1
|
The sky compass network in the brain of the desert locust. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01601-x. [PMID: 36550368 DOI: 10.1007/s00359-022-01601-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Many arthropods and vertebrates use celestial signals such as the position of the sun during the day or stars at night as compass cues for spatial orientation. The neural network underlying sky compass coding in the brain has been studied in great detail in the desert locust Schistocerca gregaria. These insects perform long-range migrations in Northern Africa and the Middle East following seasonal changes in rainfall. Highly specialized photoreceptors in a dorsal rim area of their compound eyes are sensitive to the polarization of the sky, generated by scattered sunlight. These signals are combined with direct information on the sun position in the optic lobe and anterior optic tubercle and converge from both eyes in a midline crossing brain structure, the central complex. Here, head direction coding is achieved by a compass-like arrangement of columns signaling solar azimuth through a 360° range of space by combining direct brightness cues from the sun with polarization cues matching the polarization pattern of the sky. Other directional cues derived from wind direction and internal self-rotation input are likely integrated. Signals are transmitted as coherent steering commands to descending neurons for directional control of locomotion and flight.
Collapse
|
2
|
Nguyen TAT, Beetz MJ, Merlin C, Pfeiffer K, el Jundi B. Weighting of Celestial and Terrestrial Cues in the Monarch Butterfly Central Complex. Front Neural Circuits 2022; 16:862279. [PMID: 35847485 PMCID: PMC9285895 DOI: 10.3389/fncir.2022.862279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation.
Collapse
Affiliation(s)
| | - M. Jerome Beetz
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States
| | - Keram Pfeiffer
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Basil el Jundi
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
- Department of Biology, Animal Physiology, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Basil el Jundi
| |
Collapse
|
3
|
Performance of polarization-sensitive neurons of the locust central complex at different degrees of polarization. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:387-403. [PMID: 35157117 PMCID: PMC9123078 DOI: 10.1007/s00359-022-01545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 10/29/2022]
Abstract
The polarization pattern of the sky is exploited by many insects for spatial orientation and navigation. It derives from Rayleigh scattering in the atmosphere and depends directly on the position of the sun. In the insect brain, the central complex (CX) houses neurons tuned to the angle of polarization (AoP), that together constitute an internal compass for celestial navigation. Polarized light is not only characterized by the AoP, but also by the degree of polarization (DoP), which can be highly variable, depending on sky conditions. Under a clear sky, the DoP of polarized sky light may reach up to 0.75 but is usually much lower especially when light is scattered by clouds or haze. To investigate how the polarization-processing network of the CX copes with low DoPs, we recorded intracellularly from neurons of the locust CX at different stages of processing, while stimulating with light of different DoPs. Significant responses to polarized light occurred down to DoPs of 0.05 indicating reliable coding of the AoP even at unfavorable sky conditions. Moreover, we found that the activity of neurons at the CX input stage may be strongly influenced by nearly unpolarized light, while the activity of downstream neurons appears less affected.
Collapse
|
4
|
Manoonpong P, Patanè L, Xiong X, Brodoline I, Dupeyroux J, Viollet S, Arena P, Serres JR. Insect-Inspired Robots: Bridging Biological and Artificial Systems. SENSORS (BASEL, SWITZERLAND) 2021; 21:7609. [PMID: 34833685 PMCID: PMC8623770 DOI: 10.3390/s21227609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022]
Abstract
This review article aims to address common research questions in hexapod robotics. How can we build intelligent autonomous hexapod robots that can exploit their biomechanics, morphology, and computational systems, to achieve autonomy, adaptability, and energy efficiency comparable to small living creatures, such as insects? Are insects good models for building such intelligent hexapod robots because they are the only animals with six legs? This review article is divided into three main sections to address these questions, as well as to assist roboticists in identifying relevant and future directions in the field of hexapod robotics over the next decade. After an introduction in section (1), the sections will respectively cover the following three key areas: (2) biomechanics focused on the design of smart legs; (3) locomotion control; and (4) high-level cognition control. These interconnected and interdependent areas are all crucial to improving the level of performance of hexapod robotics in terms of energy efficiency, terrain adaptability, autonomy, and operational range. We will also discuss how the next generation of bioroboticists will be able to transfer knowledge from biology to robotics and vice versa.
Collapse
Affiliation(s)
- Poramate Manoonpong
- Embodied Artificial Intelligence and Neurorobotics Laboratory, SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, 5230 Odense, Denmark;
- Bio-Inspired Robotics and Neural Engineering Laboratory, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Luca Patanè
- Department of Engineering, University of Messina, 98100 Messina, Italy
| | - Xiaofeng Xiong
- Embodied Artificial Intelligence and Neurorobotics Laboratory, SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, 5230 Odense, Denmark;
| | - Ilya Brodoline
- Department of Biorobotics, Aix Marseille University, CNRS, ISM, CEDEX 07, 13284 Marseille, France; (I.B.); (S.V.)
| | - Julien Dupeyroux
- Faculty of Aerospace Engineering, Delft University of Technology, 52600 Delft, The Netherlands;
| | - Stéphane Viollet
- Department of Biorobotics, Aix Marseille University, CNRS, ISM, CEDEX 07, 13284 Marseille, France; (I.B.); (S.V.)
| | - Paolo Arena
- Department of Electrical, Electronic and Computer Engineering, University of Catania, 95131 Catania, Italy
| | - Julien R. Serres
- Department of Biorobotics, Aix Marseille University, CNRS, ISM, CEDEX 07, 13284 Marseille, France; (I.B.); (S.V.)
| |
Collapse
|
5
|
Hensgen R, Göthe J, Jahn S, Hümmert S, Schneider KL, Takahashi N, Pegel U, Gotthardt S, Homberg U. Organization and neural connections of the lateral complex in the brain of the desert locust. J Comp Neurol 2021; 529:3533-3560. [PMID: 34216020 DOI: 10.1002/cne.25209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022]
Abstract
The lateral complexes (LXs) are bilaterally paired neuropils in the insect brain that mediate communication between the central complex (CX), a brain center controlling spatial orientation, various sensory processing areas, and thoracic motor centers that execute locomotion. The LX of the desert locust consists of the lateral accessory lobe (LAL), and the medial and lateral bulb. We have analyzed the anatomical organization and the neuronal connections of the LX in the locust, to provide a basis for future functional studies. Reanalyzing the morphology of neurons connecting the CX and the LX revealed likely feedback loops in the sky compass network of the CX via connections in the gall of the LAL and a newly identified neuropil termed ovoid body. In addition, we characterized 16 different types of neuron that connect the LAL with other areas in the brain. Eight types of neuron provide information flow between both LALs, five types are LAL input neurons, and three types are LAL output neurons. Among these are neurons providing input from sensory brain areas such as the lobula and antennal neuropils. Brain regions most often targeted by LAL neurons are the posterior slope, the wedge, and the crepine. Two descending neurons with dendrites in the LAL were identified. Our data support and complement existing knowledge about how the LAL is embedded in the neuronal network involved in processing of sensory information and generation of appropriate behavioral output for goal-directed locomotion.
Collapse
Affiliation(s)
- Ronja Hensgen
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Jonas Göthe
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Stefanie Jahn
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Sophie Hümmert
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Kim Lucia Schneider
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Naomi Takahashi
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Uta Pegel
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Sascha Gotthardt
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
6
|
Held M, Le K, Pegel U, Dersch F, Beetz MJ, Pfeiffer K, Homberg U. Anatomical and ultrastructural analysis of the posterior optic tubercle in the locust Schistocerca gregaria. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 58:100971. [PMID: 32755758 DOI: 10.1016/j.asd.2020.100971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Locusts, like other insects, partly rely on a sun compass mechanism for spatial orientation during seasonal migrations. To serve as a useful guiding cue throughout the day, however, the sun's apparent movement has to be accounted for. In locusts, a neural pathway from the accessory medulla, the circadian pacemaker, via the posterior optic tubercle, to the protocerebral bridge, part of the internal sky compass, has been proposed to mediate the required time compensation. Toward a better understanding of neural connectivities within the posterior optic tubercle, we investigated this neuropil using light and electron microscopy. Based on vesicle content, four types of synaptic profile were distinguished within the posterior optic tubercle. Immunogold labeling showed that pigment-dispersing hormone immunoreactive neurons from the accessory medulla, containing large dense-core vesicles, have presynaptic terminals in the posterior optic tubercle. Ultrastructural examination of two Neurobiotin-injected tangential neurons of the protocerebral bridge revealed that these neurons are postsynaptic in the posterior optic tubercle. Our data, therefore, support a role of the posterior optic tubercles in mediating circadian input to the insect sky compass.
Collapse
Affiliation(s)
- Martina Held
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany.
| | - Kim Le
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uta Pegel
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Florian Dersch
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - M Jerome Beetz
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Keram Pfeiffer
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
7
|
Rosner R, Pegel U, Homberg U. Responses of compass neurons in the locust brain to visual motion and leg motor activity. J Exp Biol 2019; 222:jeb.196261. [DOI: 10.1242/jeb.196261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/28/2019] [Indexed: 11/20/2022]
Abstract
The central complex, a group of midline neuropils in the insect brain, plays a key role in spatial orientation and navigation. Work in locusts, crickets, dung beetles, bees, and butterflies suggests that it harbors a network of neurons which determines the orientation of the insect relative to the pattern of polarized light in the blue sky. In locusts, these compass cells also respond to simulated approaching objects. Here we investigate in the locust Schistocerca gregaria whether compass cells change their activity when the animal experiences large-field visual motion or when the animal is engaged in walking behavior. We recorded intracellularly from these neurons while the tethered animals were allowed to perform walking movements on a slippery surface. We concurrently presented moving grating stimuli from the side or polarized light through a rotating polarizer from above. Large-field motion was combined with the simulation of approaching objects to evaluate whether responses differed from those presented on a stationary background. Here we show for the first time that compass cells are sensitive to large-field motion. Responses to looming stimuli were often more conspicuous during large-field motion. Walking activity influenced spiking rates at all stages of the network. The strength of responses to the plane of polarized light was affected in some compass cells during leg motor activity. The data show that signaling in compass cells of the locust central complex is modulated by visual context and locomotor activity.
Collapse
Affiliation(s)
- Ronny Rosner
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany
| | - Uta Pegel
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany
- Present address: Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Uwe Homberg
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
8
|
Heinze S. Unraveling the neural basis of insect navigation. CURRENT OPINION IN INSECT SCIENCE 2017; 24:58-67. [PMID: 29208224 PMCID: PMC6186168 DOI: 10.1016/j.cois.2017.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 05/09/2023]
Abstract
One of the defining features of animals is their ability to navigate their environment. Using behavioral experiments this topic has been under intense investigation for nearly a century. In insects, this work has largely focused on the remarkable homing abilities of ants and bees. More recently, the neural basis of navigation shifted into the focus of attention. Starting with revealing the neurons that process the sensory signals used for navigation, in particular polarized skylight, migratory locusts became the key species for delineating navigation-relevant regions of the insect brain. Over the last years, this work was used as a basis for research in the fruit fly Drosophila and extraordinary progress has been made in illuminating the neural underpinnings of navigational processes. With increasingly detailed understanding of navigation circuits, we can begin to ask whether there is a fundamentally shared concept underlying all navigation behavior across insects. This review highlights recent advances and puts them into the context of the behavioral work on ants and bees, as well as the circuits involved in polarized-light processing. A region of the insect brain called the central complex emerges as the common substrate for guiding navigation and its highly organized neuroarchitecture provides a framework for future investigations potentially suited to explain all insect navigation behavior at the level of identified neurons.
Collapse
Affiliation(s)
- Stanley Heinze
- Lund University, Department of Biology, Lund Vision Group, Sölvegatan 35, 22362 Lund, Sweden.
| |
Collapse
|