobile EEG and EMG to investigate the brain-muscle networks involved in gait control during overground walking in young people, older people, and individuals with Parkinson's disease. Dynamic interactions between the sensorimotor cortices and eight leg muscles within a gait cycle were assessed using multivariate analysis. We identified three distinct brain-muscle networks during a gait cycle. These networks include a bilateral network, a left-lateralized network activated during the left swing phase, and a right-lateralized network active during the right swing. The trajectories of these networks are contracted in older adults, indicating a reduction in neuromuscular connectivity with age. Individuals with the impaired tactile sensitivity of the foot showed a selective enhancement of the bilateral network, possibly reflecting a compensation strategy to maintain gait stability. These findings provide a parsimonious description of interindividual differences in neuromuscular connectivity during gait.
Collapse
Affiliation(s)
- Luisa Roeder
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Michael Breakspear
- College of Engineering Science and Environment, College of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Graham K Kerr
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tjeerd W Boonstra
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Hualiang L, Xupeng Y, Yuzhong L, Tingjun X, Wei T, Yali S, Qiru W, Chaolin X, Yu W, Weilin L, Long J. A novel noninvasive brain-computer interface by imagining isometric force levels. Cogn Neurodyn 2023; 17:975-983. [PMID: 37522042 PMCID: PMC10374494 DOI: 10.1007/s11571-022-09875-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/22/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022] Open
Abstract
Physiological circuits differ across increasing isometric force levels during unilateral contraction. Therefore, we first explored the possibility of predicting the force level based on electroencephalogram (EEG) activity recorded during a single trial of unilateral 5% or 40% of maximal isometric voluntary contraction (MVC) in right-hand grip imagination. Nine healthy subjects were involved in this study. The subjects were required to randomly perform 20 trials for each force level while imagining a right-hand grip. We proposed the use of common spatial patterns (CSPs) and coherence between EEG signals as features in a support vector machine for force level prediction. The results showed that the force levels could be predicted through single-trial EEGs while imagining the grip (mean accuracy = 81.4 ± 13.29%). Additionally, we tested the possibility of online control of a ball game using the above paradigm through unilateral grip imagination at different force levels (i.e., 5% of MVC imagination and 40% of MVC imagination for right-hand movement control). Subjects played the ball games effectively by controlling direction with our novel BCI system (n = 9, mean accuracy = 76.67 ± 9.35%). Data analysis validated the use of our BCI system in the online control of a ball game. This information may provide additional commands for the control of robots by users through combinations with other traditional brain-computer interfaces, e.g., different limb imaginations.
Collapse
Affiliation(s)
- Li Hualiang
- Key Laboratory of Occupational Health and Safety of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong China
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong China
| | - Ye Xupeng
- College of Information Science and Technology, and Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, 510632 China
| | - Liu Yuzhong
- Key Laboratory of Occupational Health and Safety of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong China
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong China
| | - Xie Tingjun
- Guangdong Power Grid Co., Ltd., Guangzhou, China
| | - Tan Wei
- Guangdong Power Grid Co., Ltd., Guangzhou, China
| | - Shen Yali
- Key Laboratory of Occupational Health and Safety of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong China
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong China
| | - Wang Qiru
- Key Laboratory of Occupational Health and Safety of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong China
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong China
| | - Xiong Chaolin
- Key Laboratory of Occupational Health and Safety of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong China
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong China
| | - Wang Yu
- Key Laboratory of Occupational Health and Safety of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong China
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong China
| | - Lin Weilin
- College of Information Science and Technology, and Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, 510632 China
| | - Jinyi Long
- College of Information Science and Technology, and Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
3
|
Hayes L, Taga M, Charalambous CC, Raju S, Lin J, Schambra HM. The distribution of transcallosal inhibition to upper extremity muscles is altered in chronic stroke. J Neurol Sci 2023; 450:120688. [PMID: 37224604 PMCID: PMC10330477 DOI: 10.1016/j.jns.2023.120688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To determine if the distribution of transcallosal inhibition (TI) acting on proximal and distal upper extremity muscles is altered in chronic stroke. METHODS We examined thirteen healthy controls and sixteen mildly to moderately impaired chronic stroke patients. We used transcranial magnetic stimulation (TMS) to probe TI from the contralesional onto ipsilesional hemisphere (assigned in controls). We recorded the ipsilateral silent period in the paretic biceps (BIC) and first dorsal interosseous (FDI). We measured TI strength, distribution gradient (TI difference between muscles), and motor impairment (Fugl-Meyer Assessment). RESULTS Both groups had stronger TI acting on their FDIs than BICs (p < 0.001). However, stroke patients also had stronger TI acting on their BICs than controls (p = 0.034), resulting in a flatter distribution of inhibition (p = 0.028). In patients, stronger FDI inhibition correlated with less hand impairment (p = 0.031); BIC inhibition was not correlated to impairment. CONCLUSION TI is more evenly distributed to the paretic FDI and BIC in chronic stroke. The relative increase in proximal inhibition does not relate to better function, as it does distally. SIGNIFICANCE The results expand our knowledge about segment-specific neurophysiology and its relevance to impairment after stroke.
Collapse
Affiliation(s)
- Leticia Hayes
- Department of Neurology, NYU Grossman School of Medicine, New York, United States.
| | - Myriam Taga
- Department of Neurology, NYU Grossman School of Medicine, New York, United States.
| | - Charalambos C Charalambous
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus; Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Nicosia, Cyprus.
| | - Sharmila Raju
- Department of Neurology, NYU Grossman School of Medicine, New York, United States.
| | - Jing Lin
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, United States.
| | - Heidi M Schambra
- Department of Neurology, NYU Grossman School of Medicine, New York, United States; Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, United States.
| |
Collapse
|
4
|
Guo J, Li L, Zheng Y, Quratul A, Liu T, Wang J. Effect of Visual Feedback on Behavioral Control and Functional Activity During Bilateral Hand Movement. Brain Topogr 2023:10.1007/s10548-023-00969-6. [PMID: 37198376 DOI: 10.1007/s10548-023-00969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Previous researches state vision as a vital source of information for movement control and more precisely for accurate hand movement. Further, fine bimanual motor activity may be associated with various oscillatory activities within distinct brain areas and inter-hemispheric interactions. However, neural coordination among the distinct brain areas responsible to enhance motor accuracy is still not adequate. In the current study, we investigated task-dependent modulation by simultaneously measuring high time resolution electroencephalogram (EEG), electromyogram (EMG) and force along with bi-manual and unimanual motor tasks. The errors were controlled using visual feedback. To complete the unimanual tasks, the participant was asked to grip the strain gauge using the index finger and thumb of the right hand thereby exerting force on the connected visual feedback system. Whereas the bi-manual task involved finger abduction of the left index finger in two contractions along with visual feedback system and at the same time the right hand gripped using definite force on two conditions that whether visual feedback existed or not for the right hand. Primarily, the existence of visual feedback for the right hand significantly decreased brain network global and local efficiency in theta and alpha bands when compared with the elimination of visual feedback using twenty participants. Brain network activity in theta and alpha bands coordinates to facilitate fine hand movement. The findings may provide new neurological insight on virtual reality auxiliary equipment and participants with neurological disorders that cause movement errors requiring accurate motor training. The current study investigates task-dependent modulation by simultaneously measuring high time resolution electroencephalogram, electromyogram and force along with bi-manual and unimanual motor tasks. The findings show that visual feedback for right hand decreases the force root mean square error of right hand. Visual feedback for right hand decreases local and global efficiency of brain network in theta and alpha bands.
Collapse
Affiliation(s)
- Jing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Long Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Yang Zheng
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Ain Quratul
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China.
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China.
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China.
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, Guangdong, People's Republic of China.
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, 710049, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Wang X, Luo Z, Zhang M, Zhao W, Xie S, Wong SF, Hu H, Li L. The interaction between changes of muscle activation and cortical network dynamics during isometric elbow contraction: a sEMG and fNIRS study. Front Bioeng Biotechnol 2023; 11:1176054. [PMID: 37180038 PMCID: PMC10167054 DOI: 10.3389/fbioe.2023.1176054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Objective: The relationship between muscle activation during motor tasks and cerebral cortical activity remains poorly understood. The aim of this study was to investigate the correlation between brain network connectivity and the non-linear characteristics of muscle activation changes during different levels of isometric contractions. Methods: Twenty-one healthy subjects were recruited and were asked to perform isometric elbow contractions in both dominant and non-dominant sides. Blood oxygen concentrations in brain from functional Near-infrared Spectroscopy (fNIRS) and surface electromyography (sEMG) signals in the biceps brachii (BIC) and triceps brachii (TRI) muscles were recorded simultaneously and compared during 80% and 20% of maximum voluntary contraction (MVC). Functional connectivity, effective connectivity, and graph theory indicators were used to measure information interaction in brain activity during motor tasks. The non-linear characteristics of sEMG signals, fuzzy approximate entropy (fApEn), were used to evaluate the signal complexity changes in motor tasks. Pearson correlation analysis was used to examine the correlation between brain network characteristic values and sEMG parameters under different task conditions. Results: The effective connectivity between brain regions in motor tasks in dominant side was significantly higher than that in non-dominant side under different contractions (p < 0.05). The results of graph theory analysis showed that the clustering coefficient and node-local efficiency of the contralateral motor cortex were significantly varied under different contractions (p < 0.01). fApEn and co-contraction index (CCI) of sEMG under 80% MVC condition were significantly higher than that under 20% MVC condition (p < 0.05). There was a significant positive correlation between the fApEn and the blood oxygen value in the contralateral brain regions in both dominant or non-dominant sides (p < 0.001). The node-local efficiency of the contralateral motor cortex in the dominant side was positively correlated with the fApEn of the EMG signals (p < 0.05). Conclusion: In this study, the mapping relationship between brain network related indicators and non-linear characteristic of sEMG in different motor tasks was verified. These findings provide evidence for further exploration of the interaction between the brain activity and the execution of motor tasks, and the parameters might be useful in evaluation of rehabilitation intervention.
Collapse
Affiliation(s)
- Xiaohan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Zichong Luo
- Faculty of Science and Technology, University of Macau, Taipa, China
| | - Mingxia Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Weihua Zhao
- Hospital of Northwestern Polytechnical University, Xi’an, China
| | - Songyun Xie
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China
| | - Seng Fat Wong
- Faculty of Science and Technology, University of Macau, Taipa, China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
6
|
Differences in motor unit recruitment patterns and low frequency oscillation of discharge rates between unilateral and bilateral isometric muscle contractions. Hum Mov Sci 2022; 83:102952. [DOI: 10.1016/j.humov.2022.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/20/2022]
|
7
|
Carr JC, Bemben MG, Stock MS, DeFreitas JM. Ipsilateral and contralateral responses following unimanual fatigue with and without illusionary mirror visual feedback. J Neurophysiol 2021; 125:2084-2093. [PMID: 33909484 DOI: 10.1152/jn.00077.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Illusionary mirror visual feedback alters interhemispheric communication and influences cross-limb interactions. Combining forceful unimanual contractions with the mirror illusion is a convenient way to provoke robust alterations within ipsilateral motor networks. It is unknown, however, if the mirror illusion affects cross-limb fatigability. We examine this concept by comparing the ipsilateral and contralateral handgrip force and electromyographic (EMG) responses following unimanual fatigue with and without illusionary mirror visual feedback. Participants underwent three experimental sessions (mirror, no-mirror, and control), performing a unimanual fatigue protocol with and without illusionary mirror visual feedback. Maximal handgrip force and EMG activity were measured before and after each session for both hands during maximal unimanual and bimanual contractions. The associated EMG activity from the inactive forearm during unimanual contraction was also examined. The novel findings demonstrate greater relative fatigability during bimanual versus unimanual contraction following unimanual fatigue (-31.8% vs. -23.4%, P < 0.01) and the mirror illusion attenuates this difference (-30.3% vs. -26.3%, P = 0.169). The results show no evidence for a cross-over effect of fatigue with (+0.62%, -2.72%) or without (+0.26%, -2.49%) the mirror illusion during unimanual or bimanual contraction. The mirror illusion resulted in significantly lower levels of associated EMG activity in the contralateral forearm. There were no sex differences for any of the measures of fatigability. These results demonstrate that the mirror illusion influences contraction-dependent fatigue during maximal handgrip contractions. Alterations in facilitatory and inhibitory transcallosal drive likely explain these findings.NEW & NOTEWORTHY Illusionary mirror visual feedback is a promising clinical tool for motor rehabilitation, yet many features of its influence on motor output are unknown. We show that maximal bimanual force output is compromised to a greater extent than unimanual force output following unimanual fatigue, yet illusionary mirror visual feedback attenuates this difference. The mirror illusion also reduces the unintended EMG activity of the inactive, contralateral forearm during unimanual contraction.
Collapse
Affiliation(s)
- Joshua C Carr
- Department of Kinesiology, Texas Christian University, Fort Worth, Texas.,Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, Texas
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Matt S Stock
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, Florida.,Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Jason M DeFreitas
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
8
|
Flanagan SD, Proessl F, Dunn-Lewis C, Sterczala AJ, Connaboy C, Canino MC, Beethe AZ, Eagle SR, Szivak TK, Onate JA, Volek JS, Maresh CM, Kaeding CC, Kraemer WJ. Differences in brain structure and theta burst stimulation-induced plasticity implicate the corticomotor system in loss of function after musculoskeletal injury. J Neurophysiol 2021; 125:1006-1021. [PMID: 33596734 DOI: 10.1152/jn.00689.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic musculoskeletal injury (MSI) may involve changes in corticomotor structure and function, but direct evidence is needed. To determine the corticomotor basis of MSI, we examined interactions among skeletomotor function, corticospinal excitability, corticomotor structure (cortical thickness and white matter microstructure), and intermittent theta burst stimulation (iTBS)-induced plasticity. Nine women with unilateral anterior cruciate ligament rupture (ACL) 3.2 ± 1.1 yr prior to the study and 11 matched controls (CON) completed an MRI session followed by an offline plasticity-probing protocol using a randomized, sham-controlled, double-blind, cross-over study design. iTBS was applied to the injured (ACL) or nondominant (CON) motor cortex leg representation (M1LEG) with plasticity assessed based on changes in skeletomotor function and corticospinal excitability compared with sham iTBS. The results showed persistent loss of function in the injured quadriceps, compensatory adaptations in the uninjured quadriceps and both hamstrings, and injury-specific increases in corticospinal excitability. Injury was associated with lateralized reductions in paracentral lobule thickness, greater centrality of nonleg corticomotor regions, and increased primary somatosensory cortex leg area inefficiency and eccentricity. Individual responses to iTBS were consistent with the principles of homeostatic metaplasticity; corresponded to injury-related differences in skeletomotor function, corticospinal excitability, and corticomotor structure; and suggested that corticomotor adaptations involve both hemispheres. Moreover, iTBS normalized skeletomotor function and corticospinal excitability in ACL. The results of this investigation directly confirm corticomotor involvement in chronic loss of function after traumatic MSI, emphasize the sensitivity of the corticomotor system to skeletomotor events and behaviors, and raise the possibility that brain-targeted therapies could improve recovery.NEW & NOTEWORTHY Traumatic musculoskeletal injuries may involve adaptive changes in the brain that contribute to loss of function. Our combination of neuroimaging and theta burst transcranial magnetic stimulation (iTBS) revealed distinct patterns of iTBS-induced plasticity that normalized differences in muscle and brain function evident years after unilateral knee ligament rupture. Individual responses to iTBS corresponded to injury-specific differences in brain structure and physiological activity, depended on skeletomotor deficit severity, and suggested that corticomotor adaptations involve both hemispheres.
Collapse
Affiliation(s)
- Shawn D Flanagan
- Department of Human Sciences, The Ohio State University, Columbus, Ohio.,Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Felix Proessl
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Courtenay Dunn-Lewis
- Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam J Sterczala
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chris Connaboy
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maria C Canino
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Z Beethe
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shawn R Eagle
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tunde K Szivak
- Department of Health Sciences, Merrimack College, North Andover, Massachusetts
| | - James A Onate
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jeff S Volek
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Carl M Maresh
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Christopher C Kaeding
- Sports Health and Performance Institute, Department of Orthopaedics, The Ohio State University, Columbus, Ohio
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
9
|
Zhang W, Song A, Zeng H, Xu B, Miao M. Closed-Loop Phase-Dependent Vibration Stimulation Improves Motor Imagery-Based Brain-Computer Interface Performance. Front Neurosci 2021; 15:638638. [PMID: 33568973 PMCID: PMC7868341 DOI: 10.3389/fnins.2021.638638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
The motor imagery (MI) paradigm has been wildly used in brain-computer interface (BCI), but the difficulties in performing imagery tasks limit its application. Mechanical vibration stimulus has been increasingly used to enhance the MI performance, but its improvement consistence is still under debate. To develop more effective vibration stimulus methods for consistently enhancing MI, this study proposes an EEG phase-dependent closed-loop mechanical vibration stimulation method. The subject's index finger of the non-dominant hand was given 4 different vibration stimulation conditions (i.e., continuous open-loop vibration stimulus, two different phase-dependent closed-loop vibration stimuli and no stimulus) when performing two tasks of imagining movement and rest of the index finger from his/her dominant hand. We compared MI performance and brain oscillatory patterns under different conditions to verify the effectiveness of this method. The subjects performed 80 trials of each type in a random order, and the average phase-lock value of closed-loop stimulus conditions was 0.71. It was found that the closed-loop vibration stimulus applied in the falling phase helped the subjects to produce stronger event-related desynchronization (ERD) and sustain longer. Moreover, the classification accuracy was improved by about 9% compared with MI without any vibration stimulation (p = 0.012, paired t-test). This method helps to modulate the mu rhythm and make subjects more concentrated on the imagery and without negative enhancement during rest tasks, ultimately improves MI-based BCI performance. Participants reported that the tactile fatigue under closed-loop stimulation conditions was significantly less than continuous stimulation. This novel method is an improvement to the traditional vibration stimulation enhancement research and helps to make stimulation more precise and efficient.
Collapse
Affiliation(s)
- Wenbin Zhang
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Aiguo Song
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Hong Zeng
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Baoguo Xu
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Minmin Miao
- School of Information Engineering, Huzhou University, Huzhou, China
| |
Collapse
|
10
|
Reduced Interhemispheric Coherence after Cerebellar Vermis Output Perturbation. Brain Sci 2020; 10:brainsci10090621. [PMID: 32911623 PMCID: PMC7563959 DOI: 10.3390/brainsci10090621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
Motor coordination and motor learning are well-known roles of the cerebellum. Recent evidence also supports the contribution of the cerebellum to the oscillatory activity of brain networks involved in a wide range of disorders. Kainate, a potent analog of the excitatory neurotransmitter glutamate, can be used to induce dystonia, a neurological movement disorder syndrome consisting of sustained or repetitive involuntary muscle contractions, when applied on the surface of the cerebellum. This research aims to study the interhemispheric cortical communication between the primary motor cortices after repeated kainate application on cerebellar vermis for five consecutive days, in mice. We recorded left and right primary motor cortices electrocorticograms and neck muscle electromyograms, and quantified the motor behavior abnormalities. The results indicated a reduced coherence between left and right motor cortices in low-frequency bands. In addition, we observed a phenomenon of long-lasting adaptation with a modification of the baseline interhemispheric coherence. Our research provides evidence that the cerebellum can control the flow of information along the cerebello-thalamo-cortical neural pathways and can influence interhemispheric communication. This phenomenon could function as a compensatory mechanism for impaired regional networks.
Collapse
|
11
|
Transient changes in paretic and non-paretic isometric force control during bimanual submaximal and maximal contractions. J Neuroeng Rehabil 2020; 17:64. [PMID: 32410626 PMCID: PMC7227276 DOI: 10.1186/s12984-020-00693-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
Purpose The purpose of this study was to investigate transient bimanual effects on the force control capabilities of the paretic and non-paretic arms in individuals post stroke across submaximal and maximal force control tasks. Methods Fourteen chronic stroke patients (mean age = 63.8 ± 15.9; stroke duration = 38.7 ± 45.2 months) completed two isometric force control tasks: (a) submaximal control and (b) maximal sustained force production. Participants executed both tasks with their wrist and fingers extending across unimanual (paretic and non-paretic arms) and bimanual conditions. Mean force, force variability using coefficient of variation, force regularity using sample entropy were calculated for each condition. Results During the submaximal force control tasks (i.e., 5, 25, and 50% of maximum voluntary contraction), the asymmetrical mean force between the paretic and non-paretic arms decreased from unimanual to bimanual conditions. The asymmetry of force variability and regularity between the two arms while executing unimanual force control tended to decrease in the bimanual condition because of greater increases in the force variability and regularity for the non-paretic arm than those for the paretic arm. During the maximal sustained force production tasks (i.e., 100% of maximum voluntary contraction), the paretic arm increased maximal forces and decreased force variability in the bimanual condition, whereas the non-paretic arm reduced maximal forces and elevated force variability from unimanual to bimanual conditions. Conclusions The current findings support a proposition that repetitive bimanual isometric training with higher execution intensity may facilitate progress toward stroke motor recovery.
Collapse
|
12
|
Zhang X, Guo Y, Gao B, Long J. Alpha Frequency Intervention by Electrical Stimulation to Improve Performance in Mu-Based BCI. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1262-1270. [PMID: 32305926 DOI: 10.1109/tnsre.2020.2987529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The accuracy of brain-computer interfaces (BCIs) is important for effective communication and control. The mu-based BCI is one of the most widely used systems, of which the related methods to improve users' accuracy are still poorly studied, especially for the BCI illiteracy. Here, we examined a way to enhance mu-based BCI performance by electrically stimulating the ulnar nerve of the contralateral wrist at the alpha frequency (10 Hz) during left- and right-hand motor imagination in two BCI groups (literate and illiterate). We demonstrate that this alpha frequency intervention enhances the classification accuracy between left- and right-hand motor imagery from 66.41% to 81.57% immediately after intervention and to 75.28% two days after intervention in the BCI illiteracy group, while classification accuracy improves from 82.12% to 91.84% immediately after intervention and to 89.03% two days after intervention in the BCI literacy group. However, the classification accuracy did not change before and after the sham intervention (no electrical stimulation). Furthermore, the ERD on the primary sensorimotor cortex during left- or right-hand motor imagery tasks was more visible at the mu-rhythm (8-13 Hz) after alpha frequency intervention. Alpha frequency intervention increases the mu-rhythm power difference between left- and right-hand motor imagery tasks. These results provide evidence that alpha frequency intervention is an effective way to improve BCI performance by regulating the mu-rhythm which might provide a way to reduce BCI illiteracy.
Collapse
|
13
|
Corticomuscular control of walking in older people and people with Parkinson's disease. Sci Rep 2020; 10:2980. [PMID: 32076045 PMCID: PMC7031238 DOI: 10.1038/s41598-020-59810-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/30/2020] [Indexed: 12/29/2022] Open
Abstract
Changes in human gait resulting from ageing or neurodegenerative diseases are multifactorial. Here we assess the effects of age and Parkinson’s disease (PD) on corticospinal activity recorded during treadmill and overground walking. Electroencephalography (EEG) from 10 electrodes and electromyography (EMG) from bilateral tibialis anterior muscles were acquired from 22 healthy young, 24 healthy older and 20 adults with PD. Event-related power, corticomuscular coherence (CMC) and inter-trial coherence were assessed for EEG from bilateral sensorimotor cortices and EMG during the double-support phase of the gait cycle. CMC and EMG power at low beta frequencies (13–21 Hz) was significantly decreased in older and PD participants compared to young people, but there was no difference between older and PD groups. Older and PD participants spent shorter time in the swing phase than young individuals. These findings indicate age-related changes in the temporal coordination of gait. The decrease in low-beta CMC suggests reduced cortical input to spinal motor neurons in older people during the double-support phase. We also observed multiple changes in electrophysiological measures at low-gamma frequencies during treadmill compared to overground walking, indicating task-dependent differences in corticospinal locomotor control. These findings may be affected by artefacts and should be interpreted with caution.
Collapse
|
14
|
Zhang X, Guo Y, Gao B, Long J. Enhancing Mu-based BCI Performance with Rhythmic Electrical Stimulation at Alpha Frequency. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5540-5543. [PMID: 31947109 DOI: 10.1109/embc.2019.8857321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The accuracy of brain-computer interfaces (BCIs) is important for effective communication and control. The mu-based BCI is one of the widely used systems, of which the related methods to improve users' accuracy is still poorly studied. Here, we examined the way to enhance the mu-based BCI performance by rhythmic electrical stimulation on the ulnar nerve at the contralateral wrist at the alpha frequency (10 Hz) during the left-and right-hand motor imagery. Time-frequency analysis, spectral analysis, and discriminant analysis were performed on the electroencephalograph (EEG) data before and after the intervention of electrical stimulation in 9 healthy subjects. We found that the ERD/S on the somatosensory and motor cortex during left-or right-hand imagination was more obvious at the mu rhythm after intervention. Furthermore, average classification accuracy between left-and right-hand imagery significantly increased from 78.43% to 88.17% after intervention, suggesting that the electrical stimulation at alpha frequency effectively regulates the brain's mu rhythm and enhances the discriminability of the left-hand and right-hand imagination tasks. These results provide evidence that the electrical stimulation at the alpha frequency is an effective way to improve the mu-based BCI performance.
Collapse
|
15
|
Heise KF, Monteiro TS, Leunissen I, Mantini D, Swinnen SP. Distinct online and offline effects of alpha and beta transcranial alternating current stimulation (tACS) on continuous bimanual performance and task-set switching. Sci Rep 2019; 9:3144. [PMID: 30816305 PMCID: PMC6395614 DOI: 10.1038/s41598-019-39900-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/31/2019] [Indexed: 11/09/2022] Open
Abstract
In the present study we examined the effect of bihemispheric in-phase synchronization of motor cortical rhythms on complex bimanual coordination. Twenty young healthy volunteers received 10 Hz or 20 Hz tACS in a double-blind crossover design while performing a bimanual task-set switching paradigm. We used a bilateral high-density montage centred over the hand knob representation within the primary motor cortices to apply tACS time-locked to the switching events. Online tACS in either frequency led to faster but more erroneous switching transitions compared to trials without active stimulation. When comparing stimulation frequencies, 10 Hz stimulation resulted in higher error rates and slower switching transitions than 20 Hz stimulation. Furthermore, the stimulation frequencies showed distinct carry-over effects in trials following stimulation trains. Non-stimulated switching transitions were generally faster but continuous performance became more erroneous over time in the 20 Hz condition. We suggest that the behavioural effects of bifocal in-phase tACS are explained by online synchronization of long-range interhemispheric sensorimotor oscillations, which impacts on interhemispheric information flow and the top-down control required for flexible control of complex bimanual actions. Different stimulation frequencies may lead to distinct offline effects, which potentially accumulate over time and therefore need to be taken into account when evaluating subsequent performance.
Collapse
Affiliation(s)
- Kirstin-Friederike Heise
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium. .,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Thiago Santos Monteiro
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Inge Leunissen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Functional Neuroimaging Laboratory, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan P Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation. Neuroimage 2018; 174:380-392. [DOI: 10.1016/j.neuroimage.2018.03.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022] Open
|
17
|
Roeder L, Boonstra TW, Smith SS, Kerr GK. Dynamics of corticospinal motor control during overground and treadmill walking in humans. J Neurophysiol 2018; 120:1017-1031. [PMID: 29847229 DOI: 10.1152/jn.00613.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence suggests cortical involvement in the control of human gait. However, the nature of corticospinal interactions remains poorly understood. We performed time-frequency analysis of electrophysiological activity acquired during treadmill and overground walking in 22 healthy, young adults. Participants walked at their preferred speed (4.2, SD 0.4 km/h), which was matched across both gait conditions. Event-related power, corticomuscular coherence (CMC), and intertrial coherence (ITC) were assessed for EEG from bilateral sensorimotor cortices and EMG from the bilateral tibialis anterior (TA) muscles. Cortical power, CMC, and ITC at theta, alpha, beta, and gamma frequencies (4-45 Hz) increased during the double support phase of the gait cycle for both overground and treadmill walking. High beta (21-30 Hz) CMC and ITC of EMG was significantly increased during overground compared with treadmill walking, as well as EEG power in theta band (4-7 Hz). The phase spectra revealed positive time lags at alpha, beta, and gamma frequencies, indicating that the EEG response preceded the EMG response. The parallel increases in power, CMC, and ITC during double support suggest evoked responses at spinal and cortical populations rather than a modulation of ongoing corticospinal oscillatory interactions. The evoked responses are not consistent with the idea of synchronization of ongoing corticospinal oscillations but instead suggest coordinated cortical and spinal inputs during the double support phase. Frequency-band dependent differences in power, CMC, and ITC between overground and treadmill walking suggest differing neural control for the two gait modalities, emphasizing the task-dependent nature of neural processes during human walking. NEW & NOTEWORTHY We investigated cortical and spinal activity during overground and treadmill walking in healthy adults. Parallel increases in power, corticomuscular coherence, and intertrial coherence during double support suggest evoked responses at spinal and cortical populations rather than a modulation of ongoing corticospinal oscillatory interactions. These findings identify neurophysiological mechanisms that are important for understanding cortical control of human gait in health and disease.
Collapse
Affiliation(s)
- Luisa Roeder
- Movement Neuroscience Group, Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane , Australia.,School of Exercise and Nutrition Sciences, Queensland University of Technology , Brisbane , Australia
| | - Tjeerd W Boonstra
- Black Dog Institute, University of New South Wales , Sydney , Australia.,Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane , Australia
| | - Simon S Smith
- Institute of Social Science Research, University of Queensland , Brisbane , Australia
| | - Graham K Kerr
- Movement Neuroscience Group, Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane , Australia.,School of Exercise and Nutrition Sciences, Queensland University of Technology , Brisbane , Australia
| |
Collapse
|
18
|
Kantak S, Jax S, Wittenberg G. Bimanual coordination: A missing piece of arm rehabilitation after stroke. Restor Neurol Neurosci 2018; 35:347-364. [PMID: 28697575 DOI: 10.3233/rnn-170737] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inability to use the arm in daily actions significantly lowers quality of life after stroke. Most contemporary post-stroke arm rehabilitation strategies that aspire to re-engage the weaker arm in functional activities have been greatly limited in their effectiveness. Most actions of daily life engage the two arms in a highly coordinated manner. In contrast, most rehabilitation approaches predominantly focus on restitution of the impairments and unilateral practice of the weaker hand alone. We present a perspective that this misalignment between real world requirements and intervention strategies may limit the transfer of unimanual capability to spontaneous arm use and functional recovery. We propose that if improving spontaneous engagement and use of the weaker arm in real life is the goal, arm rehabilitation research and treatment need to address the coordinated interaction between arms in targeted theory-guided interventions. Current narrow focus on unimanual deficits alone, difficulty in quantifying bimanual coordination in real-world actions and limited theory-guided focus on control and remediation of different coordination modes are some of the biggest obstacles to successful implementation of effective interventions to improve bimanual coordination in the real world. We present a theory-guided taxonomy of bimanual actions that will facilitate quantification of coordination for different real-world tasks and provide treatment targets for addressing coordination deficits. We then present evidence in the literature that points to bimanual coordination deficits in stroke survivors and demonstrate how current rehabilitation approaches are limited in their impact on bimanual coordination. Importantly, we suggest theory-based areas of future investigation that may assist quantification, identification of neural mechanisms and scientifically-based training/remediation approaches for bimanual coordination deficits post-stroke. Advancing the science and practice of arm rehabilitation to incorporate bimanual coordination will lead to a more complete functional recovery of the weaker arm, thus improving the effectiveness of rehabilitation interventions and augmenting quality of life after stroke.
Collapse
Affiliation(s)
- Shailesh Kantak
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.,Department of Physical Therapy, Arcadia University, Elkins Park, PA, USA
| | - Steven Jax
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - George Wittenberg
- Department of Neurology, Baltimore VAMC, University of Maryland, Glenside, PA, USA
| |
Collapse
|
19
|
Andersen KW, Siebner HR. Mapping dexterity and handedness: recent insights and future challenges. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Kang N, Cauraugh JH. Coherence and interlimb force control: Effects of visual gain. Neurosci Lett 2018; 668:86-91. [PMID: 29337009 DOI: 10.1016/j.neulet.2018.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 11/28/2022]
Abstract
Neural coupling across hemispheres and homologous muscles often appears during bimanual motor control. Force coupling in a specific frequency domain may indicate specific bimanual force coordination patterns. This study investigated coherence on pairs of bimanual isometric index finger force while manipulating visual gain and task asymmetry conditions. We used two visual gain conditions (low and high gain = 8 and 512 pixels/N), and created task asymmetry by manipulating coefficient ratios imposed on the left and right index finger forces (0.4:1.6; 1:1; 1.6:0.4, respectively). Unequal coefficient ratios required different contributions from each hand to the bimanual force task resulting in force asymmetry. Fourteen healthy young adults performed bimanual isometric force control at 20% of their maximal level of the summed force of both fingers. We quantified peak coherence and relative phase angle between hands at 0-4, 4-8, and 8-12 Hz, and estimated a signal-to-noise ratio of bimanual forces. The findings revealed higher peak coherence and relative phase angle at 0-4 Hz than at 4-8 and 8-12 Hz for both visual gain conditions. Further, peak coherence and relative phase angle values at 0-4 Hz were larger at the high gain than at the low gain. At the high gain, higher peak coherence at 0-4 Hz collapsed across task asymmetry conditions significantly predicted greater signal-to-noise ratio. These findings indicate that a greater level of visual information facilitates bimanual force coupling at a specific frequency range related to sensorimotor processing.
Collapse
Affiliation(s)
- Nyeonju Kang
- Division of Sport Science, Incheon, South Korea; Sport Science Institute, Incheon National University, Incheon, South Korea
| | - James H Cauraugh
- Motor Behavior Laboratory, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Kuo YL, Dubuc T, Boufadel DF, Fisher BE. Measuring ipsilateral silent period: Effects of muscle contraction levels and quantification methods. Brain Res 2017; 1674:77-83. [DOI: 10.1016/j.brainres.2017.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/20/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
|
22
|
Nakajima T, Arisawa H, Hosaka R, Mushiake H. Intended arm use influences interhemispheric correlation of β-oscillations in primate medial motor areas. J Neurophysiol 2017; 118:2865-2883. [PMID: 28855290 DOI: 10.1152/jn.00379.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/19/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022] Open
Abstract
To investigate the role of interhemispheric β-synchronization in the selection of motor effectors, we trained two monkeys to memorize and perform multiple two-movement sequences that included unimanual repetition and bimanual switching. We recorded local field potentials simultaneously in the bilateral supplementary motor area (SMA) and pre-SMA to examine how the β-power in both hemispheres and the interhemispheric relationship of β-oscillations depend on the prepared sequence of arm use. We found a significant ipsilateral enhancement of β-power for bimanual switching trials in the left hemisphere and an enhancement of β-power in the right SMA while preparing for unimanual repetition. Furthermore, interhemispheric synchrony in the SMA was significantly more enhanced while preparing unimanual repetition than while preparing bimanual switching. This enhancement of synchrony was detected in terms of β-phase but not in terms of modulation of β-power. Furthermore, the assessment of the interhemispheric phase difference revealed that the β-oscillation in the hemisphere contralateral to the instructed arm use significantly advanced its phase relative to that in the ipsilateral hemisphere. There was no arm use-dependent shift in phase difference in the pairwise recordings within each hemisphere. Both neurons with and without arm use-selective activity were phase-locked to the β-oscillation. These results imply that the degree of interhemispheric phase synchronization as well as phase differences and oscillatory power in the β-band may contribute to the selection of arm use depending on the behavioral conditions of sequential arm use.NEW & NOTEWORTHY We addressed interhemispheric relationships of β-oscillations during bimanual coordination. While monkeys prepared to initiate movement of the instructed arm, β-oscillations in the contralateral hemisphere showed a phase advance relative to the other hemisphere. Furthermore, the sequence of arm use influenced β-power and the degree of interhemispheric phase synchronization. Thus the dynamics of interhemispheric phases and power in β-oscillations may contribute to the specification of motor effectors in a given behavioral context.
Collapse
Affiliation(s)
- Toshi Nakajima
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
| | - Haruka Arisawa
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan
| | - Ryosuke Hosaka
- Department of Applied Mathematics, Fukuoka University, Fukuoka, Japan; and.,Laboratory for Dynamics of Emergent Intelligence, RIKEN Brain Science Institute, Wako, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan; .,Department of Applied Mathematics, Fukuoka University, Fukuoka, Japan; and
| |
Collapse
|
23
|
Antagonist Muscle Prefatigue Increases the Intracortical Communication between Contralateral Motor Cortices during Elbow Extension Contraction. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:8121976. [PMID: 29065649 PMCID: PMC5555002 DOI: 10.1155/2017/8121976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/27/2017] [Indexed: 11/17/2022]
Abstract
To investigate the cortico-cortical coupling changes related to antagonist muscle prefatigue, we recorded EEG at FC3, C3, FC4, and C4 electrodes of twelve young male volunteers during a 30-second-long, nonfatiguing isometric elbow extension contraction with a target force level of 20% MVC before and after a sustained fatiguing elbow flexion contraction until task failure. EEG-EEG phase synchronization indices in alpha and beta frequency bands were calculated for the pre- and postfatigue elbow extension contractions. The phase synchronization index in the beta frequency band was found significantly increased between EEG of FC3-C3. The increased phase synchronization index may reflect an enhanced intracortical communication or integration of the signals between contralateral motor cortices with antagonist muscle prefatigue, which may be related to the central modulation so as to compensate for the antagonist muscle prefatigue-induced joint instability.
Collapse
|
24
|
Features of EEG Activity Related to Realization of Cyclic Unimanual and Bimanual Hand Movements in Humans. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9632-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|