1
|
Teran-Wodzinski PC, Yack HJ, Kelly JC, Huang Y, Zhao Y, Davis IS. Effects of gait retraining in knee joint position sense. Hum Mov Sci 2024; 98:103288. [PMID: 39277913 DOI: 10.1016/j.humov.2024.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Joint position sense (JPS) is crucial for maintaining posture, protecting joints, and carrying out daily activities such as walking. Studies show that exercises to strengthen muscles and improve proprioception can positively impact JPS during passive and less complex activities. Evidence suggests that motor training can effectively enhance sensory function, including JPS, due to the extensive connections between the motor cortex and somatosensory areas. Gait retraining using real-time feedback has improved outcomes among patients with musculoskeletal disorders. The effect of gait retraining on JPS has not been investigated. This study assessed the effects of gait retraining to reduce knee extension in joint position sense in individuals with knee hyperextension walking patterns. METHODS Ten women with asymptomatic knee hyperextension (KH) >5° during overground walking participated in this study. Sagittal-plane kinematics were assessed using a three-dimensional (3D) motion analysis system. The JPS was assessed using the Knee Position Active Reproduction Test. The knee with the highest hyperextension was the focus of the gait retraining intervention, which consisted of six 1-h sessions using verbal instructions and visual kinematic feedback. Comparisons of peak knee extension during walking and knee JPS overall error (RMSE) were made using a paired t-test. RESULTS Gait retraining intervention significantly reduced knee extension angle during walking (83.8 % change; p < 0.001; Cohen's d = -1.6) and improved knee JPS (62 % change; p = 0.023; Cohen's d = 0.8) post-training. In addition, the improvements in joint kinematics (36.7 % change; p = 0.005; Cohen's d = -1.2) and JPS (52.6 % change; p = 0.015; Cohen's d = 0.9) were observed in the untrained knee. SIGNIFICANCE Gait retraining can improve joint position sense. This study addresses a gap in our understanding of how gait retraining can influence JPS. Our results corroborate that gait retraining is an evolving and promising strategy for improving gait outcomes, particularly in individuals with KH walking patterns.
Collapse
Affiliation(s)
- Patricia C Teran-Wodzinski
- Graduate Program in Physical Therapy and Rehabilitation Science, University of Iowa, 1-243 Medical Education Building, Iowa City, IA 52242, USA.
| | - H John Yack
- Graduate Program in Physical Therapy and Rehabilitation Science, University of Iowa, 1-243 Medical Education Building, Iowa City, IA 52242, USA
| | - J Cole Kelly
- Department of Health and Human Physiology, University of Iowa, N422 FH, The University of Iowa, Iowa City, IA 52242, USA
| | - Yangxin Huang
- College of Public Health, University of South Florida, 13201 Bruce B. Downs Blvd. MDC 56, Tampa, FL 33612, USA
| | - Yayi Zhao
- College of Public Health, University of South Florida, 13201 Bruce B. Downs Blvd. MDC 56, Tampa, FL 33612, USA
| | - Irene S Davis
- School of Physical Therapy & Rehabilitation Science, Morsani College of Medicine, University of South Florida, 12901 North Bruce B. Downs Blvd., MDC 077 - Tampa, FL 33612-4766, USA
| |
Collapse
|
2
|
Albanese GA, Zenzeri J, De Santis D. The Effect of Feedback Modality When Learning a Novel Wrist Sensorimotor Transformation Through a Body-Machine Interface. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941291 DOI: 10.1109/icorr58425.2023.10304784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Body-Machine Interfaces (BoMIs) are promising assistive and rehabilitative tools for helping individuals with impaired motor abilities regain independence. When operating a BoMI, the user has to learn a novel sensorimotor transformation between the movement of certain body parts and the output of the device. In this study, we investigated how different feedback modalities impacted learning to operate a BoMI. Forty-seven able-bodied participants learned to control the velocity of a 1D cursor using the 3D rotation of their dominant wrist to reach as many targets as possible in a given amount of time. The map was designed to maximize cursor speed for movements around a predefined axis of wrist rotation. We compared the user's performance and control efficiency under three feedback modalities: i) visual feedback of the cursor position, ii) proprioceptive feedback of the cursor position delivered by a wrist manipulandum, iii) both i) and ii). We found that visual feedback led to a greater number of targets reached than proprioceptive feedback alone. Conversely, proprioceptive feedback yielded greater alignment between the axis of rotation of the wrist and the optimal axis represented by the map. These results suggest that proprioceptive feedback may be preferable over visual feedback when information about intrinsic task components, i.e. joint configurations, is of interest as in rehabilitative interventions aiming to promote more effective learning strategies.
Collapse
|
3
|
Are tools truly incorporated as an extension of the body representation?: Assessing the evidence for tool embodiment. Psychon Bull Rev 2022; 29:343-368. [PMID: 35322322 DOI: 10.3758/s13423-021-02032-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/08/2022]
Abstract
The predominant view on human tool-use suggests that an action-oriented body representation, the body schema, is altered to fit the tool being wielded, a phenomenon termed tool embodiment. While observations of perceptual change after tool-use purport to support this hypothesis, several issues undermine their validity in this context, discussed at length in this critical review. The primary measures used as indicators of tool embodiment each face unique challenges to their construct validity. Further, the perceptual changes taken as indicating extension of the body representation only appear to account for a fraction of the tool's size in any given experiment, and do not demonstrate the covariance with tool length that the embodiment hypothesis would predict. The expression of tool embodiment also appears limited to a narrow range of tool-use tasks, as deviations from a simple reaching paradigm can mollify or eliminate embodiment effects altogether. The shortcomings identified here generate important avenues for future research. Until the source of the kinematic and perceptual effects that have substantiated tool embodiment is disambiguated, the hypothesis that the body representation changes to fit tools during tool-use should not be favored over other possibilities such as the formation of separable internal tool models, which seem to offer a more complete account of human tool-use behaviors. Indeed, studies of motor learning have observed analogous perceptual changes as aftereffects to adaptation despite the absence of handheld tool-use, offering a compelling alternative explanation, though more work is needed to confirm this possibility.
Collapse
|
4
|
Passive Proprioceptive Training Alters the Sensitivity of Muscle Spindles to Imposed Movements. eNeuro 2022; 9:ENEURO.0249-21.2021. [PMID: 35022185 PMCID: PMC8805769 DOI: 10.1523/eneuro.0249-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Humans rely on precise proprioceptive feedback from our muscles, which is important in both the acquisition and execution of movements, to perform daily activities. Somatosensory input from the body shapes motor learning through central processes, as demonstrated for tasks using the arm, under active (self-generated) and passive conditions. Presently, we investigated whether passive movement training of the ankle increased proprioceptive acuity (psychophysical experiment) and whether it changed the peripheral proprioceptive afferent signal (microneurography experiment). In the psychophysical experiment, the ankle of 32 healthy human participants was moved passively using pairs of ramp-and-hold movements in different directions. In a pretraining test, participants made judgements about the movement direction in a two-alternative forced choice paradigm. Participants then underwent passive movement training, but only half were cued for learning, where a reference position was signaled by a sound and the participant had to learn to recognize this position; they then completed a post-training test. In a paradigm using the same setup, nine healthy participants underwent microneurography recordings of Ia muscle afferents from the peroneal nerve, where all were cued during training. In the psychophysical experiment, proprioceptive acuity improved with training only in the cued group. In the microneurography experiment, we found that muscle afferent firing was modulated, via an increase in the dynamic index, after training. We suggest that changes in muscle afferent input from the periphery can contribute to and support central perceptual and motor learning, as shown under passive conditions using ankle movements, which may be exploited for movement rehabilitation.
Collapse
|
5
|
Hasegawa Y, Okada A, Fujii K. Skill Differences in a Discrete Motor Task Emerging From the Environmental Perception Phase. Front Psychol 2021; 12:697914. [PMID: 34659013 PMCID: PMC8517186 DOI: 10.3389/fpsyg.2021.697914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/20/2021] [Indexed: 12/03/2022] Open
Abstract
Because of the challenges associated with measuring human perception and strategy, the process of human performance from perception to motion to results is not fully understood. Therefore, this study clarifies the phase at which errors occur and how differences in skill level manifest in a motor task requiring an accurate environmental perception and fine movement control. We assigned a golf putting task and comprehensively examined various errors committed in five phases of execution. Twelve tour professionals and twelve intermediate amateur golfers performed the putting task on two surface conditions: flat and a 0.4-degree incline. The participants were instructed to describe the topographical characteristics of the green before starting the trials on each surface (environmental perception phase). Before each attempt, the participants used the reflective markers to indicate their aim point from which the ball would be launched (decision-making phase). We measured the clubface angle and impact velocity to highlight the pre-motion and motion errors (pre-motion and motion phase). In addition, mistakes in the final ball position were analyzed as result errors (post-performance phase). Our results showed that more than half of the amateurs committed visual–somatosensory errors in the perception phase. Moreover, their aiming angles in the decision-making phase differed significantly from the professionals, with no significant differences between slope conditions. In addition, alignment errors, as reported in previous studies, occurred in the pre-motion phase regardless of skill level (i.e., increased in the 0.4-degree condition). In the motion phase, the intermediate-level amateurs could not adjust their clubhead velocity control to the appropriate level, and the clubhead velocity and clubface angle control were less reproducible than those of the professionals. To understand the amateur result errors in those who misperceived the slopes, we checked the individual results focusing on the final ball position. We found that most of these participants had poor performance, especially in the 0.4-degree condition. Our results suggest that the amateurs’ pre-motion and strategy errors depended on their visual–somatosensory errors.
Collapse
Affiliation(s)
- Yumiko Hasegawa
- Faculty of Humanities and Social Sciences, Iwate University, Morioka, Japan
| | - Ayako Okada
- Japan Ladies Professional Golfers' Association, Tokyo, Japan
| | - Keisuke Fujii
- Graduate School of Informatics, Nagoya University, Nagoya, Japan.,RIKEN Center for Advanced Intelligence Project, RIKEN, Fukuoka, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
6
|
Mirdamadi JL, Block HJ. Somatosensory versus cerebellar contributions to proprioceptive changes associated with motor skill learning: A theta burst stimulation study. Cortex 2021; 140:98-109. [PMID: 33962318 DOI: 10.1016/j.cortex.2021.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/22/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is well established that proprioception (position sense) is important for motor control, yet its role in motor learning and associated plasticity is not well understood. We previously demonstrated that motor skill learning is associated with enhanced proprioception and changes in sensorimotor neurophysiology. However, the neural substrates mediating these effects are unclear. OBJECTIVE To determine whether suppressing activity in the cerebellum and somatosensory cortex (S1) affects proprioceptive changes associated with motor skill learning. METHODS 54 healthy young adults practiced a skill involving visually-guided 2D reaching movements through an irregular-shaped track using a robotic manipulandum with their right hand. Proprioception was measured using a passive two-alternative choice task before and after motor practice. Continuous theta burst stimulation (cTBS) was delivered over S1 or the cerebellum (CB) at the end of training for two consecutive days. We compared group differences (S1, CB, Sham) in proprioception and motor skill, quantified by a speed-accuracy function, measured on a third consecutive day (retention). RESULTS As shown previously, the Sham group demonstrated enhanced proprioceptive sensitivity after training and at retention. The S1 group had impaired proprioceptive function at retention through online changes during practice, whereas the CB group demonstrated offline decrements in proprioceptive function. All groups demonstrated motor skill learning. However, the magnitude of learning differed between the CB and Sham groups, consistent with a role for the cerebellum in motor learning. CONCLUSION Overall, these findings suggest that the cerebellum and S1 are important for distinct aspects of proprioceptive changes during skill learning.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| | - Hannah J Block
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
7
|
Takasaki H, Kawazoe S. Active straight leg raising (ASLR) competence improves with reverse-ASLR exercises and not repeating ASLR exercises. J Exerc Rehabil 2021; 17:28-38. [PMID: 33728286 PMCID: PMC7939983 DOI: 10.12965/jer.2040866.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/28/2021] [Indexed: 11/22/2022] Open
Abstract
In the Functional Movement Screen (FMS), a subgroup of those with a score of 1 due to limitations in the active straight leg raising (ASLR) but not in the passive straight leg raising is considered to have a stability or motor control dysfunction (SMCD). The FMS proposes the use of the movements in a reverse pattern to improve FMS scores. The aim of this study was to investigate whether the reverse pattern of the ASLR (reverse-ASLR) was more effective than repeating the ASLR to improve the FMS score in participants with the FMS ASLR score of 1 due to the SMCD (ASLR-1-SMCD). A two-armed randomized controlled trial was conducted in individuals with the ASLR-1-SMCD. The intervention was either the reverse-ASLR or the ASLR exercise on both sides at home for a month followed by a 1-month wait-and-see interval, wherein the primary outcome measure was the right FMS ASLR score. Forty participants were randomized to the ASLR exercise group (n=20) or the reverse-ASLR exercise group (n=20). The Fisher exact test demonstrated a statistically significant difference (P=0.020) in the proportion of those with FMS ASLR score improvement to a score of 2 (ASLR exercise group, one; reverse-ASLR exercise group, eight) at follow-up 1, but no significance (P=0.106) at follow-up 2 (ASLR exercise group, none; reverse-ASLR exercise group, four). This study indicated that the reverse-ASLR exercise was more effective than repeating the ASLR exercise in order to improve the ASLR score among individuals with the ASLR-1-SMCD.
Collapse
Affiliation(s)
- Hiroshi Takasaki
- Department of Physical Therapy, Saitama Prefectural University, Koshigaya, Japan
| | - Shota Kawazoe
- Department of Physical Therapy, Saitama Prefectural University, Koshigaya, Japan
| |
Collapse
|
8
|
Tseng YT, Chen FC, Tsai CL, Konczak J. Upper limb proprioception and fine motor function in young pianists. Hum Mov Sci 2020; 75:102748. [PMID: 33360200 DOI: 10.1016/j.humov.2020.102748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND This study investigated if intensive piano training may be associated with improved motor and somatosensory function. We systematically examined upper limb proprioception, which is known to play an essential role in skill movements, and motor function in young pianists. METHOD Forty-four typically developing children who either regularly played piano for more than six years (N = 16) or had no experience playing musical instruments (N = 28) participated. Elbow and wrist joint proprioceptive acuity was assessed using a manipulandum. The wrist/elbow was passively flexed to a target with participants actively trying to match the just experienced target position. Motor function was assessed using the Movement Assessment Battery for Children (MABC-2). RESULTS First, children in the pianist group exhibited significantly lower position sense bias (systematic error) at both the elbow and wrist when compared to controls. Position sense precision (random error) was not different between groups. Second, the piano group exhibited enhanced fine motor function as shown by higher manual dexterity MABC-2 scores. Performance in other motor domains (aiming and catching or balance) was not improved in young pianists. Third, a lower position sense bias was correlated with a higher level of manual dexterity. CONCLUSION This study documents that children who regularly play the piano have superior upper limb position sense acuity. Specifically, smaller position sense bias, i.e., less systematic error. Superior upper position sense acuity in young pianists is associated with higher fine motor functions.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Kinesiology, National Tsing Hua University, Hsinchu City, Taiwan; Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu City, Taiwan.
| | - Fu-Chen Chen
- Department of Physical Education, National Kaohsiung Normal University, Kaohsiung City, Taiwan
| | - Chia-Liang Tsai
- Institutes of Physical Education, Health, and Leisure Studies, National Cheng Kung University, Tainan City, Taiwan
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, 1900 University Ave. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Accuracy of hand localization is subject-specific and improved without performance feedback. Sci Rep 2020; 10:19188. [PMID: 33154521 PMCID: PMC7645785 DOI: 10.1038/s41598-020-76220-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Accumulating evidence indicates that the spatial error of human's hand localization appears subject-specific. However, whether the idiosyncratic pattern persists across time with good within-subject consistency has not been adequately examined. Here we measured the hand localization map by a Visual-matching task in multiple sessions over 2 days. Interestingly, we found that participants improved their hand localization accuracy when tested repetitively without performance feedback. Importantly, despite the reduction of average error, the spatial pattern of hand localization errors remained idiosyncratic. Based on individuals' hand localization performance, a standard convolutional neural network classifier could identify participants with good accuracy. Moreover, we did not find supporting evidence that participants' baseline hand localization performance could predict their motor performance in a visual Trajectory-matching task even though both tasks require accurate mapping of hand position to visual targets in the same workspace. Using a separate experiment, we not only replicated these findings but also ruled out the possibility that performance feedback during a few familiarization trials caused the observed improvement in hand localization. We conclude that the conventional hand localization test itself, even without feedback, can improve hand localization but leave the idiosyncrasy of hand localization map unchanged.
Collapse
|
10
|
Hasegawa Y, Miura A, Fujii K. Practice Motions Performed During Preperformance Preparation Drive the Actual Motion of Golf Putting. Front Psychol 2020; 11:513. [PMID: 32269542 PMCID: PMC7109320 DOI: 10.3389/fpsyg.2020.00513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/03/2020] [Indexed: 01/12/2023] Open
Abstract
Of the various types of preperformance preparatory behavior that are acquired during motor learning, the effect of a practice motion performed just prior to execution of an actual motion is not yet fully understood. Thus, the present study employed a golf putting task to investigate how a practice motion in the preparation phase would affect the accuracy of motor control in the execution phase and how proficiency would influence this relationship. To examine the impacts on kinematics and final ball position, the velocities of practice strokes made by tour professional and amateur golfers were experimentally manipulated in the following three conditions: the equal condition, which presented a target that was at the same distance during the practice strokes and the actual stroke; the confusing condition, which had two different distances during the practice and actual strokes; and the no condition, which did not include a practice stroke. The results, based on final ball position, indicated that practice strokes in the equal condition were linked with the highest accuracy levels during the actual stroke in both professionals and amateurs. In the confusing condition, regardless of skill level, the velocity of the actual stroke was influenced by a faster or slower stroke during the pre-shot phase. These relationships between the practice and actual strokes imply that the golfers effectively utilized kinesthetic information obtained during the practice strokes as a reference for the actual stroke. Furthermore, the differences in proficiency level indicated that the club head velocity of amateurs in the no condition was significantly faster than in the equal condition. Therefore, the present results imply that the role of a practice stroke may differ between professionals and amateurs.
Collapse
Affiliation(s)
- Yumiko Hasegawa
- Faculty of Humanities and Social Sciences, Iwate University, Morioka, Japan
| | - Akito Miura
- Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Keisuke Fujii
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Mirdamadi JL, Block HJ. Somatosensory changes associated with motor skill learning. J Neurophysiol 2020; 123:1052-1062. [DOI: 10.1152/jn.00497.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trial-and-error motor adaptation has been linked to somatosensory plasticity and shifts in proprioception (limb position sense). The role of sensory processing in motor skill learning is less understood. Unlike adaptation, skill learning involves the acquisition of new movement patterns in the absence of perturbation, with performance limited by the speed-accuracy trade-off. We investigated somatosensory changes during motor skill learning at the behavioral and neurophysiological levels. Twenty-eight healthy young adults practiced a maze-tracing task, guiding a robotic manipulandum through an irregular two-dimensional track featuring several abrupt turns. Practice occurred on days 1 and 2. Skill was assessed before practice on day 1 and again on day 3, with learning indicated by a shift in the speed-accuracy function between these assessments. Proprioceptive function was quantified with a passive two-alternative forced-choice task. In a subset of 15 participants, we measured short-latency afferent inhibition (SAI) to index somatosensory projections to motor cortex. We found that motor practice enhanced the speed-accuracy skill function ( F4,108 = 32.15, P < 0.001) and was associated with improved proprioceptive sensitivity at retention ( t22 = 24.75, P = 0.0031). Furthermore, SAI increased after training ( F1,14 = 5.41, P = 0.036). Interestingly, individuals with larger increases in SAI, reflecting enhanced somatosensory afference to motor cortex, demonstrated larger improvements in motor skill learning. These findings suggest that SAI may be an important functional mechanism for some aspect of motor skill learning. Further research is needed to test what parameters (task complexity, practice time, etc.) are specifically linked to somatosensory function. NEW & NOTEWORTHY Somatosensory processing has been implicated in motor adaptation, where performance recovers from a perturbation such as a force field. We investigated somatosensory function during motor skill learning, where a new motor pattern is acquired in the absence of perturbation. After skill practice, we found changes in proprioception and short-latency afferent inhibition (SAI), signifying somatosensory change at both the behavioral and neurophysiological levels. SAI may be an important functional mechanism by which individuals learn motor skills.
Collapse
Affiliation(s)
- Jasmine L. Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, Indiana
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Hannah J. Block
- Program in Neuroscience, Indiana University, Bloomington, Indiana
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| |
Collapse
|
12
|
Qaiser T, Eginyan G, Chan F, Lam T. The sensorimotor effects of a lower limb proprioception training intervention in individuals with a spinal cord injury. J Neurophysiol 2019; 122:2364-2371. [DOI: 10.1152/jn.00842.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Proprioception is critical for movement control. After a spinal cord injury (SCI), individuals not only experience paralysis but may also experience proprioceptive deficits, further confounding motor recovery. The objective of this study was to test the effects of a robotic-based proprioception training protocol on lower limb proprioceptive sense in people with incomplete SCI. A secondary objective was to assess whether the effects of training transferred to a precision stepping task in people with motor-incomplete SCI. Participants with chronic incomplete SCI and able-bodied controls underwent a 2-day proprioceptive training protocol using the Lokomat robotic exoskeleton. The training involved positioning the test leg to various positions and participants were asked to report whether they felt their heel position (end-point position) was higher or lower compared with a reference position. Feedback was provided after each trial to help participants learn strategies that could help them discern different positions of their foot. Changes in end-point position as well as knee joint position sense were assessed pre- and posttraining. We also assessed the effects of proprioception training on the performance of a precision stepping task in people with motor-incomplete SCI. Following training, there were significant improvements in end-point and knee joint position sense in both groups. The magnitude of improvement was related to pretraining (baseline) proprioceptive sense, indicating that those who initially had better lower limb position sense showed greater changes. Participants also showed improvements in performance of a precision stepping task. NEW & NOTEWORTHY We show that it is possible to alter proprioceptive sense in people with incomplete SCI using a passive proprioception training protocol combined with feedback. Improvements in proprioceptive sense transferred from end-point to joint position sense and also to an untrained precision stepping task.
Collapse
Affiliation(s)
- Taha Qaiser
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Gevorg Eginyan
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Franco Chan
- International Collaboration on Repair Discoveries, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Tania Lam
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Herter TM, Scott SH, Dukelow SP. Vision does not always help stroke survivors compensate for impaired limb position sense. J Neuroeng Rehabil 2019; 16:129. [PMID: 31666135 PMCID: PMC6822422 DOI: 10.1186/s12984-019-0596-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Position sense is commonly impaired after stroke. Traditional rehabilitation methods instruct patients to visualize their limbs to compensate for impaired position sense. OBJECTIVE Our goal was to evaluate how the use of vision influences impaired position sense. METHODS We examined 177 stroke survivors, an average of 12.7 days (+/- 10 days (SD)) post-stroke, and 133 neurologically-intact controls with a robotic assessment of position sense. The robot positioned one limb (affected) and subjects attempted to mirror-match the position using the opposite limb (unaffected). Subjects completed the test without, then with vision of their limbs. We examined three measures of position sense: variability (Var), contraction/expansion (C/E) and systematic shift (Shift). We classified stroke survivors as having full compensation if they performed the robotic task abnormally without vision but corrected performance within the range of normal with vision. Stroke survivors were deemed to have partial compensation if they performed the task outside the range of normal without and with vision, but improved significantly with vision. Those with absent compensation performed the task abnormally in both conditions and did not improve with vision. RESULTS Many stroke survivors demonstrated impaired position sense with vision occluded [Var: 116 (66%), C/E: 91 (51%), Shift: 52 (29%)]. Of those stroke survivors with impaired position sense, some exhibited full compensation with vision [Var: 23 (20%), C/E: 42 (46%), Shift: 32 (62%)], others showed partial compensation [Var: 37 (32%), C/E: 8 (9%), Shift: 3 (6%)] and many displayed absent compensation (Var: 56 (48%), C/E: 41 (45%), Shift: 17 (33%)]. Stroke survivors with an affected left arm, visuospatial neglect and/or visual field defects were less likely to compensate for impaired position sense using vision. CONCLUSIONS Our results indicate that vision does not help many stroke survivors compensate for impaired position sense, at least within the current paradigm. This contrasts with historical reports that vision helps compensate for proprioceptive loss following neurologic injuries.
Collapse
Affiliation(s)
- Troy M Herter
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Sean P Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, University of Calgary, 1403 29th St NW, Foothills Medical Centre, South Tower-Room 905, Calgary, AB, T2N2T9, Canada.
| |
Collapse
|
14
|
Kumar N, Manning TF, Ostry DJ. Somatosensory cortex participates in the consolidation of human motor memory. PLoS Biol 2019; 17:e3000469. [PMID: 31613874 PMCID: PMC6793938 DOI: 10.1371/journal.pbio.3000469] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/12/2019] [Indexed: 11/19/2022] Open
Abstract
Newly learned motor skills are initially labile and then consolidated to permit retention. The circuits that enable the consolidation of motor memories remain uncertain. Most work to date has focused on primary motor cortex, and although there is ample evidence of learning-related plasticity in motor cortex, direct evidence for its involvement in memory consolidation is limited. Learning-related plasticity is also observed in somatosensory cortex, and accordingly, it may also be involved in memory consolidation. Here, by using transcranial magnetic stimulation (TMS) to block consolidation, we report the first direct evidence that plasticity in somatosensory cortex participates in the consolidation of motor memory. Participants made movements to targets while a robot applied forces to the hand to alter somatosensory feedback. Immediately following adaptation, continuous theta-burst transcranial magnetic stimulation (cTBS) was delivered to block retention; then, following a 24-hour delay, which would normally permit consolidation, we assessed whether there was an impairment. It was found that when mechanical loads were introduced gradually to engage implicit learning processes, suppression of somatosensory cortex following training almost entirely eliminated retention. In contrast, cTBS to motor cortex following learning had little effect on retention at all; retention following cTBS to motor cortex was not different than following sham TMS stimulation. We confirmed that cTBS to somatosensory cortex interfered with normal sensory function and that it blocked motor memory consolidation and not the ability to retrieve a consolidated motor memory. In conclusion, the findings are consistent with the hypothesis that in adaptation learning, somatosensory cortex rather than motor cortex is involved in the consolidation of motor memory.
Collapse
Affiliation(s)
- Neeraj Kumar
- McGill University, Montreal, Canada
- Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | | | - David J. Ostry
- McGill University, Montreal, Canada
- Haskins Laboratories, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ohashi H, Gribble PL, Ostry DJ. Somatosensory cortical excitability changes precede those in motor cortex during human motor learning. J Neurophysiol 2019; 122:1397-1405. [PMID: 31390294 DOI: 10.1152/jn.00383.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Motor learning is associated with plasticity in both motor and somatosensory cortex. It is known from animal studies that tetanic stimulation to each of these areas individually induces long-term potentiation in its counterpart. In this context it is possible that changes in motor cortex contribute to somatosensory change and that changes in somatosensory cortex are involved in changes in motor areas of the brain. It is also possible that learning-related plasticity occurs in these areas independently. To better understand the relative contribution to human motor learning of motor cortical and somatosensory plasticity, we assessed the time course of changes in primary somatosensory and motor cortex excitability during motor skill learning. Learning was assessed using a force production task in which a target force profile varied from one trial to the next. The excitability of primary somatosensory cortex was measured using somatosensory evoked potentials in response to median nerve stimulation. The excitability of primary motor cortex was measured using motor evoked potentials elicited by single-pulse transcranial magnetic stimulation. These two measures were interleaved with blocks of motor learning trials. We found that the earliest changes in cortical excitability during learning occurred in somatosensory cortical responses, and these changes preceded changes in motor cortical excitability. Changes in somatosensory evoked potentials were correlated with behavioral measures of learning. Changes in motor evoked potentials were not. These findings indicate that plasticity in somatosensory cortex occurs as a part of the earliest stages of motor learning, before changes in motor cortex are observed.NEW & NOTEWORTHY We tracked somatosensory and motor cortical excitability during motor skill acquisition. Changes in both motor cortical and somatosensory excitability were observed during learning; however, the earliest changes were in somatosensory cortex, not motor cortex. Moreover, the earliest changes in somatosensory cortical excitability predict the extent of subsequent learning; those in motor cortex do not. This is consistent with the idea that plasticity in somatosensory cortex coincides with the earliest stages of human motor learning.
Collapse
Affiliation(s)
- Hiroki Ohashi
- Haskins Laboratories, New Haven, Connecticut.,Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Paul L Gribble
- Haskins Laboratories, New Haven, Connecticut.,The Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - David J Ostry
- Haskins Laboratories, New Haven, Connecticut.,Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Wattananon P, Klomjai W, Sung W. One session of motor control exercise improves joint position sense assessed by an iPhone application: a randomized controlled trial. J Phys Ther Sci 2019; 31:583-589. [PMID: 31417226 PMCID: PMC6642896 DOI: 10.1589/jpts.31.583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/22/2019] [Indexed: 01/04/2023] Open
Abstract
[Purpose] To establish the test-retest reliability of an iPhone application and determine
the immediate effect of motor control exercise (MCE) on lumbar position sense.
[Participants and Methods] This study used a two-arm, randomized controlled trial design
with a blinded assessor. Sixty healthy participants were randomized into the exercise or
control group. The exercise group underwent 30-min MCE, whereas the control group rested
for 15 min. Lumbar motion measured by two iPhones with goniometer application was used to
determine the test-retest reliability. Absolute repositioning errors (pre- and post-test)
from the control and exercise groups were used to determine the immediate effect of MCE on
lumbar position sense. [Results] The test-retest reliability was 0.67–0.95. A significant
interaction effect was found for Angle*Time, main effect of Angle, and main effect of
Time. Post-hoc comparison showed a significant improvement in position sense at 45° and
60° in the exercise group. [Conclusion] The findings suggest that a mobile phone
application has the ability to detect changes in lumbar position sense between sessions
that exceed measurement error following MCE. One session of specific MCE can improve
lumbar position sense at high lumbar flexion.
Collapse
Affiliation(s)
- Peemongkon Wattananon
- Faculty of Physical Therapy, Mahidol University: 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Wanalee Klomjai
- Faculty of Physical Therapy, Mahidol University: 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Won Sung
- Good Shepherd Penn Partners, Penn Therapy and Fitness, USA
| |
Collapse
|
17
|
Sadler CM, Cressman EK. Central fatigue mechanisms are responsible for decreases in hand proprioceptive acuity following shoulder muscle fatigue. Hum Mov Sci 2019; 66:220-230. [PMID: 31071614 DOI: 10.1016/j.humov.2019.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 11/25/2022]
Abstract
Muscle fatigue is a complex phenomenon, consisting of central and peripheral mechanisms which contribute to local and systemic changes in motor performance. In particular, it has been demonstrated that afferent processing in the fatigued muscle (e.g., shoulder), as well as in surrounding or distal muscles (e.g., hand) can be altered by fatigue. Currently, it is unclear how proximal muscle fatigue affects proprioceptive acuity of the distal limb. The purpose of the present study was to assess the effects of shoulder muscle fatigue on participants' ability to judge the location of their hand using only proprioceptive cues. Participants' (N = 16) limbs were moved outwards by a robot manipulandum and they were instructed to estimate the position of their hand relative to one of four visual reference targets (two near, two far). This estimation task was completed before and after a repetitive pointing task was performed to fatigue the shoulder muscles. To assess central versus peripheral effects of fatigue on the distal limb, the right shoulder was fatigued and proprioceptive acuity of the left and right hands were tested. Results showed that there was a significant decrease in the accuracy of proprioceptive estimates for both hands after the right shoulder was fatigued, with no change in the precision of proprioceptive estimates. A control experiment (N = 8), in which participants completed the proprioceptive estimation task before and after a period of quiet sitting, ruled out the possibility that the bilateral changes in proprioceptive accuracy were due to a practice effect. Together, these results indicate that shoulder muscle fatigue decreases proprioceptive acuity in both hands, suggesting that central fatigue mechanisms are primarily responsible for changes in afferent feedback processing of the distal upper limb.
Collapse
|
18
|
Risi N, Shah V, Mrotek LA, Casadio M, Scheidt RA. Supplemental vibrotactile feedback of real-time limb position enhances precision of goal-directed reaching. J Neurophysiol 2019; 122:22-38. [PMID: 30995149 DOI: 10.1152/jn.00337.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined vibrotactile stimulation as a form of supplemental limb state feedback to enhance planning and ongoing control of goal-directed movements. Subjects wore a two-dimensional vibrotactile display on their nondominant arm while performing horizontal planar reaching with the dominant arm. The vibrotactile display provided feedback of hand position such that small hand displacements were more easily discriminable using vibrotactile feedback than with intrinsic proprioceptive feedback. When subjects relied solely on proprioception to capture visuospatial targets, performance was degraded by proprioceptive drift and an expansion of task space. By contrast, reach accuracy was enhanced immediately when subjects were provided vibrotactile feedback and further improved over 2 days of training. Improvements reflected resolution of proprioceptive drift, which occurred only when vibrotactile feedback was active, demonstrating that benefits of vibrotactile feedback are due, in part to its integration into the ongoing control of movement. A partial resolution of task space expansion persisted even when vibrotactile feedback was inactive, demonstrating that training with vibrotactile feedback also induced changes in movement planning. However, the benefits of vibrotactile feedback come at a cognitive cost. All subjects adopted a stereotyped strategy wherein they attempted to capture targets by moving first along one axis of the vibrotactile display and then the other. For most subjects, this inefficient approach did not resolve over two bouts of training performed on separate days, suggesting that additional training is needed to integrate vibrotactile feedback into the planning and online control of goal-directed reaching in a way that promotes smooth and efficient movement. NEW & NOTEWORTHY A two-dimensional vibrotactile display provided state (not error) feedback to enhance control of a moving limb. Subjects learned to use state feedback to perform blind reaches with accuracy and precision exceeding that attained using intrinsic proprioception alone. Feedback utilization incurred substantial cognitive cost: subjects moved first along one axis of the vibrotactile display, then the other. This stereotyped control strategy must be overcome if vibrotactile limb state feedback is to promote naturalistic limb movements.
Collapse
Affiliation(s)
- Nicoletta Risi
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova , Genoa , Italy
| | - Valay Shah
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Leigh A Mrotek
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Maura Casadio
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova , Genoa , Italy.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Robert A Scheidt
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine , Chicago, Illinois.,Division of Civil, Mechanical and Manufacturing Innovation, National Science Foundation , Alexandria, Virginia
| |
Collapse
|
19
|
Martel M, Cardinali L, Bertonati G, Jouffrais C, Finos L, Farnè A, Roy AC. Somatosensory-guided tool use modifies arm representation for action. Sci Rep 2019; 9:5517. [PMID: 30940857 PMCID: PMC6445103 DOI: 10.1038/s41598-019-41928-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 03/20/2019] [Indexed: 01/28/2023] Open
Abstract
Tool-use changes both peripersonal space and body representations, with several effects being nowadays termed tool embodiment. Since somatosensation was typically accompanied by vision in most previous tool use studies, whether somatosensation alone is sufficient for tool embodiment remains unknown. Here we address this question via a task assessing arm length representation at an implicit level. Namely, we compared movement’s kinematics in blindfolded healthy participants when grasping an object before and after tool-use. Results showed longer latencies and smaller peaks in the arm transport component after tool-use, consistent with an increased length of arm representation. No changes were found in the hand grip component and correlations revealed similar kinematic signatures in naturally long-armed participants. Kinematics changes did not interact with target object position, further corroborating the finding that somatosensory-guided tool use may increase the represented size of the participants’ arm. Control experiments ruled out alternative interpretations based upon altered hand position sense. In addition, our findings indicate that tool-use effects are specific for the implicit level of arm representation, as no effect was observed on the explicit estimate of the forearm length. These findings demonstrate for the first time that somatosensation is sufficient for incorporating a tool that has never been seen, nor used before.
Collapse
Affiliation(s)
- M Martel
- Laboratoire Dynamique du Langage, CNRS UMR 5596, University Lyon 2, Lyon, France. .,University of Lyon, Lyon, France.
| | - L Cardinali
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - G Bertonati
- Laboratoire Dynamique du Langage, CNRS UMR 5596, University Lyon 2, Lyon, France.,University of Lyon, Lyon, France.,ImpAct Team, CRNL INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, University UCBL Lyon 1, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - C Jouffrais
- IRIT, CNRS, Toulouse, France.,IPAL, CNRS, Singapore, Singapore
| | - L Finos
- Department of Developmental Psychology and Socialisation, University of Padova, Padova, Italy
| | - A Farnè
- University of Lyon, Lyon, France.,ImpAct Team, CRNL INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, University UCBL Lyon 1, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy.,Hospices Civils de Lyon, Mouvement et Handicap & Neuro-immersion, Lyon, France
| | - A C Roy
- Laboratoire Dynamique du Langage, CNRS UMR 5596, University Lyon 2, Lyon, France.,University of Lyon, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| |
Collapse
|
20
|
Ohashi H, Valle-Mena R, Gribble PL, Ostry DJ. Movements following force-field adaptation are aligned with altered sense of limb position. Exp Brain Res 2019; 237:1303-1313. [PMID: 30863880 DOI: 10.1007/s00221-019-05509-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Previous work has shown that motor learning is associated with changes to both movements and to the somatosensory perception of limb position. In an earlier study that motivates the current work, it appeared that following washout trials, movements did not return to baseline but rather were aligned with associated changes to sensed limb position. Here, we provide a systematic test of this relationship, examining the idea that adaptation-related changes to sensed limb position and to the path of the limb are linked, not only after washout trials but at all stages of the adaptation process. We used a force-field adaptation paradigm followed by washout trials in which subjects performed movements without visual feedback of the limb. Tests of sensed limb position were conducted at each phase of adaptation, specifically before and after baseline movements in a null field, after force-field adaptation, and following washout trials in a null field. As in previous work, sensed limb position changed in association with force-field adaptation. At each stage of adaptation, we observed a correlation between the sensed limb position and associated path of the limb. At a group level, there were differences between the clockwise and counter-clockwise conditions. However, whenever there were changes in sensed limb position, movements following washout did not return to baseline. This suggests that adaptation in sensory and motor systems is not independent processes but rather sensorimotor adaptation is linked to sensory change. Sensory change and limb movement remain in alignment throughout adaptation such that the path of the limb is aligned with the altered sense of limb position.
Collapse
Affiliation(s)
| | | | - Paul L Gribble
- Haskins Laboratories, New Haven, CT, USA.,Western University, London, ON, Canada
| | - David J Ostry
- Haskins Laboratories, New Haven, CT, USA. .,Department of Psychology, McGill University, 2001 McGill College, Montreal, QC, H3A 1G1, Canada.
| |
Collapse
|
21
|
Chisholm AE, Qaiser T, Williams AMM, Eginyan G, Lam T. Acquisition of a precision walking skill and the impact of proprioceptive deficits in people with motor-incomplete spinal cord injury. J Neurophysiol 2019; 121:1078-1084. [PMID: 30726165 DOI: 10.1152/jn.00432.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many people with motor-incomplete spinal cord injury (m-iSCI) experience difficulty navigating obstacles, such as curbs and stairs. The ability to relearn walking skills may be limited by proprioceptive deficits. The purpose of this study was to determine the capacity of participants to acquire a precision walking skill, and to evaluate the influence of proprioceptive deficits on the skill acquisition in individuals with m-iSCI. Sixteen individuals with m-iSCI and eight controls performed a precision walking task that required matching their foot height to a target during the swing phase. Proprioceptive deficits were quantified at the hip and knee for joint position and movement detection sense. Participants completed 600 steps of training with visual feedback. Pretraining and posttraining tests were conducted without visual feedback, along with a transfer test with an ankle weight. Posttraining and transfer tests were repeated 1 day later. Participants returned to the laboratory 1 wk later to repeat the training. Performance was calculated as the vertical distance between the target and actual foot height for each step. The posttraining and transfer performances were similar between groups. However, participants with m-iSCI had a slower rate of acquisition to achieve a similar performance level compared with controls. Acquisition rate and posttraining performance of the precision walking task were related to lower limb joint position sense among SCI participants. Although they can achieve a similar level of performance in a precision walking task, proprioceptive deficits impair the rate of learning among individuals with m-iSCI compared with able-bodied controls. NEW & NOTEWORTHY People with motor-incomplete spinal cord injuries are able to achieve the same level of performance accuracy on a precision walking task as able-bodied controls; however, the rate of learning is slower, indicating that more practice is required to stabilize performance. Our findings also show a relationship between impaired sensory function and reduced accuracy when performing a precision walking task after spinal cord injury.
Collapse
Affiliation(s)
- Amanda E Chisholm
- School of Kinesiology, University of British Columbia Vancouver, British Columbia Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver Costal Health Research Institute , Vancouver, British Columbia , Canada
| | - Taha Qaiser
- School of Kinesiology, University of British Columbia Vancouver, British Columbia Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver Costal Health Research Institute , Vancouver, British Columbia , Canada
| | - Alison M M Williams
- School of Kinesiology, University of British Columbia Vancouver, British Columbia Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver Costal Health Research Institute , Vancouver, British Columbia , Canada
| | - Gevorg Eginyan
- School of Kinesiology, University of British Columbia Vancouver, British Columbia Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver Costal Health Research Institute , Vancouver, British Columbia , Canada
| | - Tania Lam
- School of Kinesiology, University of British Columbia Vancouver, British Columbia Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver Costal Health Research Institute , Vancouver, British Columbia , Canada
| |
Collapse
|
22
|
McGregor HR, Cashaback JGA, Gribble PL. Somatosensory perceptual training enhances motor learning by observing. J Neurophysiol 2018; 120:3017-3025. [PMID: 30230990 DOI: 10.1152/jn.00313.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action observation activates brain regions involved in sensory-motor control. Recent research has shown that action observation can also facilitate motor learning; observing a tutor undergoing motor learning results in functional plasticity within the motor system and gains in subsequent motor performance. However, the effects of observing motor learning extend beyond the motor domain. Converging evidence suggests that observation also results in somatosensory functional plasticity and somatosensory perceptual changes. This work has raised the possibility that the somatosensory system is also involved in motor learning that results from observation. Here we tested this hypothesis using a somatosensory perceptual training paradigm. If the somatosensory system is indeed involved in motor learning by observing, then improving subjects' somatosensory function before observation should enhance subsequent motor learning by observing. Subjects performed a proprioceptive discrimination task in which a robotic manipulandum moved the arm, and subjects made judgments about the position of their hand. Subjects in a Trained Learning group received trial-by-trial feedback to improve their proprioceptive perception. Subjects in an Untrained Learning group performed the same task without feedback. All subjects then observed a learning video showing a tutor adapting her reaches to a left force field. Subjects in the Trained Learning group, who had superior proprioceptive acuity before observation, benefited more from observing learning than subjects in the Untrained Learning group. Improving somatosensory function can therefore enhance subsequent observation-related gains in motor learning. This study provides further evidence in favor of the involvement of the somatosensory system in motor learning by observing. NEW & NOTEWORTHY We show that improving somatosensory performance before observation can improve the extent to which subjects learn from watching others. Somatosensory perceptual training may prime the sensory-motor system, thereby facilitating subsequent observational learning. The findings of this study suggest that the somatosensory system supports motor learning by observing. This finding may be useful if observation is incorporated as part of therapies for diseases affecting movement, such as stroke.
Collapse
Affiliation(s)
- Heather R McGregor
- The Brain and Mind Institute, The University of Western Ontario , London, Ontario , Canada.,Department of Psychology, The University of Western Ontario , London, Ontario , Canada.,Graduate Program in Neuroscience, The University of Western Ontario , London, Ontario , Canada
| | - Joshua G A Cashaback
- The Brain and Mind Institute, The University of Western Ontario , London, Ontario , Canada
| | - Paul L Gribble
- The Brain and Mind Institute, The University of Western Ontario , London, Ontario , Canada.,Department of Psychology, The University of Western Ontario , London, Ontario , Canada.,Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario , London, Ontario , Canada.,Haskins Laboratories , New Haven, Connecticut
| |
Collapse
|
23
|
Cuppone AV, Cappagli G, Gori M. Audio Feedback Associated With Body Movement Enhances Audio and Somatosensory Spatial Representation. Front Integr Neurosci 2018; 12:37. [PMID: 30233334 PMCID: PMC6131311 DOI: 10.3389/fnint.2018.00037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/15/2018] [Indexed: 11/13/2022] Open
Abstract
In the last years, the positive impact of sensorimotor rehabilitation training on spatial abilities has been taken into account, e.g., providing evidence that combined multimodal compared to unimodal feedback improves responsiveness to spatial stimuli. To date, it still remains unclear to which extent spatial learning is influenced by training conditions. Here we investigated the effects of active and passive audio-motor training on spatial perception in the auditory and proprioceptive domains on 36 healthy young adults. First, to investigate the role of voluntary movements on spatial perception, we compared the effects of active vs. passive multimodal training on auditory and proprioceptive spatial localization. Second, to investigate the effectiveness of unimodal training conditions on spatial perception, we compared the impact of only proprioceptive or only auditory sensory feedback on spatial localization. Finally, to understand whether the positive effects of multimodal and unimodal trainings generalize to the untrained part, both dominant and non-dominant arms were tested. Results indicate that passive multimodal training (guided movement) is more beneficial than active multimodal training (active exploration) and only in passive condition the improvement is generalized also on the untrained hand. Moreover, we found that combined audio-motor training provides the strongest benefit because it significantly affects both auditory and somatosensory localization, while the effect of a single feedback modality is limited to a single domain, indicating a cross-modal influence of the two domains. Therefore, the use of multimodal feedback is more efficient in improving spatial perception. These results indicate that combined sensorimotor signals are effective in recalibrating auditory and proprioceptive spatial perception and that the beneficial effect is mainly due to the combination of auditory and proprioceptive spatial cues.
Collapse
Affiliation(s)
- Anna Vera Cuppone
- Unit for Visually Impaired People (U-VIP), Istituto Italiano di Tecnologia, Genoa, Italy
| | | | | |
Collapse
|
24
|
Cuppone AV, Semprini M, Konczak J. Consolidation of human somatosensory memory during motor learning. Behav Brain Res 2018; 347:184-192. [DOI: 10.1016/j.bbr.2018.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/09/2018] [Accepted: 03/07/2018] [Indexed: 12/28/2022]
|
25
|
Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy. Exp Brain Res 2018; 236:2137-2155. [PMID: 29779050 PMCID: PMC6061502 DOI: 10.1007/s00221-018-5289-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022]
Abstract
It is uncertain how vision and proprioception contribute to adaptation of voluntary arm movements. In normal participants, adaptation to imposed forces is possible with or without vision, suggesting that proprioception is sufficient; in participants with proprioceptive loss (PL), adaptation is possible with visual feedback, suggesting that proprioception is unnecessary. In experiment 1 adaptation to, and retention of, perturbing forces were evaluated in three chronically deafferented participants. They made rapid reaching movements to move a cursor toward a visual target, and a planar robot arm applied orthogonal velocity-dependent forces. Trial-by-trial error correction was observed in all participants. Such adaptation has been characterized with a dual-rate model: a fast process that learns quickly, but retains poorly and a slow process that learns slowly and retains well. Experiment 2 showed that the PL participants had large individual differences in learning and retention rates compared to normal controls. Experiment 3 tested participants’ perception of applied forces. With visual feedback, the PL participants could report the perturbation’s direction as well as controls; without visual feedback, thresholds were elevated. Experiment 4 showed, in healthy participants, that force direction could be estimated from head motion, at levels close to the no-vision threshold for the PL participants. Our results show that proprioceptive loss influences perception, motor control and adaptation but that proprioception from the moving limb is not essential for adaptation to, or detection of, force fields. The differences in learning and retention seen between the three deafferented participants suggest that they achieve these tasks in idiosyncratic ways after proprioceptive loss, possibly integrating visual and vestibular information with individual cognitive strategies.
Collapse
|
26
|
Elangovan N, Cappello L, Masia L, Aman J, Konczak J. A robot-aided visuo-motor training that improves proprioception and spatial accuracy of untrained movement. Sci Rep 2017; 7:17054. [PMID: 29213051 PMCID: PMC5719025 DOI: 10.1038/s41598-017-16704-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022] Open
Abstract
Proprioceptive function can become enhanced during motor learning. Yet, we have incomplete knowledge to what extent proprioceptive function is trainable and how a training that enhances proprioception may influence performance in untrained motor skills. To address this knowledge gap, healthy young adults (N = 14) trained in a visuomotor task that required learners to make increasingly accurate wrist movements. Using a robotic exoskeleton coupled with a virtual visual environment, participants tilted a virtual table through continuous wrist flexion/extension movements with the goal to position a rolling ball on table into a target. With learning progress, the level of difficulty increased by altering the virtual ball mechanics and the gain between joint movement and ball velocity. Before and after training, wrist position sense acuity and spatial movement accuracy in an untrained, discrete wrist-pointing task was assessed using the same robot. All participants showed evidence of proprioceptive-motor learning. Mean position sense discrimination threshold improved by 34%. Wrist movement accuracy in the untrained pointing task improved by 27% in 13/14 participants. This demonstrates that a short sensorimotor training challenging proprioception can a) effectively enhance proprioceptive acuity and b) improve the accuracy of untrained movement. These findings provide a scientific basis for applying such somatosensory-based motor training to clinical populations with known proprioceptive dysfunction to enhance sensorimotor performance.
Collapse
Affiliation(s)
- Naveen Elangovan
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, Minneapolis, MN, USA.
- Center for Clinical Movement Science, University of Minnesota, Minneapolis, MN, USA.
| | - Leonardo Cappello
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Lorenzo Masia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Joshua Aman
- Center for Clinical Movement Science, University of Minnesota, Minneapolis, MN, USA
- Neuromodulation Research Center, Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, Minneapolis, MN, USA
- Center for Clinical Movement Science, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
27
|
Zafar H, Alghadir AH, Iqbal ZA. Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2017; 17:341-346. [PMID: 29199196 PMCID: PMC5749043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVES To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. METHODS 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. RESULTS Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. CONCLUSIONS To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn't affect head-neck relocation error in normal healthy subjects.
Collapse
Affiliation(s)
- Hamayun Zafar
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia,Department of Odontology, Clinical Oral Physiology, Umea University, Umea, Sweden
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zaheen A. Iqbal
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia,Corresponding author: Zaheen A. Iqbal, Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, PO BOX 10219, Riyadh 11433, Saudi Arabia E-mail:
| |
Collapse
|
28
|
Fraser LE, Harris LR. The effect of hand position on perceived finger orientation in left- and right-handers. Exp Brain Res 2017; 235:3683-3693. [PMID: 28929312 PMCID: PMC5671529 DOI: 10.1007/s00221-017-5090-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022]
Abstract
In the absence of visual feedback, the perceived orientation of the fingers is systematically biased. In right-handers these biases are asymmetrical between the left and right hands in the horizontal plane and may reflect common functional postures for the two hands. Here we compared finger orientation perception in right- and left-handed participants for both hands, across various hand positions in the horizontal plane. Participants rotated a white line on a screen optically superimposed over their hand to indicate the perceived position of the finger that was rotated to one of seven orientations with the hand either aligned with the body midline, aligned with the shoulder, or displaced by twice the shoulder-to-midline distance from the midline. We replicated the asymmetric pattern of biases previously reported in right-handed participants (left hand biased towards an orientation ~30° inward, right hand ~10° inward). However, no such asymmetry was found for left-handers, suggesting left-handers may use different strategies when mapping proprioception to body or space coordinates and/or have less specialization of function between the hands. Both groups' responses rotated further outward as distance of the hand from the body midline increased, consistent with other research showing spatial orientation estimates diverge outward in the periphery. Finally, for right-handers, precision of responses was best when the hand was aligned with the shoulder compared to the other two conditions. These results highlight the unique role of hand dominance and hand position in perception of finger orientation, and provide insight into the proprioceptive position sense of the upper limbs.
Collapse
Affiliation(s)
- Lindsey E Fraser
- Department of Psychology, Center for Vision Research, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| | - Laurence R Harris
- Department of Psychology, Center for Vision Research, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
29
|
Cashaback JGA, McGregor HR, Mohatarem A, Gribble PL. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning. PLoS Comput Biol 2017; 13:e1005623. [PMID: 28753634 PMCID: PMC5550011 DOI: 10.1371/journal.pcbi.1005623] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/09/2017] [Accepted: 06/06/2017] [Indexed: 01/24/2023] Open
Abstract
It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback. Whether serving a tennis ball on a gusty day or walking over an unpredictable surface, the human nervous system has a remarkable ability to account for uncertainty when performing goal-directed actions. Here we address how different types of feedback, error and reinforcement, are used to guide such behavior during sensorimotor learning. Using a task that dissociates the optimal predictions of error-based and reinforcement-based learning, we show that the human sensorimotor system uses two distinct loss functions when deciding where to aim the hand during a reach—one that minimizes error and another that maximizes success. Interestingly, when both of these forms of feedback are available our nervous system heavily weights error feedback over reinforcement feedback.
Collapse
Affiliation(s)
- Joshua G A Cashaback
- Brain and Mind Institute, Department of Psychology, Western University, London, ON, Canada
| | - Heather R McGregor
- Brain and Mind Institute, Department of Psychology, Western University, London, ON, Canada.,Graduate Program in Neuroscience, Western University, London, ON, Canada
| | - Ayman Mohatarem
- Department of Biology, Western University, London, ON, Canada
| | - Paul L Gribble
- Brain and Mind Institute, Department of Psychology, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
30
|
Abstract
While some autoimmune disorders remain extremely rare, others largely predominate the epidemiology of human autoimmunity. Notably, these include psoriasis, diabetes, vitiligo, thyroiditis, rheumatoid arthritis and multiple sclerosis. Thus, despite the quasi-infinite number of "self" antigens that could theoretically trigger autoimmune responses, only a limited set of antigens, referred here as superautoantigens, induce pathogenic adaptive responses. Several lines of evidence reviewed in this paper indicate that, irrespective of the targeted organ (e.g. thyroid, pancreas, joints, brain or skin), a significant proportion of superautoantigens are highly expressed in the synaptic compartment of the central nervous system (CNS). Such an observation applies notably for GAD65, AchR, ribonucleoproteins, heat shock proteins, collagen IV, laminin, tyrosine hydroxylase and the acetylcholinesterase domain of thyroglobulin. It is also argued that cognitive alterations have been described in a number of autoimmune disorders, including psoriasis, rheumatoid arthritis, lupus, Crohn's disease and autoimmune thyroiditis. Finally, the present paper points out that a great majority of the "incidental" autoimmune conditions notably triggered by neoplasms, vaccinations or microbial infections are targeting the synaptic or myelin compartments. On this basis, the concept of an immunological homunculus, proposed by Irun Cohen more than 25 years ago, is extended here in a model where physiological autoimmunity against brain superautoantigens confers both: i) a crucial evolutionary-determined advantage via cognition-promoting autoimmunity; and ii) a major evolutionary-determined vulnerability, leading to the emergence of autoimmune disorders in Homo sapiens. Moreover, in this theoretical framework, the so called co-development/co-evolution model, both the development (at the scale of an individual) and evolution (at the scale of species) of the antibody and T-cell repertoires are coupled to those of the neural repertoires (i.e. the distinct neuronal populations and synaptic circuits supporting cognitive and sensorimotor functions). Clinical implications and future experimental insights are also presented and discussed.
Collapse
Affiliation(s)
- Serge Nataf
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), CarMeN Laboratory, INSERM 1060, INRA 1397, INSA Lyon, Université Claude Bernard Lyon-1, Lyon, F-69000, France
| |
Collapse
|
31
|
Cuppone AV, Squeri V, Semprini M, Masia L, Konczak J. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance. PLoS One 2016; 11:e0164511. [PMID: 27727321 PMCID: PMC5058482 DOI: 10.1371/journal.pone.0164511] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/25/2016] [Indexed: 11/19/2022] Open
Abstract
This study examined the trainability of the proprioceptive sense and explored the relationship between proprioception and motor learning. With vision blocked, human learners had to perform goal-directed wrist movements relying solely on proprioceptive/haptic cues to reach several haptically specified targets. One group received additional somatosensory movement error feedback in form of vibro-tactile cues applied to the skin of the forearm. We used a haptic robotic device for the wrist and implemented a 3-day training regimen that required learners to make spatially precise goal-directed wrist reaching movements without vision. We assessed whether training improved the acuity of the wrist joint position sense. In addition, we checked if sensory learning generalized to the motor domain and improved spatial precision of wrist tracking movements that were not trained. The main findings of the study are: First, proprioceptive acuity of the wrist joint position sense improved after training for the group that received the combined proprioceptive/haptic and vibro-tactile feedback (VTF). Second, training had no impact on the spatial accuracy of the untrained tracking task. However, learners who had received VTF significantly reduced their reliance on haptic guidance feedback when performing the untrained motor task. That is, concurrent VTF was highly salient movement feedback and obviated the need for haptic feedback. Third, VTF can be also provided by the limb not involved in the task. Learners who received VTF to the contralateral limb equally benefitted. In conclusion, somatosensory training can significantly enhance proprioceptive acuity within days when learning is coupled with vibro-tactile sensory cues that provide feedback about movement errors. The observable sensory improvements in proprioception facilitates motor learning and such learning may generalize to the sensorimotor control of the untrained motor tasks. The implications of these findings for neurorehabilitation are discussed.
Collapse
Affiliation(s)
- Anna Vera Cuppone
- Motor Learning and Robotic Rehabilitation Laboratory, Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
| | - Valentina Squeri
- Motor Learning and Robotic Rehabilitation Laboratory, Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
| | - Marianna Semprini
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Lorenzo Masia
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, School of Kinesiology and Center for Clinical Movement Science, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
32
|
The relationship between lower limb proprioceptive sense and locomotor skill acquisition. Exp Brain Res 2016; 234:3185-3192. [PMID: 27380635 DOI: 10.1007/s00221-016-4716-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/27/2016] [Indexed: 01/01/2023]
Abstract
Sensorimotor integration is essential for controlling movement and acquiring new motor tasks in humans. The aim of this project was to understand how lower limb proprioceptive sense contributes to the acquisition of a skilled walking task. We assessed lower limb joint position and movement detection sense in healthy human subjects using the Lokomat robotic exoskeleton. Subjects walked on a treadmill to practice a skilled motor task (200 trials) requiring them to match their foot height during the swing phase to the height of a virtual obstacle displayed on a monitor in front of them. Subjects were given visual feedback on their error relative to the obstacle height after it was crossed. Lower limb joint position sense was related to the final performance error, but not the learning rate of the skilled walking task. The findings from this study support the role of lower limb proprioceptive sense on locomotor skill performance in healthy adult subjects.
Collapse
|
33
|
Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing. Curr Biol 2016; 26:921-7. [PMID: 26972317 DOI: 10.1016/j.cub.2016.01.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/08/2015] [Accepted: 01/25/2016] [Indexed: 11/21/2022]
Abstract
An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system.
Collapse
|
34
|
Abstract
UNLABELLED The early stages of motor skill acquisition are often marked by uncertainty about the sensory and motor goals of the task, as is the case in learning to speak or learning the feel of a good tennis serve. Here we present an experimental model of this early learning process, in which targets are acquired by exploration and reinforcement rather than sensory error. We use this model to investigate the relative contribution of motor and sensory factors to human motor learning. Participants make active reaching movements or matched passive movements to an unseen target using a robot arm. We find that learning through passive movements paired with reinforcement is comparable with learning associated with active movement, both in terms of magnitude and durability, with improvements due to training still observable at a 1 week retest. Motor learning is also accompanied by changes in somatosensory perceptual acuity. No stable changes in motor performance are observed for participants that train, actively or passively, in the absence of reinforcement, or for participants who are given explicit information about target position in the absence of somatosensory experience. These findings indicate that the somatosensory system dominates learning in the early stages of motor skill acquisition. SIGNIFICANCE STATEMENT The research focuses on the initial stages of human motor learning, introducing a new experimental model that closely approximates the key features of motor learning outside of the laboratory. The finding indicates that it is the somatosensory system rather than the motor system that dominates learning in the early stages of motor skill acquisition. This is important given that most of our computational models of motor learning are based on the idea that learning is motoric in origin. This is also a valuable finding for rehabilitation of patients with limited mobility as it shows that reinforcement in conjunction with passive movement results in benefits to motor learning that are as great as those observed for active movement training.
Collapse
|
35
|
Colombo R, Sterpi I, Mazzone A, Delconte C, Pisano F. Improving proprioceptive deficits after stroke through robot-assisted training of the upper limb: a pilot case report study. Neurocase 2016; 22:191-200. [PMID: 26565132 DOI: 10.1080/13554794.2015.1109667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to determine whether a conventional robot-assisted therapy of the upper limb was able to improve proprioception and motor recovery of an individual after stroke who exhibited proprioceptive deficits. After robotic sensorimotor training, significant changes were observed in kinematic performance variables. Two quantitative parameters evaluating position sense improved after training. Range of motion during shoulder and wrist flexion improved, but only wrist flexion remained improved at 3-month follow-up. These preliminary results suggest that intensive robot-aided rehabilitation may play an important role in the recovery of sensory function. However, further studies are required to confirm these data.
Collapse
Affiliation(s)
- R Colombo
- a Service of Bioengineering , "Salvatore Maugeri" Foundation, IRCCS , Pavia , Italy.,b Service of Bioengineering , "Salvatore Maugeri" Foundation, IRCCS , Veruno , NO , Italy
| | - I Sterpi
- a Service of Bioengineering , "Salvatore Maugeri" Foundation, IRCCS , Pavia , Italy
| | - A Mazzone
- b Service of Bioengineering , "Salvatore Maugeri" Foundation, IRCCS , Veruno , NO , Italy
| | - C Delconte
- c Neurologic Rehabilitation Division , "Salvatore Maugeri" Foundation, IRCCS , Veruno , NO , Italy
| | - F Pisano
- c Neurologic Rehabilitation Division , "Salvatore Maugeri" Foundation, IRCCS , Veruno , NO , Italy
| |
Collapse
|
36
|
Sakurada T, Hirai M, Watanabe E. Optimization of a motor learning attention-directing strategy based on an individual's motor imagery ability. Exp Brain Res 2015; 234:301-11. [PMID: 26466828 DOI: 10.1007/s00221-015-4464-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/06/2015] [Indexed: 11/30/2022]
Abstract
Motor learning performance has been shown to be affected by various cognitive factors such as the focus of attention and motor imagery ability. Most previous studies on motor learning have shown that directing the attention of participants externally, such as on the outcome of an assigned body movement, can be more effective than directing their attention internally, such as on body movement itself. However, to the best of our knowledge, no findings have been reported on the effect of the focus of attention selected according to the motor imagery ability of an individual on motor learning performance. We measured individual motor imagery ability assessed by the Movement Imagery Questionnaire and classified the participants into kinesthetic-dominant (n = 12) and visual-dominant (n = 8) groups based on the questionnaire score. Subsequently, the participants performed a motor learning task such as tracing a trajectory using visuomotor rotation. When the participants were required to direct their attention internally, the after-effects of the learning task in the kinesthetic-dominant group were significantly greater than those in the visual-dominant group. Conversely, when the participants were required to direct their attention externally, the after-effects of the visual-dominant group were significantly greater than those of the kinesthetic-dominant group. Furthermore, we found a significant positive correlation between the size of after-effects and the modality-dominance of motor imagery. These results suggest that a suitable attention strategy based on the intrinsic motor imagery ability of an individual can improve performance during motor learning tasks.
Collapse
Affiliation(s)
- Takeshi Sakurada
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.,Applied Cognitive Neuroscience Laboratory, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo, 112-8551, Japan
| | - Masahiro Hirai
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Eiju Watanabe
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.,Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
37
|
Yavari F, Towhidkhah F, Ahmadi-Pajouh MA, Darainy M. The role of internal forward models and proprioception in hand position estimation. J Integr Neurosci 2015; 14:403-18. [PMID: 26307154 DOI: 10.1142/s0219635215500168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our ability to properly move and react in different situations is largely dependent on our perception of our limbs' position. At least three sources - vision, proprioception, and internal forward models (FMs) - seem to contribute to this perception. To the best of our knowledge, the effect of each source has not been studied individually. Specifically, role of FM has been ignored in some previous studies. We hypothesized that FM has a critical role in subjects' perception which needs to be considered in the relevant studies to obtain more reliable results. Therefore, we designed an experiment with the goal of investigating FM and proprioception role in subjects' perception of their hand's position. Three groups of subjects were recruited in the study. Based on the experiment design, it was supposed that subjects in different groups relied on proprioception, FM, and both of them for estimating their unseen hand's position. Comparing the results of three groups revealed significant difference between their estimation' errors. FM provided minimum estimation error, while proprioception had a bias error in the tested region. Integrating proprioception with FM decreased this error. Integration of two Gaussian functions, fitted to the error distribution of FM and proprioception groups, was simulated and created a mean error value almost similar to the experimental observation. These results suggest that FM role needs to be considered when studying the perceived position of the limbs. This can lead to gain better insights into the mechanisms underlying the perception of our limbs' position which might have potential clinical and rehabilitation applications, e.g., in the postural control of elderly which are at high risk of falls and injury because of deterioration of their perception with age.
Collapse
Affiliation(s)
- Fatemeh Yavari
- * Neurocognitive Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.,† Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Farzad Towhidkhah
- † Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Mohammad Darainy
- ‡ Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
38
|
Cressman EK, Henriques DYP. Generalization patterns for reach adaptation and proprioceptive recalibration differ after visuomotor learning. J Neurophysiol 2015; 114:354-65. [PMID: 25972587 DOI: 10.1152/jn.00415.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
Visuomotor learning results in changes in both motor and sensory systems (Cressman EK, Henriques DY. J Neurophysiol 102: 3505-3518, 2009), such that reaches are adapted and sense of felt hand position recalibrated after reaching with altered visual feedback of the hand. Moreover, visuomotor learning has been shown to generalize such that reach adaptation achieved at a trained target location can influence reaches to novel target directions (Krakauer JW, Pine ZM, Ghilardi MF, Ghez C. J Neurosci 20: 8916-8924, 2000). We looked to determine whether proprioceptive recalibration also generalizes to novel locations. Moreover, we looked to establish the relationship between reach adaptation and changes in sense of felt hand position by determining whether proprioceptive recalibration generalizes to novel targets in a similar manner as reach adaptation. On training trials, subjects reached to a single target with aligned or misaligned cursor-hand feedback, in which the cursor was either rotated or scaled in extent relative to hand movement. After reach training, subjects reached to the training target and novel targets (including targets from a second start position) without visual feedback to assess generalization of reach adaptation. Subjects then performed a proprioceptive estimation task, in which they indicated the position of their hand relative to visual reference markers placed at similar locations as the trained and novel reach targets. Results indicated that shifts in hand position generalized across novel locations, independent of reach adaptation. Thus these distinct sensory and motor generalization patterns suggest that reach adaptation and proprioceptive recalibration arise from independent error signals and that changes in one system cannot guide adjustments in the other.
Collapse
Affiliation(s)
- Erin K Cressman
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Denise Y P Henriques
- Department of Psychology, York University, Toronto, Ontario, Canada; and School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Aman JE, Elangovan N, Yeh IL, Konczak J. The effectiveness of proprioceptive training for improving motor function: a systematic review. Front Hum Neurosci 2015; 8:1075. [PMID: 25674059 PMCID: PMC4309156 DOI: 10.3389/fnhum.2014.01075] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/30/2014] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Numerous reports advocate that training of the proprioceptive sense is a viable behavioral therapy for improving impaired motor function. However, there is little agreement of what constitutes proprioceptive training and how effective it is. We therefore conducted a comprehensive, systematic review of the available literature in order to provide clarity to the notion of training the proprioceptive system. METHODS Four major scientific databases were searched. The following criteria were subsequently applied: (1) A quantified pre- and post-treatment measure of proprioceptive function. (2) An intervention or training program believed to influence or enhance proprioceptive function. (3) Contained at least one form of treatment or outcome measure that is indicative of somatosensory function. From a total of 1284 articles, 51 studies fulfilled all criteria and were selected for further review. RESULTS Overall, proprioceptive training resulted in an average improvement of 52% across all outcome measures. Applying muscle vibration above 30 Hz for longer durations (i.e., min vs. s) induced outcome improvements of up to 60%. Joint position and target reaching training consistently enhanced joint position sense (up to 109%) showing an average improvement of 48%. Cortical stroke was the most studied disease entity but no clear evidence indicated that proprioceptive training is differentially beneficial across the reported diseases. CONCLUSIONS There is converging evidence that proprioceptive training can yield meaningful improvements in somatosensory and sensorimotor function. However, there is a clear need for further work. Those forms of training utilizing both passive and active movements with and without visual feedback tended to be most beneficial. There is also initial evidence suggesting that proprioceptive training induces cortical reorganization, reinforcing the notion that proprioceptive training is a viable method for improving sensorimotor function.
Collapse
Affiliation(s)
- Joshua E Aman
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota Minneapolis, MN, USA ; Center for Clinical Movement Science, University of Minnesota Minneapolis, MN, USA
| | - Naveen Elangovan
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota Minneapolis, MN, USA
| | - I-Ling Yeh
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota Minneapolis, MN, USA
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota Minneapolis, MN, USA ; Center for Clinical Movement Science, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
40
|
Proprioceptive acuity into knee hypermobile range in children with joint hypermobility syndrome. Pediatr Rheumatol Online J 2014; 12:40. [PMID: 25278815 PMCID: PMC4182796 DOI: 10.1186/1546-0096-12-40] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 09/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Children with Joint Hypermobility Syndrome (JHS) have reduced knee joint proprioceptive acuity compared to peers. Altered proprioception at end of range in individuals with JHS is hypothesised to contribute to recurrent joint injuries and instability. This study aims to provide the first objective comparison of functional knee joint proprioceptive acuity in hyperextension range compared to early flexion range in children with JHS. METHODS Active, weight-bearing knee joint proprioceptive acuity in both hyperextension and early flexion range was tested with a purpose-built device. Proprioceptive acuity was measured using the psychophysical method of constant stimuli to determine ability to discriminate between the extents of paired active movements made to physical stops. The smallest difference in knee range of motion that the child is able to correctly judge on at least 75% of occasions, the Just Noticeable Difference (JND), was calculated using Probit analysis. Knee pain, muscle strength, amount of physical activity and patient demographic data were collected. RESULTS Twenty children aged 8-16 years with JHS and hypermobile knees participated. Eleven children demonstrated better proprioceptive acuity in flexion, and 9 in hyperextension (z = 0.45, p = 0.63). Matched pairs t-test found no significant difference in children's ability to discriminate between the same extents of movement in the hyperextension or flexion directions (mean JND difference 0.11°, 95% CI -0.26° - 0.47°, p = 0.545). However, 3 children could not discriminate movements in hyperextension better than chance. Proprioceptive acuity scores were positively correlated between the two directions of movement (r = 0.55, p = 0.02), with no significant correlations found between proprioceptive acuity and age, degree of hypermobility, muscle strength, pain level, amount of physical activity or body mass index centile (r = -0.35 to -0.03, all p ≥ 0.13). CONCLUSION For a group of children with JHS involving hypermobile knees, there was no significant difference between knee joint proprioceptive acuity in early flexion and in hypermobile range when measured by a functional, active, weight-bearing test. Therefore, when implementing a proprioceptive training programme, clinicians should focus training throughout knee range, including into hyperextension. Further research is needed to determine factors contributing to pain and instability in hypermobile range.
Collapse
|
41
|
|
42
|
Cusmano I, Sterpi I, Mazzone A, Ramat S, Delconte C, Pisano F, Colombo R. Evaluation of upper limb sense of position in healthy individuals and patients after stroke. JOURNAL OF HEALTHCARE ENGINEERING 2014; 5:145-62. [PMID: 24918181 DOI: 10.1260/2040-2295.5.2.145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aims of this study were to develop and evaluate reliability of a quantitative assessment tool for upper limb sense of position on the horizontal plane. We evaluated 15 healthy individuals (controls) and 9 stroke patients. A robotic device passively moved one arm of the blindfolded participant who had to actively move his/her opposite hand to the mirror location in the workspace. Upper-limb's position was evaluated by a digital camera. The position of the passive hand was compared with the active hand's 'mirror' position. Performance metrics were then computed to measure the mean absolute errors, error variability, spatial contraction/expansion, and systematic shifts. No significant differences were observed between dominant and non-dominant active arms of controls. All performance parameters of the post-stroke group differed significantly from those of controls. This tool can provide a quantitative measure of upper limb sense of position, therefore allowing detection of changes due to rehabilitation.
Collapse
Affiliation(s)
- I Cusmano
- IRCCS, Service of Bioengineering, "Salvatore Maugeri" Foundation, Pavia, Italy
| | - I Sterpi
- IRCCS, Service of Bioengineering, "Salvatore Maugeri" Foundation, Pavia, Italy
| | - A Mazzone
- IRCCS, Service of Bioengineering, "Salvatore Maugeri" Foundation, Veruno (NO), Italy
| | - S Ramat
- Department of Computer and Systems Science, University of Pavia, Pavia, Italy
| | - C Delconte
- IRCCS, Division of Neurology, "Salvatore Maugeri" Foundation, Veruno (NO), Italy
| | - F Pisano
- IRCCS, Division of Neurology, "Salvatore Maugeri" Foundation, Veruno (NO), Italy
| | - R Colombo
- IRCCS, Service of Bioengineering, "Salvatore Maugeri" Foundation, Pavia, Italy IRCCS, Service of Bioengineering, "Salvatore Maugeri" Foundation, Veruno (NO), Italy
| |
Collapse
|
43
|
Black G, Waddington G, Adams R. Relative sensitivity of depth discrimination for ankle inversion and plantar flexion movements. Percept Mot Skills 2014; 118:115-25. [PMID: 24724517 DOI: 10.2466/26.24.pms.118k10w7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
25 participants (20 women, 5 men) were tested for sensitivity in discrimination between sets of six movements centered on 8 degrees, 11 degrees, and 14 degrees, and separated by 0.3 degrees. Both inversion and plantar flexion movements were tested. Discrimination of the extent of inversion movement was observed to decline linearly with increasing depth; however, for plantar flexion, the discrimination function for movement extent was found to be non-linear. The relatively better discrimination of plantar flexion movements than inversion movements at around 11 degrees from horizontal is interpreted as an effect arising from differential amounts of practice through use, because this position is associated with the plantar flexion movement made in normal walking. The fact that plantar flexion movements are discriminated better than inversion at one region but not others argues against accounts of superior proprioceptive sensitivity for plantar flexion compared to inversion that are based on general properties of plantar flexion such as the number of muscle fibres on stretch.
Collapse
|
44
|
Toderita I, Bourgeon S, Voisin JIA, Chapman CE. Haptic two-dimensional angle categorization and discrimination. Exp Brain Res 2013; 232:369-83. [PMID: 24170289 DOI: 10.1007/s00221-013-3745-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/11/2013] [Indexed: 11/29/2022]
Abstract
This study examined the extent to which haptic perception of two-dimensional (2-D) shape is modified by the design of the perceptual task (single-interval categorization vs. two-interval discrimination), the orientation of the angles in space (oblique vs. horizontal), and the exploration strategy (one or two passes over the angle). Subjects (n = 12) explored 2-D angles using the index finger of the outstretched arm. In the categorization task, subjects scanned individual angles, categorizing each as "large" or "small" (2 angles presented in each block of trials; range 80° vs. 100° to 89° vs. 91°; implicit standard 90°). In the discrimination task, a pair of angles was scanned (standard 90°; comparison 91-103°) and subjects identified the larger angle. The threshold for 2-D angle categorization was significantly lower than for 2-D angle discrimination, 4° versus 7.2°. Performance in the categorization task did not vary with either the orientation of the angles (horizontal vs. oblique, 3.9° vs. 4°) or the number of passes over the angle (1 vs. 2 passes, 3.9° vs. 4°). We suggest that the lower threshold with angle categorization likely reflects the reduced cognitive demands of this task. We found no evidence for a haptic oblique effect (higher threshold with oblique angles), likely reflecting the presence of an explicit external frame of reference formed by the intersection of the two bars forming the 2-D angles. Although one-interval haptic categorization is a more sensitive method for assessing 2-D haptic angle perception, perceptual invariances for exploratory strategy and angle orientation were, nevertheless, task-independent.
Collapse
Affiliation(s)
- Iuliana Toderita
- Groupe de recherche sur le système nerveux central (GRSNC), Département de neurosciences, Faculté de médecine, Université de Montréal, Succursale centre ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada
| | | | | | | |
Collapse
|
45
|
Bernardi NF, Darainy M, Bricolo E, Ostry DJ. Observing motor learning produces somatosensory change. J Neurophysiol 2013; 110:1804-10. [PMID: 23864382 DOI: 10.1152/jn.01061.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Observing the actions of others has been shown to affect motor learning, but does it have effects on sensory systems as well? It has been recently shown that motor learning that involves actual physical practice is also associated with plasticity in the somatosensory system. Here, we assessed the idea that observational learning likewise changes somatosensory function. We evaluated changes in somatosensory function after human subjects watched videos depicting motor learning. Subjects first observed video recordings of reaching movements either in a clockwise or counterclockwise force field. They were then trained in an actual force-field task that involved a counterclockwise load. Measures of somatosensory function were obtained before and after visual observation and also following force-field learning. Consistent with previous reports, video observation promoted motor learning. We also found that somatosensory function was altered following observational learning, both in direction and in magnitude, in a manner similar to that which occurs when motor learning is achieved through actual physical practice. Observation of the same sequence of movements in a randomized order did not result in somatosensory perceptual change. Observational learning and real physical practice appear to tap into the same capacity for sensory change in that subjects that showed a greater change following observational learning showed a reliably smaller change following physical motor learning. We conclude that effects of observing motor learning extend beyond the boundaries of traditional motor circuits, to include somatosensory representations.
Collapse
|
46
|
Abstract
STUDY DESIGN Controlled laboratory study: cross-sectional. OBJECTIVE To determine if proprioception, measured by the threshold to detection of passive motion (TDPM), differed in individuals who regularly participate in moderate-intensity exercise for fitness as compared to individuals involved in high-intensity skilled exercise. BACKGROUND Previous research has been equivocal as to whether exercise training is associated with superior proprioceptive acuity, in particular, exercise that includes dynamic postural challenges such as cutting and pivoting. METHODS Two groups of 25 healthy individuals (18-32 years old) were recruited. One group consisted of individuals who performed moderate-activity level exercises for 5 to 10 hours per week. Participants in the other group performed high-activity level exercises, including high-speed cutting and pivoting activities, at least 10 hours per week. Proprioception was determined using TDPM, in which the knee was slowly extended or flexed at an angular velocity of 0.5°/s or less from a starting position of 40° of knee flexion. RESULTS Individuals participating in competitive, high-intensity skilled exercise demonstrated better acuity (average of both limbs) of TDPM (mean ± SD, 0.81° ± 0.38°; P<.001) than those participating in moderate-intensity exercise for fitness (1.53° ± 0.58°). A low but statistically significant association (r = -0.38, P = .006) was found between weekly duration of exercise and proprioceptive threshold as measured by TDPM. CONCLUSION These results suggest that perceptual thresholds of passive movement may be enhanced, depending on activity level and associated postural challenge, and that higher level and increased amount of exercise may promote enhanced neurosensory processing in these individuals. Consequently, high-intensity skilled training may deserve further emphasis in orthopaedic rehabilitation.
Collapse
|
47
|
Horslen BC, Murnaghan CD, Inglis JT, Chua R, Carpenter MG. Effects of postural threat on spinal stretch reflexes: evidence for increased muscle spindle sensitivity? J Neurophysiol 2013; 110:899-906. [PMID: 23719208 DOI: 10.1152/jn.00065.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Standing balance is often threatened in everyday life. These threats typically involve scenarios in which either the likelihood or the consequence of falling is higher than normal. When cats are placed in these scenarios they respond by increasing the sensitivity of muscle spindles imbedded in the leg muscles, presumably to increase balance-relevant afferent information available to the nervous system. At present, it is unknown whether humans also respond to such postural threats by altering muscle spindle sensitivity. Here we present two studies that probed the effects of postural threat on spinal stretch reflexes. In study 1 we manipulated the threat associated with an increased consequence of a fall by having subjects stand at the edge of an elevated surface (3.2 m). In study 2 we manipulated the threat by increasing the likelihood of a fall by occasionally tilting the support surface on which subjects stood. In both scenarios we used Hoffmann (H) and tendon stretch (T) reflexes to probe the spinal stretch reflex circuit of the soleus muscle. We observed increased T-reflex amplitudes and unchanged H-reflex amplitudes in both threat scenarios. These results suggest that the synaptic state of the spinal stretch reflex is unaffected by postural threat and that therefore the muscle spindles activated in the T-reflexes must be more sensitive in the threatening conditions. We propose that this increase in sensitivity may function to satisfy the conflicting needs to restrict movement with threat, while maintaining a certain amount of sensory information related to postural control.
Collapse
Affiliation(s)
- Brian C Horslen
- School of Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
48
|
Ward R, Strauss G, Leitão S. Kinematic changes in jaw and lip control of children with cerebral palsy following participation in a motor-speech (PROMPT) intervention. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2013; 15:136-155. [PMID: 23025573 DOI: 10.3109/17549507.2012.713393] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study evaluates kinematic movements of the jaw and lips in six children (3-11 years) with moderate-to-severe speech impairment associated with cerebral palsy before, during, and after participation in a motor-speech (PROMPT) intervention program. An ABCA single subject research design was implemented. Subsequent to the baseline phase (A), phase B targeted each participant's first intervention priority on the PROMPT motor-speech hierarchy. Phase C then targeted one level higher. A reference group of 12 typically-developing peers, age- and sex-matched to each participant with CP, was recruited for comparison in the interpretation of the kinematic data. Jaw and lip measurements of distance, velocity, and duration, during the production of 11 untrained stimulus words, were obtained at the end of each study phase using 3D motion analysis (Vicon Motus 9.1). All participants showed significant changes in specific movement characteristics of the jaw and lips. Kinematic changes were associated with significant positive changes to speech intelligibility in five of the six participants. This study makes a contribution to providing evidence that supports the use of a treatment approach aligned with dynamic systems theory to improve the motor-speech movement patterns and speech intelligibility in children with cerebral palsy.
Collapse
Affiliation(s)
- Roslyn Ward
- School of Psychology and Speech Pathology and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
| | | | | |
Collapse
|
49
|
Nasir SM, Darainy M, Ostry DJ. Sensorimotor adaptation changes the neural coding of somatosensory stimuli. J Neurophysiol 2013; 109:2077-85. [PMID: 23343897 DOI: 10.1152/jn.00719.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor learning is reflected in changes to the brain's functional organization as a result of experience. We show here that these changes are not limited to motor areas of the brain and indeed that motor learning also changes sensory systems. We test for plasticity in sensory systems using somatosensory evoked potentials (SEPs). A robotic device is used to elicit somatosensory inputs by displacing the arm in the direction of applied force during learning. We observe that following learning there are short latency changes to the response in somatosensory areas of the brain that are reliably correlated with the magnitude of motor learning: subjects who learn more show greater changes in SEP magnitude. The effects we observe are tied to motor learning. When the limb is displaced passively, such that subjects experience similar movements but without experiencing learning, no changes in the evoked response are observed. Sensorimotor adaptation thus alters the neural coding of somatosensory stimuli.
Collapse
|
50
|
Mattar AAG, Darainy M, Ostry DJ. Motor learning and its sensory effects: time course of perceptual change and its presence with gradual introduction of load. J Neurophysiol 2012; 109:782-91. [PMID: 23136347 DOI: 10.1152/jn.00734.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A complex interplay has been demonstrated between motor and sensory systems. We showed recently that motor learning leads to changes in the sensed position of the limb (Ostry DJ, Darainy M, Mattar AA, Wong J, Gribble PL. J Neurosci 30: 5384-5393, 2010). Here, we document further the links between motor learning and changes in somatosensory perception. To study motor learning, we used a force field paradigm in which subjects learn to compensate for forces applied to the hand by a robotic device. We used a task in which subjects judge lateral displacements of the hand to study somatosensory perception. In a first experiment, we divided the motor learning task into incremental phases and tracked sensory perception throughout. We found that changes in perception occurred at a slower rate than changes in motor performance. A second experiment tested whether awareness of the motor learning process is necessary for perceptual change. In this experiment, subjects were exposed to a force field that grew gradually in strength. We found that the shift in sensory perception occurred even when awareness of motor learning was reduced. These experiments argue for a link between motor learning and changes in somatosensory perception, and they are consistent with the idea that motor learning drives sensory change.
Collapse
Affiliation(s)
- Andrew A G Mattar
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|