1
|
Jameson AT, Spera LK, Nguyen DL, Paul EM, Tabuchi M. Membrane-coated glass electrodes for stable, low-noise electrophysiology recordings in Drosophila central neurons. J Neurosci Methods 2024; 404:110079. [PMID: 38340901 PMCID: PMC11034715 DOI: 10.1016/j.jneumeth.2024.110079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Electrophysiological recording with glass electrodes is one of the best techniques to measure membrane potential dynamics and ionic currents of voltage-gated channels in neurons. However, artifactual variability of the biophysical state variables that determine recording quality can be caused by insufficient affinity between the electrode and cell membrane during the recording. NEW METHOD We introduce a phospholipid membrane coating on glass electrodes to improve intracellular electrophysiology recording quality. Membrane-coated electrodes were prepared with a tip-dip protocol for perforated-patch, sharp-electrode current-clamp, and cell-attached patch-clamp recordings from specific circadian clock neurons in Drosophila. We perform quantitative comparisons based on the variability of functional biophysical parameters used in various electrophysiological methods, and advanced statistical comparisons based on the degree of stationariness and signal-to-noise ratio. RESULTS Results indicate a dramatic reduction in artifactual variabilities of functional parameters from enhanced stability. We also identify significant exclusions of a statistically estimated noise component in a time series of membrane voltage signals, improving signal-to-noise ratio. COMPARISON WITH EXISTING METHODS Compared to standard glass electrodes, using membrane-coated glass electrodes achieves improved recording quality in intracellular electrophysiology. CONCLUSIONS Electrophysiological recordings from Drosophila central neurons can be technically challenging, however, membrane-coated electrodes will possibly be beneficial for reliable data acquisition and improving the technical feasibility of axonal intracellular activities measurements and single-channel recordings. The improved electrical stability of the recordings should also contribute to increased mechanical stability, thus facilitating long-term stable measurements of neural activity. Therefore, it is possible that membrane-coated electrodes will be useful for any model system.
Collapse
Affiliation(s)
- Angelica T Jameson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lucia K Spera
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Dieu Linh Nguyen
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elizabeth M Paul
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
2
|
Uno K, Miyanishi H, Sodeyama K, Fujiwara T, Miyazaki T, Muramatsu SI, Nitta A. Vulnerability to depressive behavior induced by overexpression of striatal Shati/Nat8l via the serotonergic neuronal pathway in mice. Behav Brain Res 2019; 376:112227. [PMID: 31520691 DOI: 10.1016/j.bbr.2019.112227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
The number of patients with depressive disorders is increasing. However, the mechanism of depression onsets has not been completely revealed. We previously identified Shati/Nat8l, an N-acetyltransferase, in the brain using an animal model of psychosis. In this study, we revealed the involvement of Shati/Nat8l in the vulnerability to major depression. Shati/Nat8l mRNA was increased only in the striatum of mice, which were exposed to chronic social defeat stress. Shati/Nat8l-overexpressed mice showed impairment in social interaction and sucrose preference after the subthreshold social defeat (microdefeat) stress. These depression-like behaviors were restored by fluvoxamine and LY341495 injection prior to these tests. Furthermore, the intracerebral administration of only fluvoxamine, but not of LY341495, to the dorsal striatum and direct infusion of LY341495 to the dorsal raphe also rescued. Taken together, Shati/Nat8l in the striatum has an important role in the vulnerability to depression onsets by regulating the origin of serotonergic neuronal system via GABAergic projection neuron in the dorsal raphe from the dorsal striatum.
Collapse
Affiliation(s)
- Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan; Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Hajime Miyanishi
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Kengo Sodeyama
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Toshiyuki Fujiwara
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Toh Miyazaki
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan; Center for Gene & Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
3
|
Hasebe M, Yoshino M. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells. J Neurophysiol 2016; 115:3174-85. [PMID: 26984419 DOI: 10.1152/jn.00036.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/14/2016] [Indexed: 01/21/2023] Open
Abstract
The interneurons of the mushroom body, known as Kenyon cells, are essential for the long-term memory of olfactory associative learning in some insects. Some studies have reported that nitric oxide (NO) is strongly related to this long-term memory in Kenyon cells. However, the target molecules and upstream and downstream NO signaling cascades are not completely understood. Here we analyzed the effect of the NO signaling cascade on Na(+)-activated K(+) (KNa) channel activity in Kenyon cells of crickets (Gryllus bimaculatus). We found that two different NO donors, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-dl-penicillamine (SNAP), strongly suppressed KNa channel currents. Additionally, this inhibitory effect of GSNO on KNa channel activity was diminished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), and KT5823, an inhibitor of protein kinase G (PKG). Next, we analyzed the role of ACh in the NO signaling cascade. ACh strongly suppressed KNa channel currents, similar to NO donors. Furthermore, this inhibitory effect of ACh was blocked by pirenzepine, an M1 muscarinic ACh receptor antagonist, but not by 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) and mecamylamine, an M3 muscarinic ACh receptor antagonist and a nicotinic ACh receptor antagonist, respectively. The ACh-induced inhibition of KNa channel currents was also diminished by the PLC inhibitor U73122 and the calmodulin antagonist W-7. Finally, we found that ACh inhibition was blocked by the nitric oxide synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME). These results suggested that the ACh signaling cascade promotes NO production by activating NOS and NO inhibits KNa channel currents via the sGC/cGMP/PKG signaling cascade in Kenyon cells.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
4
|
Takahashi I, Yoshino M. Functional coupling between sodium-activated potassium channels and voltage-dependent persistent sodium currents in cricket Kenyon cells. J Neurophysiol 2015; 114:2450-9. [PMID: 26269549 DOI: 10.1152/jn.00087.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/09/2015] [Indexed: 01/02/2023] Open
Abstract
In this study, we examined the functional coupling between Na(+)-activated potassium (KNa) channels and Na(+) influx through voltage-dependent Na(+) channels in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Single-channel activity of KNa channels was recorded with the cell-attached patch configuration. The open probability (Po) of KNa channels increased with increasing Na(+) concentration in a bath solution, whereas it decreased by the substitution of Na(+) with an equimolar concentration of Li(+). The Po of KNa channels was also found to be reduced by bath application of a high concentration of TTX (1 μM) and riluzole (100 μM), which inhibits both fast (INaf) and persistent (INaP) Na(+) currents, whereas it was unaffected by a low concentration of TTX (10 nM), which selectively blocks INaf. Bath application of Cd(2+) at a low concentration (50 μM), as an inhibitor of INaP, also decreased the Po of KNa channels. Conversely, bath application of the inorganic Ca(2+)-channel blockers Co(2+) and Ni(2+) at high concentrations (500 μM) had little effect on the Po of KNa channels, although Cd(2+) (500 μM) reduced the Po of KNa channels. Perforated whole cell clamp analysis further indicated the presence of sustained outward currents for which amplitude was dependent on the amount of Na(+) influx. Taken together, these results indicate that KNa channels could be activated by Na(+) influx passing through voltage-dependent persistent Na(+) channels. The functional significance of this coupling mechanism was discussed in relation to the membrane excitability of Kenyon cells and its possible role in the formation of long-term memory.
Collapse
Affiliation(s)
- Izumi Takahashi
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
5
|
Kosakai K, Tsujiuchi Y, Yoshino M. Nitric oxide augments single Ca(2+) channel currents via cGMP-dependent protein kinase in Kenyon cells isolated from the mushroom body of the cricket brain. JOURNAL OF INSECT PHYSIOLOGY 2015; 78:26-32. [PMID: 25934217 DOI: 10.1016/j.jinsphys.2015.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca(2+) channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca(2+) channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca(2+) channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca(2+) channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca(2+) influx through these Ca(2+) channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM.
Collapse
Affiliation(s)
- Kumiko Kosakai
- Tokyo Gakugei University Senior High School, Tokyo 154-0002, Japan
| | - Yuuki Tsujiuchi
- Department of Biology, Tokyo Gakugei University, Tokyo 184-8501, Japan
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| |
Collapse
|
6
|
Shabala S, Shabala L, Barcelo J, Poschenrieder C. Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. PLANT, CELL & ENVIRONMENT 2014; 37:2216-33. [PMID: 24689809 DOI: 10.1111/pce.12339] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 05/20/2023]
Abstract
This review provides a comprehensive assessment of a previously unexplored topic: elucidating the role that plasma- and organelle-based membrane transporters play in plant-adaptive responses to flooding. We show that energy availability and metabolic shifts under hypoxia and anoxia are critical in regulating membrane-transport activity. We illustrate the high tissue and time dependence of this regulation, reveal the molecular identity of transporters involved and discuss the modes of their regulation. We show that both reduced oxygen availability and accumulation of transition metals in flooded roots result in a reduction in the cytosolic K(+) pool, ultimately determining the cell's fate and transition to programmed cell death (PCD). This process can be strongly affected by hypoxia-induced changes in the amino acid pool profile and, specifically, ϒ-amino butyric acid (GABA) accumulation. It is suggested that GABA plays an important regulatory role, allowing plants to proceed with H2 O2 signalling to activate a cascade of genes that mediate plant adaptation to flooding while at the same time, preventing the cell from entering a 'suicide program'. We conclude that progress in crop breeding for flooding tolerance can only be achieved by pyramiding the numerous physiological traits that confer efficient energy maintenance, cytosolic ion homeostasis, and reactive oxygen species (ROS) control and detoxification.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia
| | | | | | | |
Collapse
|
7
|
Inoue S, Murata K, Tanaka A, Kakuta E, Tanemura S, Hatakeyama S, Nakamura A, Yamamoto C, Hasebe M, Kosakai K, Yoshino M. Ionic channel mechanisms mediating the intrinsic excitability of Kenyon cells in the mushroom body of the cricket brain. JOURNAL OF INSECT PHYSIOLOGY 2014; 68:44-57. [PMID: 24995840 DOI: 10.1016/j.jinsphys.2014.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/05/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Intrinsic neurons within the mushroom body of the insect brain, called Kenyon cells, play an important role in olfactory associative learning. In this study, we examined the ionic mechanisms mediating the intrinsic excitability of Kenyon cells in the cricket Gryllus bimaculatus. A perforated whole-cell clamp study using β-escin indicated the existence of several inward and outward currents. Three types of inward currents (INaf, INaP, and ICa) were identified. The transient sodium current (INaf) activated at -40 mV, peaked at -26 mV, and half-inactivated at -46.7 mV. The persistent sodium current (INaP) activated at -51 mV, peaked at -23 mV, and half-inactivated at -30.7 mV. Tetrodotoxin (TTX; 1 μM) completely blocked both INaf and INaP, but 10nM TTX blocked INaf more potently than INaP. Cd(2+) (50 μM) potently blocked INaP with little effect on INaf. Riluzole (>20 μM) nonselectively blocked both INaP and INaf. The voltage-dependent calcium current (ICa) activated at -30 mV, peaked at -11.3 mV, and half-inactivated at -34 mV. The Ca(2+) channel blocker verapamil (100 μM) blocked ICa in a use-dependent manner. Cell-attached patch-clamp recordings showed the presence of a large-conductance Ca(2+)-activated K(+) (BK) channel, and the activity of this channel was decreased by removing the extracellular Ca(2+) or adding verapamil or nifedipine, and increased by adding the Ca(2+) agonist Bay K8644, indicating that Ca(2+) entry via the L-type Ca(2+) channel regulates BK channel activity. Under the current-clamp condition, membrane depolarization generated membrane oscillations in the presence of 10nM TTX or 100 μM riluzole in the bath solution. These membrane oscillations disappeared with 1 μM TTX, 50 μM Cd(2+), replacement of external Na(+) with choline, and blockage of Na(+)-activated K(+) current (IKNa) with 50 μM quinidine, indicating that membrane oscillations are primarily mediated by INaP in cooperation with IKNa. The plateau potentials observed either in Ca(2+)-free medium or in the presence of verapamil were eliminated by blocking INaP with 50 μM Cd(2+). Taken together, these results indicate that INaP and IKNa participate in the generation of membrane oscillations and that INaP additionally participates in the generation of plateau potentials and initiation of spontaneous action potentials. ICa, through L-type Ca(2+) channels, was also found to play a role in the rapid membrane repolarization of action potentials by functional coupling with BK channels.
Collapse
Affiliation(s)
- Shigeki Inoue
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kaoru Murata
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Aiko Tanaka
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Eri Kakuta
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Saori Tanemura
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | | | | | | | - Masaharu Hasebe
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kumiko Kosakai
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan.
| |
Collapse
|
8
|
Palmer MJ, Harvey J. Honeybee Kenyon cells are regulated by a tonic GABA receptor conductance. J Neurophysiol 2014; 112:2026-35. [PMID: 25031259 DOI: 10.1152/jn.00180.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The higher cognitive functions of insects are dependent on their mushroom bodies (MBs), which are particularly large in social insects such as honeybees. MB Kenyon cells (KCs) receive multisensory input and are involved in associative learning and memory. In addition to receiving sensory input via excitatory nicotinic synapses, KCs receive inhibitory GABAergic input from MB feedback neurons. Cultured honeybee KCs exhibit ionotropic GABA receptor currents, but the properties of GABA-mediated inhibition in intact MBs are currently unknown. Here, using whole cell recordings from KCs in acutely isolated honeybee brain, we show that KCs exhibit a tonic current that is inhibited by picrotoxin but not by bicuculline. Bath application of GABA (5 μM) and taurine (1 mM) activate a tonic current in KCs, but l-glutamate (0.1-0.5 mM) has no effect. The tonic current is strongly potentiated by the allosteric GABAA receptor modulator pentobarbital and is reduced by inhibition of Ca(2+) channels with Cd(2+) or nifedipine. Noise analysis of the GABA-evoked current gives a single-channel conductance value for the underlying receptors of 27 ± 3 pS, similar to that of resistant to dieldrin (RDL) receptors. The amount of injected current required to evoke action potential firing in KCs is significantly lower in the presence of picrotoxin. KCs recorded in an intact honeybee head preparation similarly exhibit a tonic GABA receptor conductance that reduces neuronal excitability, a property that is likely to contribute to the sparse coding of sensory information in insect MBs.
Collapse
Affiliation(s)
- Mary J Palmer
- Division of Neuroscience, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - Jenni Harvey
- Division of Neuroscience, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| |
Collapse
|