1
|
Urbin MA. Adaptation in the spinal cord after stroke: Implications for restoring cortical control over the final common pathway. J Physiol 2025; 603:685-721. [PMID: 38787922 DOI: 10.1113/jp285563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies comports more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Takemi M, Tia B, Kosugi A, Castagnola E, Ansaldo A, Ricci D, Fadiga L, Ushiba J, Iriki A. Posture-dependent modulation of marmoset cortical motor maps detected via rapid multichannel epidural stimulation. Neuroscience 2024; 560:263-271. [PMID: 39368606 DOI: 10.1016/j.neuroscience.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Recent neuroimaging and electrophysiological studies have suggested substantial short-term plasticity in the topographic maps of the primary motor cortex (M1). However, previous methods lack the temporal resolution to detect rapid modulation of these maps, particularly in naturalistic conditions. To address this limitation, we previously developed a rapid stimulation mapping procedure with implanted cortical surface electrodes. In this study, employing our previously established procedure, we examined rapid topographical changes in forelimb M1 motor maps in three awake male marmoset monkeys. The results revealed that although the hotspot (the location in M1 that elicited a forelimb muscle twitch with the lowest stimulus intensity) remained constant across postures, the stimulus intensity required to elicit the forelimb muscle twitch in the perihotspot region and the size of motor representations were posture-dependent. Hindlimb posture was particularly effective in inducing these modulations. The angle of the body axis relative to the gravitational vertical line did not alter the motor maps. These results provide a proof of concept that a rapid stimulation mapping system with chronically implanted cortical electrodes can capture the dynamic regulation of forelimb motor maps in natural conditions. Moreover, they suggest that posture is a crucial variable to be controlled in future studies of motor control and cortical plasticity. Further exploration is warranted into the neural mechanisms regulating forelimb muscle representations in M1 by the hindlimb sensorimotor state.
Collapse
Affiliation(s)
- Mitsuaki Takemi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Graduate School of Science and Technology, Keio University, Kanagawa, Japan; Japan Science and Technology Agency, PRESTO, Saitama, Japan
| | - Banty Tia
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Akito Kosugi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Ansaldo
- Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
3
|
Hu N, Tanel M, Baker SN, Kidgell DJ, Walker S. Inducing ipsilateral motor-evoked potentials in the biceps brachii muscle in healthy humans. Eur J Neurosci 2024; 60:6291-6299. [PMID: 39358929 DOI: 10.1111/ejn.16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
To assess reticulospinal tract excitability, high-intensity transcranial magnetic stimulation (TMS) has been used to elicit ipsilateral motor-evoked potentials (iMEPs). However, there is no consensus on robust and valid methods for use in human studies. The present study proposes a standardized method for eliciting and analysing iMEPs in the biceps brachii. Twenty-four healthy young adults participated in this study. Electromyography (EMG) electrodes recorded contralateral MEPs (cMEPs) from the right and iMEPs from the left biceps brachii. A dynamic preacher curl task was used with ~15% of the subject's one-repetition maximum load. The protocol included maximal compound action potential (M-max) determination of the right biceps brachii muscle, TMS hotspot determination, and four sets of five repetitions where 100% stimulator output was delivered at an elbow angle of 110° of flexion. We normalized cMEP amplitude by M-max (% M-max) and iMEP by cMEP amplitude ratio (ICAR). Clear iMEPs above background EMG were observed in 21 subjects (88%, ICAR = .31 ± .19). Good-to-excellent agreement (intraclass correlation coefficient [ICC] = .795-1.000) and low bias (.01-.08 mV and .60-1.11 ms) were demonstrated when comparing two different analysis methods (i.e. fixed time-window vs. manual onset detection) to determine the cMEP and iMEP amplitude and latency, respectively. Most subjects demonstrated clear iMEPs above background EMG triggered at a pre-determined joint angle during a light-load dynamic preacher curl exercise. Similar results were obtained when comparing a single-trial manual identification of iMEP and a semi-automated time-window data analysis approach.
Collapse
Affiliation(s)
- Nijia Hu
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Meghan Tanel
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Stuart N Baker
- Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Wong V, Song JS, Yamada Y, Kataoka R, Hammert WB, Spitz RW, Loenneke JP. Is there evidence for the asymmetrical transfer of strength to an untrained limb? Eur J Appl Physiol 2024; 124:2503-2510. [PMID: 38568258 PMCID: PMC11322193 DOI: 10.1007/s00421-024-05472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/18/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE The literature predominantly addresses cross-education of strength in the dominant limb rather than the non-dominant limb, guided by the hypothesis of an asymmetrical transfer of strength from unilateral training protocols. The purpose of the study was to review the literature and determine how much evidence was available to support this claim. A meta-analysis was performed to estimate the magnitude of this hypothesized asymmetrical transfer of strength. METHODS A literature search of all possible records was implemented using Cochrane Library, PubMed, and Scopus from February 2022 to May 2022. Comparison of randomized controlled trials was computed. The change scores and standard deviations of those change scores were extracted for each group. Only three studies met the criteria, from which a total of five effect sizes were extracted and further analyzed. RESULTS The overall effect of resistance training of the dominant limb on strength transfer to the non-dominant limb relative to the effects of resistance training the non-dominant limb on strength transfer to the dominant (non-training) limb was 0.46 (SE 0.42). The analysis from this study resulted in minimal support for the asymmetry hypothesis. Given the small number of studies available, we provide the effect but note that the estimate is unlikely to be stable. CONCLUSION Although it is repeatedly stated that there is an asymmetrical transfer of strength, our results find little support for that claim. This is not to say that it does not exist, but additional research implementing a control group and a direct comparison between limbs is needed to better understand this question.
Collapse
Affiliation(s)
- Vickie Wong
- Department of Sport and Health, Solent University, Southampton, Hampshire, SO14 0YN, UK
| | - Jun Seob Song
- Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, P.O. Box 1848, University, MS, 38677, USA
| | - Yujiro Yamada
- Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, P.O. Box 1848, University, MS, 38677, USA
| | - Ryo Kataoka
- Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, P.O. Box 1848, University, MS, 38677, USA
| | - William B Hammert
- Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, P.O. Box 1848, University, MS, 38677, USA
| | - Robert W Spitz
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jeremy P Loenneke
- Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
5
|
Ben Othman A, Hadjizadeh Anvar S, Aragão-Santos JC, Behm DG, Chaouachi A. Relative Cross-Education Training Effects of Male Youth Exceed Male Adults. J Strength Cond Res 2024; 38:881-890. [PMID: 38219228 DOI: 10.1519/jsc.0000000000004724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
ABSTRACT Ben Othman, A, Anvar, SH, Aragão-Santos, JC, Behm, DG, and Chaouachi, A. Relative cross-education training effects of male youth exceed male adults. J Strength Cond Res 38(5): 881-890, 2024-Cross-education has been studied extensively with adults, examining the training effects on contralateral homologous muscles. There is less information on the cross-education effects on contralateral heterologous muscles and scant information comparing these responses between adults and youth. The objective was to compare cross-education training effects in male youth and adults to contralateral homologous and heterologous muscles. Forty-two male children (10-13-years) and 42 adults (18-21-years) were tested before and following an 8-week unilateral, dominant or nondominant arm, chest press (CP) training program or control group (14 subjects each). Unilateral testing assessed dominant and nondominant limb strength with leg press and CP 1 repetition maximum (1RM), knee extensors, elbow extensors (EE), elbow flexors, and handgrip maximum voluntary isometric contraction (MVIC) strength and shot put distance and countermovement jump height. Upper-body tests demonstrated large magnitude increases, with children overall exceeding adults ( p = 0.05- p < 0.0001, η2 : 0.51, 10.4 ± 11.1%). The dominant trained limb showed significantly higher training adaptations than the nondominant limb for the adults with CP 1RM ( p = 0.03, η2 : 0.26, 6.7 ± 11.5%) and EE ( p = 0.008, η2 : 0.27, 8.8 ± 10.3%) MVIC force. Unilateral CP training induced significantly greater training adaptations with the ipsilateral vs. contralateral limb ( p = 0.008, η2 : 0.93, 27.8 ± 12.7%). In conclusion, children demonstrated greater training adaptations than adults, upper-body strength increased with no significant lower-body improvements, and ipsilateral training effects were greater than contralateral training in adults.
Collapse
Affiliation(s)
- Ayem Ben Othman
- Tunisian Research Laboratory "Sport Performance Optimisation" National Center of Medicine and Science in Sports, Tunis, Tunisia
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - José Carlos Aragão-Santos
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Department of Physical Education, Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Anis Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation" National Center of Medicine and Science in Sports, Tunis, Tunisia
- High Institute of Sport and Physical Education, Ksar-Said, Manouba University, Tunis, Tunisia; and
- Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| |
Collapse
|
6
|
Castro J, Oliveira Santos M, Swash M, de Carvalho M. Segmental motor neuron dysfunction in amyotrophic lateral sclerosis: Insights from H reflex paradigms. Muscle Nerve 2024; 69:303-312. [PMID: 38220221 DOI: 10.1002/mus.28035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
INTRODUCTION/AIMS In amyotrophic lateral sclerosis (ALS), the role of spinal interneurons in ALS is underrecognized. We aimed to investigate pre- and post-synaptic modulation of spinal motor neuron excitability by studying the H reflex, to understand spinal interneuron function in ALS. METHODS We evaluated the soleus H reflex, and three different modulation paradigms, to study segmental spinal inhibitory mechanisms. Homonymous recurrent inhibition (H'RI ) was assessed using the paired H reflex technique. Presynaptic inhibition of Ia afferents (H'Pre ) was evaluated using D1 inhibition after stimulation of the common peroneal nerve. We also studied inhibition of the H reflex after cutaneous stimulation of the sural nerve (H'Pos ). RESULTS Fifteen ALS patients (median age 57.0 years), with minimal signs of lower motor neuron involvement and good functional status, and a control group of 10 healthy people (median age 57.0 years) were studied. ALS patients showed reduced inhibition, compared to controls, in all paradigms (H'RI 0.35 vs. 0.11, p = .036; H'Pre 1.0 vs. 5.0, p = .001; H'Pos 0.0 vs. 2.5, p = .031). The clinical UMN score was a significant predictor of the amount of recurrent and presynaptic inhibition. DISCUSSION Spinal inhibitory mechanisms are impaired in ALS. We argue that hyperreflexia could be associated with dysfunction of spinal inhibitory interneurons. In this case, an interneuronopathy could be deemed a major feature of ALS.
Collapse
Affiliation(s)
- José Castro
- Faculdade de Medicina, Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Miguel Oliveira Santos
- Faculdade de Medicina, Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Michael Swash
- Faculdade de Medicina, Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Departments of Neurology and Neuroscience, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Mamede de Carvalho
- Faculdade de Medicina, Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
7
|
Suzuki Y, Jovanovic LI, Fadli RA, Yamanouchi Y, Marquez-Chin C, Popovic MR, Nomura T, Milosevic M. Evidence That Brain-Controlled Functional Electrical Stimulation Could Elicit Targeted Corticospinal Facilitation of Hand Muscles in Healthy Young Adults. Neuromodulation 2023; 26:1612-1621. [PMID: 35088740 DOI: 10.1016/j.neurom.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Brain-computer interface (BCI)-controlled functional electrical stimulation (FES) has been used in rehabilitation for improving hand motor function. However, mechanisms of improvements are still not well understood. The objective of this study was to investigate how BCI-controlled FES affects hand muscle corticospinal excitability. MATERIALS AND METHODS A total of 12 healthy young adults were recruited in the study. During BCI calibration, a single electroencephalography channel from the motor cortex and a frequency band were chosen to detect event-related desynchronization (ERD) of cortical oscillatory activity during kinesthetic wrist motor imagery (MI). The MI-based BCI system was used to detect active states on the basis of ERD activity in real time and produce contralateral wrist extension movements through FES of the extensor carpi radialis (ECR) muscle. As a control condition, FES was used to generate wrist extension at random intervals. The two interventions were performed on separate days and lasted 25 minutes. Motor evoked potentials (MEPs) in ECR (intervention target) and flexor carpi radialis (FCR) muscles were elicited through single-pulse transcranial magnetic stimulation of the motor cortex to compare corticospinal excitability before (pre), immediately after (post0), and 30 minutes after (post30) the interventions. RESULTS After the BCI-FES intervention, ECR muscle MEPs were significantly facilitated at post0 and post30 time points compared with before the intervention (pre), whereas there were no changes in the FCR muscle corticospinal excitability. Conversely, after the random FES intervention, both ECR and FCR muscle MEPs were unaffected compared with before the intervention (pre). CONCLUSIONS Our results demonstrated evidence that BCI-FES intervention could elicit muscle-specific short-term corticospinal excitability facilitation of the intervention targeted (ECR) muscle only, whereas randomly applied FES was ineffective in eliciting any changes. Notably, these findings suggest that associative cortical and peripheral activations during BCI-FES can effectively elicit targeted muscle corticospinal excitability facilitation, implying possible rehabilitation mechanisms.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan
| | - Lazar I Jovanovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Rizaldi A Fadli
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan
| | - Yuki Yamanouchi
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
8
|
Capozio A, Chakrabarty S, Astill S. Acute Effects of Strength and Skill Training on the Cortical and Spinal Circuits of Contralateral Limb. J Mot Behav 2023; 56:119-131. [PMID: 37788807 DOI: 10.1080/00222895.2023.2265316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Unilateral strength and skill training increase strength and performance in the contralateral untrained limb, a phenomenon known as cross-education. Recent evidence suggests that similar neural mechanisms might be responsible for the increase in strength and skill observed in the untrained hand after unimanual training. The aims of this study were to: investigate whether a single session of unimanual strength and skill (force-tracking) training increased strength and skill in the opposite hand; measure ipsilateral (untrained) brain (via transcranial magnetic stimulation, TMS) and spinal (via the monosynaptic reflex) changes in excitability occurring after training; measure ipsilateral (untrained) pathway-specific changes in neural excitability (via TMS-conditioning of the monosynaptic reflex) occurring after training. Participants (N = 13) completed a session of unimanual strength (ballistic isometric wrist flexions) and skill (force-tracking wrist flexions) training on two separate days. Strength increased after training in the untrained hand (p = 0.025) but not in the trained hand (p = 0.611). Force-tracking performance increased in both the trained (p = 0.007) and untrained (p = 0.010) hand. Corticospinal excitability increased after force-tracking and strength training (p = 0.027), while spinal excitability was not affected (p = 0.214). TMS-conditioned monosynaptic reflex increased after force-tracking (p = 0.001) but not strength training (p = 0.689), suggesting a possible role of polysynaptic pathways in the increase of cortical excitability observed after training. The results suggest that cross-education of strength and skill at the acute stage is supported by increased excitability of the untrained motor cortex.New & Noteworthy: A single session of isometric wrist flexion strength and skill straining increased strength and skill in the untrained limb. The excitability of the untrained motor cortex increased after strength and skill training. TMS-conditioned H-reflexes increased after skill but not strength training in the untrained hand, indicating that polysynaptic pathways in the increase of cortical excitability observed after skill training.
Collapse
Affiliation(s)
- Antonio Capozio
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | - Sarah Astill
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Chang MC, Choi GS. Enhanced strength in the contralateral hand following unilateral corticosteroid injection for the treatment of carpal tunnel syndrome. HAND SURGERY & REHABILITATION 2023; 42:449-450. [PMID: 37517608 DOI: 10.1016/j.hansur.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| | - Gyu-Sik Choi
- Cheokbareun Rehabilitation Clinic, Pohang-si, Gyeonsangbuk-do, South Korea
| |
Collapse
|
10
|
Mukherjee S, Fok JR, van Mechelen W. Electrical Stimulation and Muscle Strength Gains in Healthy Adults: A Systematic Review. J Strength Cond Res 2023; 37:938-950. [PMID: 36731008 DOI: 10.1519/jsc.0000000000004359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Mukherjee, S, Fok, JR, and van Mechelen, W. Electrical stimulation and muscle strength gains in healthy adults: A systematic review. J Strength Cond Res 37(4): 938-950, 2023-Electrical muscle stimulation (EMS) is a popular method for strength gains among athletes and fitness enthusiasts. This review investigated the literature from 2008 to 2020 on EMS application protocols, strength adaptations, neural adaptations, and its use as an independent and combined training tool for strength gain in healthy adults. The investigation was modeled after the 2020 PRISMA guidelines. The eligibility criteria included studies that assessed the effect of EMS, either alone or in combination with voluntary resistance training (VRT) in healthy adult populations, involving a control group performing either usual or sham training, with at least 1 performance outcome measure assessed during experimental randomized controlled trials (RCTs), cluster RCT, randomized crossover trials, or nonrandomized studies. Ten studies met the eligibility criteria with a total of 174 subjects. Eight studies investigated the effect of EMS on lower limb muscles and 2 on elbow flexors. Five studies used concurrent VRT. Studies were heterogenous in methods, subject characteristics, intervention, and EMS protocols. All 10 studies reported significant strength gains as an outcome of EMS treatment, but there were no improvements in strength-related functional outcome measures. The optimal threshold for treatment duration, EMS intensity, pulse, and frequency could not be determined due to methodological differences and EMS application protocol inconsistency between studies. Protocol variations also existed between the studies that combined EMS with VRT. Standardized protocols are needed for electrode placement location, motor point identification, positioning of the body part being investigated, impulse type, intensity, and duration of stimulus.
Collapse
Affiliation(s)
- Swarup Mukherjee
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Jeryn Ruiwen Fok
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Willem van Mechelen
- Department of Public and Occupational Health, Amsterdam University Medical Center, location VUmc and Amsterdam Public Health Research Institute, Amsterdam, Netherlands
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, Faculty of Health Sciences, University of Cape Town, South Africa; and
- School of Public Health, Physiotherapy and Population Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Ye X, Vala D, Walker H, Gaza V, Umali V, Brodoff P, Gockel N, Nakamura M. Effects of Unilateral Neuromuscular Electrical Stimulation with Illusionary Mirror Visual Feedback on the Contralateral Muscle: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3755. [PMID: 36834447 PMCID: PMC9962941 DOI: 10.3390/ijerph20043755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
We aim to examine the cross-education effects of unilateral muscle neuromuscular electrical stimulation (NMES) training combined with illusionary mirror visual feedback (MVF). Fifteen adults (NMES + MVF: 5; NMES: 5, Control: 5) completed this study. The experimental groups completed a 3-week NMES training on their dominant elbow flexor muscle. The NMES + MVF group had a mirror placed in the midsagittal plane between their upper arms, so a visual illusion was created in which their non-dominant arms appeared to be stimulated. Baseline and post-training measurements included both arms' isometric strength, voluntary activation level, and resting twitch. Cross-education effects were not observed from all dependent variables. For the unilateral muscle, both experimental groups showed greater strength increases when compared to the control (isometric strength % changes: NMES + MVF vs. NMES vs. Control = 6.31 ± 4.56% vs. 4.72 ± 8.97% vs. -4.04 ± 3.85%, p < 0.05). Throughout the training, even with the maximally tolerated NMES, the NMES + MVF group had greater perceived exertion and discomfort than the NMES. Additionally, the NMES-evoked force increased throughout the training for both groups. Our data does not support that NMES combined with or without MVF induces cross-education. However, the stimulated muscle becomes more responsive to the NMES and can become stronger following the training.
Collapse
Affiliation(s)
- Xin Ye
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Daniel Vala
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Hayden Walker
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Victor Gaza
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Vinz Umali
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Patrick Brodoff
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Nathan Gockel
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan
| |
Collapse
|
12
|
Cerebral Hemodynamic Changes during Unaffected Handgrip Exercises in Stroke Patients: An fNIRS Study. Brain Sci 2023; 13:brainsci13010141. [PMID: 36672122 PMCID: PMC9857146 DOI: 10.3390/brainsci13010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
This study aimed to assess the effect of the altered strength of the sound limb on the hemodynamics in the affected brain of stroke patients. We recruited 20 stroke patients to detect changes in the HbO concentrations in the bilateral prefrontal cortex (PFC), sensorimotor cortex (SMC), and occipital lobe (OL). We performed functional near-infrared spectroscopy (fNIRS) to detect changes in oxyhemoglobin (HbO) concentrations in regions of interest (ROIs) in the bilateral cerebral hemispheres of stroke patients while they performed 20%, 50%, and 80% maximal voluntary contraction (MVC) levels of handgrip tasks with the unaffected hands. The results suggest that when patients performed handgrip tasks with 50% of the MVC force, SMC in the affected cerebral hemisphere was strongly activated and the change in the HbO concentration was similar to that of the handgrip with 80% of MVC. When the force was 50% of MVC, the SMC in the affected hemisphere showed a more proportional activation than that at 80% MVC. Overall, this research suggests that stroke patients with a poor upper limb function should perform motor training with their sound hands at 50% of the MVC grip task to activate the ipsilesional hemisphere.
Collapse
|
13
|
DENİZOĞLU KÜLLİ H, ALPAY K, DURGUT E, TEMİZEL A. Acute Effect of Unilateral Muscle Training Supported with Visual Feedback on Contralateral Muscle Strength and Joint Position Sense. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.38079/igusabder.1131359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: Unilateral exercise training is an effective and useful technique, especially in immobilization and neurological conditions, but the effect of unilateral muscle exercise training on muscle strength is modest. Therefore, the aim of this study is to detect the acute concomitant effect of mirror therapy and unilateral exercise training on muscle strength and joint position sense in healthy adults.Method: Thirty-one participants were randomly enrolled in two groups the mirror (n=16) and control groups (n=15). Hand grip (HG), pinch grip (PG) strengths, and joint position sense (JPS) of the wrist were assessed in both hands before and after a single exercise session which include 300 repetitive ball squeezing exercises by right (exercised) hand for all groups. The participants in the mirror group were asked to watch the mirror to see the reflection of their exercised hands, the control group only watched their exercised and unexercised hands without any visual feedback support during the exercise session. Repeated Measure ANOVA and Mixed ANOVA tests were performed to analyze in- and between-group differences.Results: The statistically significant differences were determined in unexercised hand HG and PG strength in the mirror group (F=10,105; p=0,006, ηp2=0,403; F=5,341; p=0,035; ηp2=0,263, respectively). However, any group×time interaction was found in JPS, HG, or PG tests (p<0;05). Additionally, no difference was shown in JPS in-group comparisons (p<0;05).Conclusion: The result of the study suggested that unilateral exercise training should apply concomitant with visual feedback. Further studies are needed to compare the effect of different sensory feedbacks on unilateral exercise training.
Collapse
|
14
|
Tanrıverdi U, Gündüz A, Hatice Kumru, Kızıltan ME. Cutaneous silent period modulation by tooth clenching, tonic and phasic limb movements in healthy subjects. Exp Brain Res 2022; 240:2783-2789. [DOI: 10.1007/s00221-022-06455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
|
15
|
Hadjizadeh Anvar S, Kordi MR, Alizadeh S, Ramsay E, Shabkhiz F, Behm DG. Lack of Evidence for Crossover Fatigue with Plantar Flexor Muscles. J Sports Sci Med 2022; 21:214-223. [PMID: 35719232 PMCID: PMC9157513 DOI: 10.52082/jssm.2022.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
The occurrence and mechanisms underlying non-local or crossover muscle fatigue is an ongoing issue. This study aimed to investigate crossover fatigue of the plantar flexor muscles. Sixteen recreationally active males (n = 6) and females (n = 10) visited the laboratory for four sessions and performed a single 5-s pre-test maximal voluntary isometric contraction (MVIC) with each plantar flexors muscle. Thereafter, the fatigue intervention involved two 100-s MVICs (60-s recovery) with their dominant plantar flexors or rested for 260-s (control). Subsequently, in two separate sessions, Hoffman reflexes (H-reflex) were evoked in the non-dominant, non-exercised, leg before and following the dominant leg fatigue or control intervention (Fatigue-Reflex and Control-Reflex conditions). MVIC forces and volitional (V)-waves were monitored in the non-dominant leg in the other two sessions (Fatigue-MVIC and Control-MVIC) before and after the intervention (fatigue or control) as well as during 12 repeated MVICs and immediately thereafter. Despite the force reduction in the dominant leg (42.4%, p = 0.002), no crossover force deficit with single (F(1,9) = 0.02, p = 0.88, pƞ2 = 0.003) or repeated (F(1,9) = 0.006, p = 0.93, pƞ2 = 0.001) MVIC testing were observed. The H-reflex did not change after the fatigue (F(1,7) = 0.51; p = 0.49; pƞ2 = 0.06) or repeated MVICs (F(1,8) = 0.27; p = 0.61; pƞ2 = 0.03). There were also no crossover effects of fatigue on the V-wave with single (F(1,8) = 3.71, p = 0.09, pƞ2 = 0.31) or repeated MVICs (F(1,6) = 1.45, p = 0.27, pƞ2 = 0.19). Crossover fatigue was not evident with the plantar flexors nor any significant changes in H-reflex and V-waves in the soleus muscle. This finding suggests that crossover fatigue may not necessarily occur in slow-twitch predominant muscle groups.
Collapse
Affiliation(s)
- Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador (NL), Canada
- Faculty of Physical Education & Sport Sciences, University of Tehran, Tehran, Iran
| | - Mohammad Reza Kordi
- Faculty of Physical Education & Sport Sciences, University of Tehran, Tehran, Iran
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador (NL), Canada
| | - Emma Ramsay
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador (NL), Canada
| | - Fatemeh Shabkhiz
- Faculty of Physical Education & Sport Sciences, University of Tehran, Tehran, Iran
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's Newfoundland and Labrador (NL), Canada
| |
Collapse
|
16
|
Cao N, Sasaki A, Yuasa A, Popovic MR, Milosevic M, Nakazawa K. Short-term facilitation effects elicited by cortical priming through theta burst stimulation and functional electrical stimulation of upper-limb muscles. Exp Brain Res 2022; 240:1565-1578. [PMID: 35359173 DOI: 10.1007/s00221-022-06353-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
Non-invasive theta burst stimulation (TBS) can elicit facilitatory or inhibitory changes in the central nervous system when applied intermittently (iTBS) or continuously (cTBS). Conversely, neuromuscular electrical stimulation (NMES) can activate the muscles to send a sensory volley, which is also known to affect the excitability of the central nervous system. We investigated whether cortical iTBS (facilitatory) or cTBS (inhibitory) priming can affect subsequent NMES-induced corticospinal excitability. A total of six interventions were tested, each with 11 able-bodied participants: cortical priming followed by NMES (iTBS + NMES and cTBS + NMES), NMES only (iTBSsham + NMES and cTBSsham + NMES), and cortical priming only (iTBS + rest and cTBS + rest). After iTBS or cTBS priming, NMES was used to activate right extensor capri radialis (ECR) muscle intermittently for 10 min (5 s ON/5 s OFF). Single-pulse transcranial magnetic stimulation motor evoked potentials (MEPs) and maximum motor response (Mmax) elicited by radial nerve stimulation were compared before and after each intervention for 30 min. Our results showed that associative facilitatory iTBS + NMES intervention elicited greater MEP facilitation that lasted for at least 30 min after the intervention, while none of the interventions alone were effective to produce effects. We conclude that facilitatory iTBS priming can make the central nervous system more susceptible to changes elicited by NMES through sensory recruitment to enhance facilitation of corticospinal plasticity, while cTBS inhibitory priming efficacy could not be confirmed.
Collapse
Affiliation(s)
- Na Cao
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Akiko Yuasa
- Department of Rehabilitation Medicine I, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.,KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada.,CRANIA, University Health Network and University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Matija Milosevic
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan.
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
17
|
Kato T, Kaneko N, Sasaki A, Endo N, Yuasa A, Milosevic M, Watanabe K, Nakazawa K. Corticospinal excitability and somatosensory information processing of the lower limb muscle during upper limb voluntary or electrically induced muscle contractions. Eur J Neurosci 2022; 55:1810-1824. [PMID: 35274383 DOI: 10.1111/ejn.15643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
Abstract
Neural interactions between upper and lower limbs underlie motor coordination in humans. Specifically, upper limb voluntary muscle contraction can facilitate spinal and corticospinal excitability of the lower limb muscles. However, little remains known on the involvement of somatosensory information in arm-leg neural interactions. Here, we investigated effects of voluntary and electrically induced wrist flexion on corticospinal excitability and somatosensory information processing of the lower limbs. In Experiment 1, we measured transcranial magnetic stimulation (TMS)-evoked motor evoked potentials (MEPs) of the resting soleus (SOL) muscle at rest or during voluntary or neuromuscular electrical stimulation (NMES)-induced wrist flexion. The wrist flexion force was matched to 10% of the maximum voluntary contraction (MVC). We found that SOL MEPs were significantly increased during voluntary, but not NMES-induced, wrist flexion, compared to the rest (P < 0.001). In Experiment 2, we examined somatosensory evoked potentials (SEPs) following tibial nerve stimulation under the same conditions. The results showed that SEPs were unchanged during both voluntary and NMES-induced wrist flexion. In Experiment 3, we examined the modulation of SEPs during 10%, 20%, and 30% MVC voluntary wrist flexion. During 30% MVC voluntary wrist flexion, P50-N70 SEP component was significantly attenuated compared to the rest (P = 0.003). Our results propose that the somatosensory information generated by NMES-induced upper limb muscle contractions may have a limited effect on corticospinal excitability and somatosensory information processing of the lower limbs. However, voluntary wrist flexion modulated corticospinal excitability and somatosensory information processing of the lower limbs via motor areas.
Collapse
Affiliation(s)
- Tatsuya Kato
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Naotsugu Kaneko
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Atsushi Sasaki
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Nozomi Endo
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akiko Yuasa
- Department of rehabilitation medicine I, Fujita Health University School of Medicine, Aichi, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.,Faculty of Arts, Design & Architecture, University of New South Wales, Sydney, NSW, Australia
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
de Almeida Azevedo R, Jazayeri D, Yeung ST, Khoshreza R, Millet GY, Murias JM, Aboodarda SJ. The effects of pain induced by blood flow occlusion in one leg on exercise tolerance and corticospinal excitability and inhibition of the contralateral leg in males. Appl Physiol Nutr Metab 2022; 47:632-648. [PMID: 35201916 DOI: 10.1139/apnm-2021-0597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiencing pain in one leg can alter exercise tolerance and neuromuscular fatigue (NMF) responses in the contralateral leg; however, the corticospinal modulations to non-local experimental pain induced by blood flow occlusion remain unknown. In three randomized visits, thirteen male participants performed 25% of isometric maximal voluntary contraction (25%IMVC) to task failure with one leg preceded by (i) 6-min rest (CON), (ii) cycling at 80% of peak power output until task failure with the contralateral leg (CYCL) or (iii) CYCL followed by blood flow occlusion (OCCL) during 25%IMVC. NMF assessments (IMVC, voluntary activation [VA] and potentiated twitch [Qtw]) were performed at baseline and task failure. During the 25%IMVC, transcranial magnetic stimulations were performed to obtain motor evoked potential (MEP), silent period (SP), and short intracortical inhibition (SICI). 25%IMVC was shortest in OCCL (105±50s) and shorter in CYCL (154±68s) than CON (219±105s) (P<0.05). IMVC declined less after OCCL (-24±19%) and CYCL (-27±18%) then CON (-35±11%) (P<0.05). Qtw declined less in OCCL (-40±25%) compared to CYCL (-50±22%) and CON (-50±21%) (P<0.05). VA was similar amongst conditions. MEP and SP increased and SICI decreased throughout the task while SP was longer for OCCL compared to CYC condition (P<0.05). The results suggest that pain in one leg diminishes contralateral limb exercise tolerance and NMF development and modulate corticospinal inhibition in males. Novelty: Pain in one leg diminished MVC and twitch force decline in the contralateral limb Experimental pain induced by blood flow occlusion may modulation corticospinal inhibition of the neural circuitries innervating the contralateral exercise limb.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan M Murias
- University of Calgary, Faculty of Kinesiology, KNB 434, 2500 University Drive NW, Calgary, Alberta, Canada, T2N1N4;
| | - Saied Jalal Aboodarda
- University of Calgary , Faculty of Kinesiology, 2500 University Drive NW, Calgary, Canada, T2N 1N4;
| |
Collapse
|
19
|
Zhou S, Zhang SS, Crowley-McHattan ZJ. A scoping review of the contralateral effects of unilateral peripheral stimulation on neuromuscular function. PLoS One 2022; 17:e0263662. [PMID: 35139128 PMCID: PMC8827438 DOI: 10.1371/journal.pone.0263662] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
It is known that resistance exercise using one limb can affect motor function of both the exercised limb and the unexercised contralateral limb, a phenomenon termed cross-education. It has been suggested that cross-education has clinical implications, e.g. in rehabilitation for orthopaedic conditions or post-stroke paresis. Much of the research on the contralateral effect of unilateral intervention on motor output is based on voluntary exercise. This scoping review aimed to map the characteristics of current literature on the cross-education caused by three most frequently utilised peripheral neuromuscular stimulation modalities in this context: electrical stimulation, mechanical vibration and percutaneous needling, that may direct future research and translate to clinical practice. A systematic search of relevant databases (Ebsco, ProQuest, PubMed, Scopus, Web of Science) through to the end of 2020 was conducted following the PRISMA Extension for Scoping Review. Empirical studies on human participants that applied a unilateral peripheral neuromuscular stimulation and assessed neuromuscular function of the stimulated and/or the unstimulated side were selected. By reading the full text, the demographic characteristics, context, design, methods and major findings of the studies were synthesised. The results found that 83 studies were eligible for the review, with the majority (53) utilised electrical stimulation whilst those applied vibration (18) or needling (12) were emerging. Although the contralateral effects appeared to be robust, only 31 studies claimed to be in the context of cross-education, and 25 investigated on clinical patients. The underlying mechanism for the contralateral effects induced by unilateral peripheral stimulation remains unclear. The findings suggest a need to enhance the awareness of cross-education caused by peripheral stimulation, to help improve the translation of theoretical concepts to clinical practice, and aid in developing well-designed clinical trials to determine the efficacy of cross-education therapies.
Collapse
Affiliation(s)
- Shi Zhou
- Discipline of Sport and Exercise Science, Faculty of Health, Southern Cross University, Lismore, New South Wales, Australia
| | - Shuang-Shuang Zhang
- Discipline of Sport and Exercise Science, Faculty of Health, Southern Cross University, Lismore, New South Wales, Australia
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Zachary J. Crowley-McHattan
- Discipline of Sport and Exercise Science, Faculty of Health, Southern Cross University, Lismore, New South Wales, Australia
| |
Collapse
|
20
|
Brancaccio A, Tabarelli D, Belardinelli P. A New Framework to Interpret Individual Inter-Hemispheric Compensatory Communication after Stroke. J Pers Med 2022; 12:jpm12010059. [PMID: 35055374 PMCID: PMC8778334 DOI: 10.3390/jpm12010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Stroke constitutes the main cause of adult disability worldwide. Even after application of standard rehabilitation protocols, the majority of patients still show relevant motor impairment. Outcomes of standard rehabilitation protocols have led to mixed results, suggesting that relevant factors for brain re-organization after stroke have not been considered in explanatory models. Therefore, finding a comprehensive model to optimally define patient-dependent rehabilitation protocols represents a crucial topic in clinical neuroscience. In this context, we first report on the rehabilitation models conceived thus far in the attempt of predicting stroke rehabilitation outcomes. Then, we propose a new framework to interpret results in stroke literature in the light of the latest evidence regarding: (1) the role of the callosum in inter-hemispheric communication, (2) the role of prefrontal cortices in exerting a control function, and (3) diaschisis mechanisms. These new pieces of evidence on the role of callosum can help to understand which compensatory mechanism may take place following a stroke. Moreover, depending on the individual impairment, the prefrontal control network will play different roles according to the need of high-level motor control. We believe that our new model, which includes crucial overlooked factors, will enable clinicians to better define individualized motor rehabilitation protocols.
Collapse
|
21
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
22
|
Task- and Intensity-Dependent Modulation of Arm-Trunk Neural Interactions in the Corticospinal Pathway in Humans. eNeuro 2021; 8:ENEURO.0111-21.2021. [PMID: 34503966 PMCID: PMC8482852 DOI: 10.1523/eneuro.0111-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/02/2022] Open
Abstract
Most human movements require coordinated activation of multiple muscles. Although many studies reported associations between arm, leg, and trunk muscles during functional tasks, their neural interaction mechanisms still remain unclear. Therefore, the aim of our study was to investigate arm-trunk or arm-leg neural interactions in the corticospinal tract during different arm muscle contractions. Specifically, we examined corticospinal excitability of the erector spinae (ES; trunk extensor), rectus abdominis (RA; trunk flexor), and tibialis anterior (TA; leg) muscles while participants exerted: (1) wrist flexion and (2) wrist extension isometric contraction at various contraction intensity levels ranging from rest to 50% of maximal voluntary contraction (MVC) effort. Corticospinal excitability was assessed using motor evoked potentials (MEPs) elicited through motor cortex transcranial magnetic stimulation (TMS). Results showed that ES MEPs were facilitated even at low contractions (>5% MVC) during wrist flexion and extension, while stronger contractions (>25% MVC) were required to facilitate RA MEPs. The extent of facilitation of ES MEPs depended on contraction intensity of wrist extension, but not flexion. Moreover, TA MEPs were facilitated at low contractions (>5% MVC) during wrist flexion and extension, but contraction intensity dependence was only shown during stronger wrist extension contractions (>25% MVC). In conclusion, trunk extensor corticospinal excitability seems to depend on the task and the intensity of arm contraction, while this is not true for trunk flexor and leg muscles. Our study therefore demonstrated task- and intensity-dependent neural interactions of arm-trunk connections, which may underlie anatomic and/or functional substrates of these muscle pairs.
Collapse
|
23
|
Aune MA, Lorås H, Nynes A, Aune TK. Bilateral Interference in Motor Performance in Homologous vs. Non-homologous Proximal and Distal Effectors. Front Psychol 2021; 12:680268. [PMID: 34322064 PMCID: PMC8310955 DOI: 10.3389/fpsyg.2021.680268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Performance of bimanual motor actions requires coordinated and integrated bilateral communication, but in some bimanual tasks, neural interactions and crosstalk might cause bilateral interference. The level of interference probably depends on the proportions of bilateral interneurons connecting homologous areas of the motor cortex in the two hemispheres. The neuromuscular system for proximal muscles has a higher number of bilateral interneurons connecting homologous areas of the motor cortex compared to distal muscles. Based on the differences in neurophysiological organization for proximal vs. distal effectors in the upper extremities, the purpose of the present experiment was to evaluate how the level of bilateral interference depends on whether the bilateral interference task is performed with homologous or non-homologous effectors as the primary task. Fourteen participants first performed a unilateral primary motor task with the dominant arm with (1) proximal and (2) distal controlled joysticks. Performance in the unilateral condition with the dominant arm was compared to the same effector’s performance when two different bilateral interference tasks were performed simultaneously with the non-dominant arm. The two different bilateral interference tasks were subdivided into (1) homologous and (2) non-homologous effectors. The results showed a significant decrease in performance for both proximal and distal controlled joysticks, and this effect was independent of whether the bilateral interference tasks were introduced with homologous or non-homologous effectors. The overall performance decrease as a result of bilateral interference was larger for proximal compared to distal controlled joysticks. Furthermore, a proximal bilateral interference caused a larger performance decrement independent of whether the primary motor task was controlled by a proximal or distal joystick. A novel finding was that the distal joystick performance equally interfered with either homologous (distal bilateral interference) or non-homologous (proximal bilateral interference) interference tasks performed simultaneously. The results indicate that the proximal–distal distinction is an important organismic constraint on motor control and for understanding bilateral communication and interference in general and, in particular, how bilateral interference caused by homologous vs. non-homologous effectors impacts motor performance for proximal and distal effectors. The results seem to map neuroanatomical and neurophysiological differences for these effectors.
Collapse
Affiliation(s)
- Morten Andreas Aune
- Department of Sport Science, Sport and Human Movement Science Research Group (SaHMS), Nord University, Levanger, Norway
| | - Håvard Lorås
- Department of Sport Science, Sport and Human Movement Science Research Group (SaHMS), Nord University, Levanger, Norway.,Department of Teacher Education, Faculty of Social and Educational Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexander Nynes
- Department of Sport Science, Sport and Human Movement Science Research Group (SaHMS), Nord University, Levanger, Norway
| | - Tore Kristian Aune
- Department of Sport Science, Sport and Human Movement Science Research Group (SaHMS), Nord University, Levanger, Norway
| |
Collapse
|
24
|
Colomer-Poveda D, Zijdewind I, Dolstra J, Márquez G, Hortobágyi T. Voluntary suppression of associated activity decreases force steadiness in the active hand. Eur J Neurosci 2021; 54:5075-5091. [PMID: 34184345 DOI: 10.1111/ejn.15371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
Unilateral muscle contractions are often accompanied by the activation of the ipsilateral hemisphere, producing associated activity (AA) in the contralateral homologous muscles. However, the functional role of AA is not fully understood. We determined the effects of voluntary suppression of AA in the first dorsal interosseous (FDI), on force steadiness during a constant force isometric contraction of the contralateral FDI. Participants (n = 17, 25.5 years) performed two trials of isometric FDI contractions as steadily as possible. In Trial 1, they did not receive feedback or explicit instructions for suppressing the AA in the contralateral homologous FDI. In Trial 2, participants received feedback and were asked to voluntarily suppress the AA in the contralateral nontarget FDI. During both trials, corticospinal excitability and motor cortical inhibition were measured. The results show that participants effectively suppressed the AA in the nontarget contralateral FDI (-71%), which correlated with reductions in corticospinal excitability (-57%), and the suppression was also accompanied by increases in inhibition (27%) in the ipsilateral motor cortex. The suppression of AA impaired force steadiness, but the decrease in force steadiness did not correlate with the magnitude of suppression. The results show that voluntary suppression of AA decreases force steadiness in the active hand. However, due to the lack of association between suppression and decreased steadiness, we interpret these data to mean that specific elements of the ipsilateral brain activation producing AA in younger adults are neither contributing nor detrimental to unilateral motor control during a steady isometric contraction.
Collapse
Affiliation(s)
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jurian Dolstra
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruna, Spain
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, Pécs, Hungary.,Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| |
Collapse
|
25
|
Hikosaka M, Aramaki Y. Effects of Bilateral Transcranial Direct Current Stimulation on Simultaneous Bimanual Handgrip Strength. Front Hum Neurosci 2021; 15:674851. [PMID: 34149384 PMCID: PMC8206279 DOI: 10.3389/fnhum.2021.674851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Although the effects of transcranial direct current stimulation (tDCS) on contralateral unimanual movement have been well reported, its effects on coordinated multi-limb movements remain unclear. Because multi-limb coordination is often performed in daily activities and sports, clarifying the effects of tDCS on multi-limb coordination may have valuable implications. However, considering the neural crosstalk involved in bimanual movements, including the transcallosal pathway and ipsilateral motor pathway, the extent of tDCS-induced improvement may differ between unimanual and bimanual movement. We examined how tDCS affects simultaneous bimanual maximal voluntary contraction (MVC) by testing the effects of tDCS of the bilateral primary motor cortex (M1) on unimanual and bimanual handgrip strength. Twenty-one right-handed healthy adults underwent three bilateral tDCS protocols ("RaLc," with an anode on right M1 and a cathode on left M1, "RcLa," with an anode on left M1 and a cathode on right M1, and "Sham") in a randomized order. A 1.5 mA current was applied for 15 min during tDCS. Participants then performed maximal unimanual and bimanual handgrip tests. Bimanual handgrip force was higher in both hands in the RcLa condition than in the Sham condition. Similarly, unimanual handgrip force was higher in the RcLa condition than in the Sham condition. Stimulus responses were asymmetrical and were not observed in the RaLc condition. Our findings demonstrate that RcLa tDCS leads to neuromodulation that can produce greater unimanual and bimanual handgrip strength. This result provides basic evidence that tDCS may be useful in sports, particularly those involving bilateral coordination of upper limb movement.
Collapse
Affiliation(s)
- Mikito Hikosaka
- Graduate School of Health and Sport Sciences, Chukyo University, Aichi, Japan
| | - Yu Aramaki
- School of Health and Sport Sciences, Chukyo University, Aichi, Japan
| |
Collapse
|
26
|
Colomer-Poveda D, Romero-Arenas S, Hortobagyi T, Márquez G. Does ipsilateral corticospinal excitability play a decisive role in the cross-education effect caused by unilateral resistance training? A systematic review. NEUROLOGÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.nrleng.2017.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
27
|
Turco CV, Toepp SL, Foglia SD, Dans PW, Nelson AJ. Association of short- and long-latency afferent inhibition with human behavior. Clin Neurophysiol 2021; 132:1462-1480. [PMID: 34030051 DOI: 10.1016/j.clinph.2021.02.402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/04/2023]
Abstract
Transcranial magnetic stimulation (TMS) paired with nerve stimulation evokes short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI), which are non-invasive assessments of the excitability of the sensorimotor system. SAI and LAI are abnormally reduced in various special populations in comparison to healthy controls. However, the relationship between afferent inhibition and human behavior remains unclear. The purpose of this review is to survey the current literature and synthesize observations and patterns that affect the interpretation of SAI and LAI in the context of human behavior. We discuss human behaviour across the motor and cognitive domains, and in special and control populations. Further, we discuss future considerations for research in this field and the potential for clinical applications. By understanding how human behavior is mediated by changes in SAI and LAI, this can allow us to better understand the neurophysiological underpinnings of human motor control.
Collapse
Affiliation(s)
- Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stephen L Toepp
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stevie D Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Patrick W Dans
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
28
|
Ganguly J, Kulshreshtha D, Almotiri M, Jog M. Muscle Tone Physiology and Abnormalities. Toxins (Basel) 2021; 13:toxins13040282. [PMID: 33923397 PMCID: PMC8071570 DOI: 10.3390/toxins13040282] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
The simple definition of tone as the resistance to passive stretch is physiologically a complex interlaced network encompassing neural circuits in the brain, spinal cord, and muscle spindle. Disorders of muscle tone can arise from dysfunction in these pathways and manifest as hypertonia or hypotonia. The loss of supraspinal control mechanisms gives rise to hypertonia, resulting in spasticity or rigidity. On the other hand, dystonia and paratonia also manifest as abnormalities of muscle tone, but arise more due to the network dysfunction between the basal ganglia and the thalamo-cerebello-cortical connections. In this review, we have discussed the normal homeostatic mechanisms maintaining tone and the pathophysiology of spasticity and rigidity with its anatomical correlates. Thereafter, we have also highlighted the phenomenon of network dysfunction, cortical disinhibition, and neuroplastic alterations giving rise to dystonia and paratonia.
Collapse
|
29
|
Whitten JHD, Hodgson DD, Drinkwater EJ, Prieske O, Aboodarda SJ, Behm DG. Unilateral Quadriceps Fatigue Induces Greater Impairments of Ipsilateral versus Contralateral Elbow Flexors and Plantar Flexors Performance in Physically Active Young Adults. JOURNAL OF SPORTS SCIENCE AND MEDICINE 2021; 20:300-309. [PMID: 34211323 DOI: 10.52082/jssm.2021.300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/28/2021] [Indexed: 12/28/2022]
Abstract
Non-local muscle fatigue (NLMF) studies have examined crossover impairments of maximal voluntary force output in non-exercised, contralateral muscles as well as comparing upper and lower limb muscles. Since prior studies primarily investigated contralateral muscles, the purpose of this study was to compare NLMF effects on elbow flexors (EF) and plantar flexors (PF) force and activation (electromyography: EMG). Secondly, possible differences when testing ipsilateral or contralateral muscles with a single or repeated isometric maximum voluntary contractions (MVC) were also investigated. Twelve participants (six males: (27.3 ± 2.5 years, 186.0 ± 2.2 cm, 91.0 ± 4.1 kg; six females: 23.0 ± 1.6 years, 168.2 ± 6.7 cm, 60.0 ± 4.3 kg) attended six randomized sessions where ipsilateral or contralateral PF or EF MVC force and EMG activity (root mean square) were tested following a dominant knee extensors (KE) fatigue intervention (2×100s MVC) or equivalent rest (control). Testing involving a single MVC (5s) was completed by the ipsilateral or contralateral PF or EF prior to and immediately post-interventions. One minute after the post-intervention single MVC, a 12×5s MVCs fatigue test was completed. Two-way repeated measures ANOVAs revealed that ipsilateral EF post-fatigue force was lower (-6.6%, p = 0.04, d = 0.18) than pre-fatigue with no significant changes in the contralateral or control conditions. EF demonstrated greater fatigue indexes for the ipsilateral (9.5%, p = 0.04, d = 0.75) and contralateral (20.3%, p < 0.01, d = 1.50) EF over the PF, respectively. There were no significant differences in PF force, EMG or EF EMG post-test or during the MVCs fatigue test. The results suggest that NLMF effects are side and muscle specific where prior KE fatigue could hinder subsequent ipsilateral upper body performance and thus is an important consideration for rehabilitation, recreation and athletic programs.
Collapse
Affiliation(s)
- Joseph H D Whitten
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Daniel D Hodgson
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Eric J Drinkwater
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,Centre for Sport Research, School of Exercise & Nutrition Sciences, Deakin University, Melbourne, Australia
| | - Olaf Prieske
- Division of Exercise and Movement, University of Applied Sciences for Sports and Management Potsdam, Potsdam, Germany
| | | | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
30
|
Eisdorfer JT, Phelan MA, Keefe KM, Rollins MM, Campion TJ, Rauscher KM, Sobotka-Briner H, Senior M, Gordon G, Smith GM, Spence AJ. Addition of angled rungs to the horizontal ladder walking task for more sensitive probing of sensorimotor changes. PLoS One 2021; 16:e0246298. [PMID: 33544764 PMCID: PMC7864417 DOI: 10.1371/journal.pone.0246298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
One method for the evaluation of sensorimotor therapeutic interventions, the horizontal ladder walking task, analyzes locomotor changes that may occur after disease, injury, or by external manipulation. Although this task is well suited for detection of large effects, it may overlook smaller changes. The inability to detect small effect sizes may be due to a neural compensatory mechanism known as "cross limb transfer", or the contribution of the contralateral limb to estimate an injured or perturbed limb's position. The robust transfer of compensation from the contralateral limb may obscure subtle locomotor outcomes that are evoked by clinically relevant therapies, in the early onset of disease, or between higher levels of recovery. Here, we propose angled rungs as a novel modification to the horizontal ladder walking task. Easily-adjustable angled rungs force rats to locomote across a different locomotion path for each hindlimb and may therefore make information from the contralateral limb less useful. Using hM3Dq (excitatory) Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) expressed in large diameter peripheral afferents of the hindlimb in the intact animal, we characterized the sensitivity of our design to detect stepping differences by comparing locomotor changes observed on angled rungs to those observed on a standard horizontal ladder. On our novel asymmetrical ladder, activation of DREADDs resulted in significant differences in rung misses (p = 0.000011) and weight-supporting events (p = 0.049). By comparison, on a standard ladder, we did not observe differences in these parameters (p = 0.86 and p = 0.98, respectively). Additionally, no locomotor differences were detected in baseline and inactivated DREADDs trials when we compared ladder types, suggesting that the angled rungs do not change animal gait behavior unless intervention or injury is introduced. Significant changes observed with angled rungs may demonstrate more sensitive probing of locomotor changes due to the decoupling of cross limb transfer.
Collapse
Affiliation(s)
- Jaclyn T. Eisdorfer
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Michael A. Phelan
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathleen M. Keefe
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Morgan M. Rollins
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Thomas J. Campion
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Kaitlyn M. Rauscher
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Hannah Sobotka-Briner
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Mollie Senior
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Gabrielle Gordon
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - George M. Smith
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Shriners Hospitals Pediatric Research Center, Philadelphia, Pennsylvania, United States of America
| | - Andrew J. Spence
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
31
|
Castro J, Swash M, de Carvalho M. The cutaneous silent period in motor neuron disease. Clin Neurophysiol 2020; 132:660-665. [PMID: 33358125 DOI: 10.1016/j.clinph.2020.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the cutaneous silent period (CSP) by measuring its onset latency, duration and amount signal suppression in patients with motor neuron disease (MND) grouped according to the intensity of upper motor neuron involvement (UMN), and to test the effect of contralateral hand contraction. METHODS Painful stimulation was applied at the V finger, and contraction recorded from the abductor digiti minimi (ADM) muscle (baseline condition). Afterwards, CSP was studied during strong contralateral ADM contraction (test condition). 10-15 consecutive traces were recorded for each condition, signals were rectified, averaged, and analyzed offline. RESULTS 46 patients were investigated, 15 with progressive muscular atrophy (PMA), 16 with typical amyotrophic lateral sclerosis (ALS), 15 with primary lateral sclerosis/predominant UMN-ALS (PLS+UMN-ALS), and 28 controls. In the baseline condition, all MND groups showed delayed onset latencies (p = 0.001). There was no significant difference in the CSP duration. Suppression was lower in the PLS + UMN-ALS group (p = 0.004). In the control group, contralateral contraction did not change CSP, but onset latency shortened significantly in the PMA group. CONCLUSIONS CSP onset latency is delayed in all investigated groups of MND, including in PMA, indicating subclinical UMN involvement. Changes in CSP can indicate UMN lesion in MND. SIGNIFICANCE CSP should be explored to identify UMN involvement in MND.
Collapse
Affiliation(s)
- José Castro
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Michael Swash
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Departments of Neurology and Neuroscience, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal.
| |
Collapse
|
32
|
Cortical and Subcortical Neural Interactions Between Trunk and Upper-limb Muscles in Humans. Neuroscience 2020; 451:126-136. [PMID: 33075460 DOI: 10.1016/j.neuroscience.2020.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022]
Abstract
Activities of daily living require simultaneous and coordinated activation of trunk and upper-limb segments, which involves complex interlimb interaction within the central nervous system. Although many studies have reported associations between activity of trunk and limb muscles during functional tasks, evidence on cortical and subcortical contributions to trunk-limb neural interactions is still not fully clear. Therefore, the aim of this study was to examine interactions between trunk and upper-limb muscles in the: (i) corticospinal circuits by using motor evoked potential (MEP) elicited through transcranial magnetic stimulation; and (ii) subcortical circuits by using cervicomedullary motor evoked potential (CMEP) elicited through cervicomedullary junction magnetic stimulation. Responses were evoked in the erector spinae (trunk) and flexor carpi radialis (upper-limb) muscles in twelve able-bodied individuals: (1) while participants were relaxed; (2) during trunk muscle contractions while arms were at rest; and (3) during upper-limb muscle contractions while the trunk was at rest. Our results showed that trunk muscle CMEP responses were not affected by upper-limb muscle contractions, while MEP responses were modulated. This indicates that at least the subcortical circuits may not attribute to facilitation of the trunk muscles during upper-limb contractions. On the other hand, in the upper-limb muscles, both CMEP and MEP responses were modulated during trunk contractions. These results indicate that cortical and subcortical mechanisms attributed to facilitation of upper-limb muscles during trunk contractions. In conclusion, our study demonstrated evidence that trunk-limb neural interactions may be attributed to cortical and/or subcortical mechanisms depending on the contracted muscle.
Collapse
|
33
|
Chiou SY, Strutton PH. Crossed Corticospinal Facilitation Between Arm and Trunk Muscles Correlates With Trunk Control After Spinal Cord Injury. Front Hum Neurosci 2020; 14:583579. [PMID: 33192418 PMCID: PMC7645046 DOI: 10.3389/fnhum.2020.583579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate whether crossed corticospinal facilitation between arm and trunk muscles is preserved following spinal cord injury (SCI) and to elucidate these neural interactions for postural control during functional arm movements. Methods: Using transcranial magnetic stimulation (TMS) in 22 subjects with incomplete SCI motor evoked potentials (MEPs) in the erector spinae (ES) muscle were examined when the contralateral arm was at rest or performed 20% of maximal voluntary contraction (MVC) of biceps brachii (BB) or triceps brachii (TB). Trunk function was assessed with rapid shoulder flexion and forward-reaching tasks. Results: MEP amplitudes in ES were increased during elbow flexion in some subjects and this facilitatory effect was more prominent in subjects with thoracic SCI than in the subjects with cervical SCI. Those who showed the increased MEPs during elbow flexion had faster reaction times and quicker anticipatory postural adjustments of the trunk in the rapid shoulder flexion task. The onset of EMG activity in ES during the rapid shoulder flexion task correlated with the trunk excursion in forward-reaching. Conclusions: Our findings demonstrate that crossed corticospinal facilitation in the trunk muscles can be preserved after SCI and is reflected in trunk control during functional arm movements.
Collapse
Affiliation(s)
- Shin-Yi Chiou
- Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom.,The Nick Davey Laboratory, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paul H Strutton
- The Nick Davey Laboratory, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Andrushko JW, Gould LA, Renshaw DW, Ekstrand C, Hortobágyi T, Borowsky R, Farthing JP. High Force Unimanual Handgrip Contractions Increase Ipsilateral Sensorimotor Activation and Functional Connectivity. Neuroscience 2020; 452:111-125. [PMID: 33197497 DOI: 10.1016/j.neuroscience.2020.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/23/2020] [Accepted: 10/26/2020] [Indexed: 01/10/2023]
Abstract
Imaging and brain stimulation studies seem to correct the classical understanding of how brain networks, rather than contralateral focal areas, control the generation of unimanual voluntary force. However, the scaling and hemispheric-specificity of network activation remain less understood. Using fMRI, we examined the effects of parametrically increasing right-handgrip force on activation and functional connectivity among the sensorimotor network bilaterally with 25%, 50%, and 75% maximal voluntary contractions (MVC). High force (75% MVC) unimanual handgrip contractions resulted in greater ipsilateral motor activation and functional connectivity with the contralateral hemisphere compared to a low force 25% MVC condition. The ipsilateral motor cortex activation and network strength correlated with relative handgrip force (% MVC). Increases in unimanual handgrip force resulted in greater ipsilateral sensorimotor activation and greater functional connectivity between hemispheres within the sensorimotor network.
Collapse
Affiliation(s)
- Justin W Andrushko
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Layla A Gould
- College of Medicine, Division of Neurosurgery, University of Saskatchewan, Saskatchewan, Canada
| | - Doug W Renshaw
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Chelsea Ekstrand
- The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ron Borowsky
- College of Medicine, Division of Neurosurgery, University of Saskatchewan, Saskatchewan, Canada; College of Arts and Science, Department of Psychology, Saskatchewan, Canada
| | | |
Collapse
|
35
|
Milosevic M, Marquez-Chin C, Masani K, Hirata M, Nomura T, Popovic MR, Nakazawa K. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomed Eng Online 2020; 19:81. [PMID: 33148270 PMCID: PMC7641791 DOI: 10.1186/s12938-020-00824-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Delivering short trains of electric pulses to the muscles and nerves can elicit action potentials resulting in muscle contractions. When the stimulations are sequenced to generate functional movements, such as grasping or walking, the application is referred to as functional electrical stimulation (FES). Implications of the motor and sensory recruitment of muscles using FES go beyond simple contraction of muscles. Evidence suggests that FES can induce short- and long-term neurophysiological changes in the central nervous system by varying the stimulation parameters and delivery methods. By taking advantage of this, FES has been used to restore voluntary movement in individuals with neurological injuries with a technique called FES therapy (FEST). However, long-lasting cortical re-organization (neuroplasticity) depends on the ability to synchronize the descending (voluntary) commands and the successful execution of the intended task using a FES. Brain-computer interface (BCI) technologies offer a way to synchronize cortical commands and movements generated by FES, which can be advantageous for inducing neuroplasticity. Therefore, the aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.
Collapse
Affiliation(s)
- Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan.
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| |
Collapse
|
36
|
Lockyer EJ, Soran N, Power KE. Modulation of Corticospinal Excitability with Contralateral Arm Cycling. Neuroscience 2020; 449:88-98. [DOI: 10.1016/j.neuroscience.2020.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023]
|
37
|
Aune MA, Lorås H, Djuvsland A, Ingvaldsen RP, Aune TK. More Pronounced Bimanual Interference in Proximal Compared to Distal Effectors of the Upper Extremities. Front Psychol 2020; 11:544990. [PMID: 33192790 PMCID: PMC7652815 DOI: 10.3389/fpsyg.2020.544990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/06/2020] [Indexed: 01/24/2023] Open
Abstract
Bimanual performance depends on effective and modular bilateral communication between the two bodysides. Bilateral neural interactions between the bodysides could cause bimanual interference, and the neuromuscular system for proximal and distal muscles is differently organized, where proximal muscles have more bilateral interneurons at both cortical and spinal level compared to distal muscles. These differences might increase the potential for bimanual interference between proximal arm muscles, because of greater proportions of bilateral interneurons to proximal muscles. The purpose of the present experiment was to evaluate potential differences in bimanual interference between proximal versus distal effectors in the upper extremities. 14 participants first performed a unilateral primary motor task with dominant arm with (1) a proximal and (2) distal controlled joysticks (condition A). Performance in condition A, was compared with the same effector’s performance when a bimanual interference task was performed simultaneously with the non-dominant arm (condition B). The results showed a significant bimanual interference for both the proximal and distal controlled joysticks. Most interestingly, the bimanual interference was larger for the proximal joystick compared to the distal controlled joystick. The increase in spatial accuracy error was higher for the proximal controlled joystick, compared with the distal controlled joystick. These results indicate that the proximal-distal distinction is an important organismic constraint on motor control, and especially for bilateral communication. There seem to be an undesired bilateral interference for both proximal and distal muscles. The interference is higher in the case of proximal effectors compared distal effectors, and the results seem to map the neuroanatomical and neurophysiological differences for these effectors.
Collapse
Affiliation(s)
- Morten Andreas Aune
- Department of Sport Science, Sport and Human Movement Science Research Group (SaHMS), Nord University, Levanger, Norway
| | - Håvard Lorås
- Department of Sport Science, Sport and Human Movement Science Research Group (SaHMS), Nord University, Levanger, Norway.,Department of Teacher Education, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ane Djuvsland
- Department of Sport Science, Sport and Human Movement Science Research Group (SaHMS), Nord University, Levanger, Norway
| | - Rolf Petter Ingvaldsen
- Department of Sport Science, Sport and Human Movement Science Research Group (SaHMS), Nord University, Levanger, Norway
| | - Tore Kristian Aune
- Department of Sport Science, Sport and Human Movement Science Research Group (SaHMS), Nord University, Levanger, Norway
| |
Collapse
|
38
|
Colomer-Poveda D, Romero-Arenas S, Fariñas J, Iglesias-Soler E, Hortobágyi T, Márquez G. Training load but not fatigue affects cross-education of maximal voluntary force. Scand J Med Sci Sports 2020; 31:313-324. [PMID: 33038018 DOI: 10.1111/sms.13844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/02/2020] [Accepted: 09/25/2020] [Indexed: 01/23/2023]
Abstract
The purpose of this study was to determine the effects of training load (25% vs. 75% of one repetition maximum [1RM]) and fatigue (failure vs. non-failure) during four weeks of unilateral knee extension resistance training (RT) on maximal voluntary force in the trained and the untrained knee extensors. Healthy young adults (n = 42) were randomly assigned to control (CON, n = 9, 24 ± 4.3 years), low-load RT to failure (LLF, n = 11, 21 ± 1.3 years, three sets to failure at 25% of 1RM), high-load RT to failure (HLF, n = 11, 21 ± 1.4 years, three sets to failure at 75% of 1RM), and high-load RT without failure (HLNF, n = 11, 22 ± 1.5 years, six sets of five repetitions at 75% of 1RM) groups. Before and after the four weeks of training, 1RM, maximal voluntary isometric force, and corticospinal excitability (CSE) were measured. 1RM in the trained (20%, d = 0.70, 15%, d = 0.61) and the untrained knee extensors (5%, d = 0.27, 6%, d = 0.26) increased only in the HLF and HLNF groups, respectively. MVIC force increased only in the trained leg of the HLF (5%, d = 0.35) and HLNF groups (12%, d = 0.67). CSE decreased in the VL of both legs in the HLNF group (-19%, d = 0.44) and no changes occurred in the RF. In conclusion, high- but not low-load RT improves maximal voluntary force in the trained and the untrained knee extensors and fatigue did not further enhance these adaptations. Voluntary force improvements were unrelated to CSE changes in both legs.
Collapse
Affiliation(s)
- David Colomer-Poveda
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Salvador Romero-Arenas
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Juan Fariñas
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruna, Spain
| | - Eliseo Iglesias-Soler
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruna, Spain
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia (UCAM), Murcia, Spain.,Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruna, Spain
| |
Collapse
|
39
|
Sasaki A, Kaneko N, Masugi Y, Milosevic M, Nakazawa K. Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion. J Neurophysiol 2020; 124:652-667. [DOI: 10.1152/jn.00705.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We found that upper limb muscle contractions facilitated corticospinal circuits controlling lower limb muscles even during motor preparation, whereas motor execution of the task was required to facilitate spinal circuits. We also found that facilitation did not depend on whether contralateral or ipsilateral hands were contracted or if they were contracted bilaterally. Overall, these findings suggest that training of unaffected upper limbs may be useful to enhance facilitation of affected lower limbs in paraplegic individuals.
Collapse
Affiliation(s)
- Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Institute of Sports Medicine and Science, Tokyo International University, Kawagoe, Saitama, Japan
| | - Matija Milosevic
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| |
Collapse
|
40
|
Carson RG. Inter‐hemispheric inhibition sculpts the output of neural circuits by co‐opting the two cerebral hemispheres. J Physiol 2020; 598:4781-4802. [DOI: 10.1113/jp279793] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Richard G. Carson
- Trinity College Institute of Neuroscience and School of Psychology Trinity College Dublin Dublin 2 Ireland
- School of Psychology Queen's University Belfast Belfast BT7 1NN UK
- School of Human Movement and Nutrition Sciences University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
41
|
Chaouachi A, Ben Othman A, Chaouachi M, Hechmi A, Farthing JP, Granacher U, Behm DG. Comparison of Cross-Education and Global Training Effects in Adults and Youth After Unilateral Strength Training. J Strength Cond Res 2020; 36:2121-2131. [PMID: 32833889 DOI: 10.1519/jsc.0000000000003766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chaouachi, A, Ben Othman, A, Chaouachi, M, Hechmi, A, Farthing, JP, Granacher, U, and Behm, DG. Comparison of cross-education and global training effects in adults and youth after unilateral strength training. J Strength Cond Res XX(X): 000-000, 2020-Youth strength training research examining contralateral, homologous (cross-education), and heterologous (global training) effects after unilateral training have provided mixed results and the relationship to adults has not been compared. The objective was to compare adult and youth cross-education and global training effects on dominant and nondominant limb testing. Initially, 15 men and 15 prepubertal boys volunteered for each unilateral chest press (CP), handgrip training, and control groups (n = 89). Individuals trained their dominant limb 3 times per week for 8 weeks and had their dominant and nondominant limbs tested for CP and leg press 1 repetition maximum (1RM), handgrip, knee extension and flexion, and elbow extension and flexion maximum voluntary isometric contractions (MVICs). Adult CP training gains were significantly greater than youth with lower-body testing (p = 0.002-0.06), whereas youth CP training gains exceeded adults with upper-body tests (p = 0.03-0.07). Training specificity was evident with greater CP 1RM increases with CP vs. handgrip training for both youth (p < 0.0001) and adults (p < 0.0001). Handgrip training elicited greater gains in handgrip MVICs compared with other strength tests (p < 0.0001). In conclusion, only contralateral CP 1RM showed a training advantage for unilateral CP over unilateral handgrip training. Adults showed greater gains with lower-body testing, whereas youth showed greater gains with upper-body testing.
Collapse
Affiliation(s)
- Anis Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,AUT University, Sports Performance Research Institute New Zealand, Auckland, New Zealand
| | - Aymen Ben Othman
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Mehdi Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,Movement Sport and Health Sciences Laboratory, University of Rennes 2-ENS Cachan, Rennes, France
| | - Abderraouf Hechmi
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Jonathan P Farthing
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
42
|
Cabibel V, Héraud N, Perrey S, Oliver N, Alexandre F, Varray A. Is bilateral corticospinal connectivity impaired in patients with chronic obstructive pulmonary disease? J Physiol 2020; 598:4591-4602. [PMID: 32697330 DOI: 10.1113/jp279560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/01/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS During moderate and high levels of quadriceps force production, the ipsilateral motor cortex is concomitantly activated with the contralateral motor cortex throughout the corpus callosum to generate the motor command. Chronic obstructive pulmonary disease (COPD) patients display a structurally impaired corpus callosum that may explain the reduced motor command in this population, which in turn contributes to COPD-related muscle weakness of the knee extensors. The study aimed to determine whether bilateral connectivity was impaired and ipsilateral activation was lowered during unilateral strength production of the knee extensors. Our results indicate impaired bilateral connectivity but preserved ipsilateral activation in patients during unilateral isometric contractions of 50% of maximum voluntary strength. The preservation of ipsilateral activation during force production despite impaired bilateral connectivity is consistent with a reorganization of bilateral motor network function that drives unilateral strength production. ABSTRACT The contralateral primary motor cortex (M1) is not the only brain area implicated in motor command generation. During moderate and high levels of quadriceps force production, the ipsilateral M1 is concomitantly activated. Such activation is mediated by the corpus callosum, the main component of bilateral connectivity. Structural damage to the corpus callosum has been observed in chronic obstructive pulmonary disease (COPD) patients, which might reduce ipsilateral activation and contribute to the lower motor command associated with COPD muscle weakness. We thus aimed to determine whether bilateral connectivity and ipsilateral activation were impaired in COPD. Twenty-two COPD patients and 21 healthy age-matched controls were evaluated by transcranial magnetic stimulation, at rest and during 50% of maximal voluntary isometric contraction (MVIC) of the dominant vastus lateralis muscle. Bilateral connectivity was determined by the ipsilateral silent period (iSP) during 50% MVIC. Ipsilateral activation was determined as the increase in ipsilateral excitability from rest to 50% MVIC. As expected, COPD patients had significantly lower MVIC (-25%, p = 0.03). These patients also showed a significantly lower iSP (-53%, p < 0.001) compared to controls. The ipsilateral excitability was increased in patients and controls (×2.5 and ×3.5, respectively, p < 0.001) but not differently between groups (p = 0.84). Despite impaired bilateral connectivity in COPD, ipsilateral activation was not increased. Reorganization in the patients' interhemispheric pathways could explain the preserved ipsilateral activation.
Collapse
Affiliation(s)
- Vincent Cabibel
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France.,Les Cliniques du Souffle, Groupe 5 Santé, France
| | - Nelly Héraud
- Les Cliniques du Souffle, Groupe 5 Santé, France
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | | | | | - Alain Varray
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
43
|
Yurdakul OV, Kilicoglu MS, Rezvani A, Kucukakkas O, Eren F, Aydin T. How does cross-education affects muscles of paretic upper extremity in subacute stroke survivors? Neurol Sci 2020; 41:3667-3675. [PMID: 32506358 DOI: 10.1007/s10072-020-04506-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/30/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION This study aimed to evaluate the benefits of adding electromuscular stimulation (EMS) to the flexors of wrist muscles on the nonparetic limb in conventional stroke training to strengthen homologous agonist and antagonist muscles on the paretic side in patients with subacute stroke. METHODS The EMS group patients (n = 15) received conventional therapy for 30 sessions for 6 weeks (60 min/session) with 30 min of electrical stimulation to their nonparetic forearm using wrist flexors, with 5 min of pre- and post-warm-up. The transcutaneous electrical nerve stimulation (TENS) group patients (n = 15) received the same conventional rehabilitation training with 30 min of conventional antalgic TENS at a barely sensible level to their nonparetic forearm. The Fugl-Meyer motor function assessment for upper extremity (FMA-UE), functional independence measure (FIM), Brunnstrom staging of recovery for hand, maximum and mean wrist flexion force (flexionmax and flexionmean), and wrist extension force (extensionmax and extensionmean) of paretic untrained limb were evaluated before and after the treatment. RESULTS EMS and TENS group patients improved similarly in terms of FMA-UE, FIM, and Brunnstrom staging for hand recovery. However, flexionmax and flexionmean of the paretic limb increased more in the EMS group than in the TENS group. Extensionmax and extensionmean on the paretic side increased in the EMS group but did not differ in the TENS group. CONCLUSION Cross-education via EMS may have a beneficial effect as an adjunct to conventional treatment methods. This study is retrospectively registered and is available at www.clinicaltrials.gov (ID: NCT04113369).
Collapse
Affiliation(s)
- Ozan Volkan Yurdakul
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Bezmialem Vakif University, Adnan Menderes Blv. 34093 Fatih, Istanbul, Turkey.
| | - Mehmet Serkan Kilicoglu
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Bezmialem Vakif University, Adnan Menderes Blv. 34093 Fatih, Istanbul, Turkey
| | - Aylin Rezvani
- Department of Physical Medicine and Rehabilitation. Faculty of Medicine, Medipol University, TEM otoyolu. 34214 Bagcilar, Istanbul, Turkey
| | - Okan Kucukakkas
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Bezmialem Vakif University, Adnan Menderes Blv. 34093 Fatih, Istanbul, Turkey
| | - Fatma Eren
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Teoman Aydin
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Bezmialem Vakif University, Adnan Menderes Blv. 34093 Fatih, Istanbul, Turkey
| |
Collapse
|
44
|
Paillard T. Cross-Education Related to the Ipsilateral Limb Activity on Monopedal Postural Control of the Contralateral Limb: A Review. Front Physiol 2020; 11:496. [PMID: 32528312 PMCID: PMC7253698 DOI: 10.3389/fphys.2020.00496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
Cross-education is the effect whereby the ipsilateral limb training generates contralateral effects as part of motor tasks requiring strength and skills. However, it is not yet known if cross-education applies to postural control which could be essential as part of human motricity. Hence, this review addresses the possible effects of acute and chronic unilateral exercises (i.e., fatiguing exercises and regularly repeated/training exercises, respectively) on the contralateral monopedal postural control. Evidence suggests that fatiguing exercises disturb the contralateral monopedal postural control. This disturbance emanates from spinal and supra-spinal alterations which provokes changes to the motor function of the contralateral limb and degrades its postural control. Unilateral training produces cross-education related to postural control, especially when it includes balance exercises, but this remains to be tested when it includes resistance exercises. Mechanistic explanations are proposed to explain how neurophysiological changes operate in the disturbance or improvement of the contralateral monopedal postural control after unilateral fatiguing exercises or training exercises (respectively) of the lower-limb.
Collapse
Affiliation(s)
- Thierry Paillard
- Laboratoire Mouvement, Equilibre, Performance et Santé, EA 4445, E2S/Université de Pau et des Pays de l'Adour, Département STAPS, Tarbes, France
| |
Collapse
|
45
|
Linn-Evans ME, Petrucci MN, Amundsen Huffmaster SL, Chung JW, Tuite PJ, Howell MJ, Videnovic A, MacKinnon CD. REM sleep without atonia is associated with increased rigidity in patients with mild to moderate Parkinson's disease. Clin Neurophysiol 2020; 131:2008-2016. [PMID: 32451296 DOI: 10.1016/j.clinph.2020.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/03/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Increased muscle activity during rapid eye movement (REM) sleep (i.e. REM sleep without atonia) is common in people with Parkinson's disease (PD). This study tested the hypotheses that people with PD and REM sleep without atonia (RSWA) would present with more severe and symmetric rigidity compared to individuals with PD without RSWA and age-matched controls. METHODS Sixty-one individuals participated in this study (41 PD, 20 controls). An overnight sleep study was used to classify participants with PD as having either elevated (PD-RSWA+) or normal muscle activity (PD-RSWA-) during REM sleep. Quantitative measures of rigidity were obtained using a robotic manipulandum that passively pronated and supinated the forearm. RESULTS Quantitative measures of forearm rigidity were significantly higher in the PD-RSWA+ group compared to the control group. Rigidity was significantly more asymmetric between limbs in the PD-RSWA- group compared with controls, while there was no significant difference in symmetry between the control and PD-RSWA+ groups. CONCLUSION In people with mild to moderate PD, RSWA is associated with an increased and more symmetric presentation of upper limb rigidity. SIGNIFICANCE Dysfunction of brainstem systems that control muscle tone during REM sleep may contribute to increased rigidity during wakefulness in people with PD.
Collapse
Affiliation(s)
- Maria E Linn-Evans
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Matthew N Petrucci
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | - Jae Woo Chung
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Paul J Tuite
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Michael J Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
46
|
Cabibel V, Hordacre B, Perrey S. Implication of the ipsilateral motor network in unilateral voluntary muscle contraction: the cross-activation phenomenon. J Neurophysiol 2020; 123:2090-2098. [DOI: 10.1152/jn.00064.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Voluntary force production requires that the brain produces and transmits a motor command to the muscles. It is widely acknowledged that motor commands are executed from the primary motor cortex (M1) located in the contralateral hemisphere. However, involvement of M1 located in the ipsilateral hemisphere during moderate to high levels of unilateral muscle contractions (>30% of the maximum) has been disclosed in recent years. This phenomenon has been termed cross-activation. The activation of the ipsilateral M1 relies on complex inhibitory and excitatory interhemispheric interactions mediated via the corpus callosum and modulated according to the contraction level. The regulatory mechanisms underlying these interhemispheric interactions, especially excitatory ones, remain vague, and contradictions exist in the literature. In addition, very little is known regarding the possibility that other pathways could also mediate the cross-activation. In the present review, we will therefore summarize the concept of cross-activation during unilateral voluntary muscle contraction and explore the associated mechanisms and other nervous system pathways underpinning this response. A broader knowledge of these mechanisms would consequently allow a better comprehension of the motor system as a whole, as distant brain networks working together to produce the motor command.
Collapse
Affiliation(s)
- Vincent Cabibel
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
47
|
Barss TS, Klarner T, Sun Y, Inouye K, Zehr EP. Effects of enhanced cutaneous sensory input on interlimb strength transfer of the wrist extensors. Physiol Rep 2020; 8:e14406. [PMID: 32222042 PMCID: PMC7101283 DOI: 10.14814/phy2.14406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The relative contribution of cutaneous sensory feedback to interlimb strength transfer remains unexplored. Therefore, this study aimed to determine the relative contribution of cutaneous afferent pathways as a substrate for cross-education by directly assessing how "enhanced" cutaneous stimulation alters ipsilateral and contralateral strength gains in the forearm. Twenty-seven right-handed participants were randomly assigned to 1-of-3 training groups and completed 6 sets of 8 repetitions 3x/week for 5 weeks. Voluntary training (TRAIN) included unilateral maximal voluntary contractions (MVCs) of the wrist extensors. Cutaneous stimulation (STIM), a sham training condition, included cutaneous stimulation (2x radiating threshold; 3sec; 50Hz) of the superficial radial (SR) nerve at the wrist. TRAIN + STIM training included MVCs of the wrist extensors with simultaneous SR stimulation. Two pre- and one posttraining session assessed the relative increase in force output during MVCs of isometric wrist extension, wrist flexion, and handgrip. Maximal voluntary muscle activation was simultaneously recorded from the flexor and extensor carpi radialis. Cutaneous reflex pathways were evaluated through stimulation of the SR nerve during graded ipsilateral contractions. Results indicate TRAIN increased force output compared with STIM in both trained (85.0 ± 6.2 Nm vs. 59.8 ± 6.1 Nm) and untrained wrist extensors (73.9 ± 3.5 Nm vs. 58.8 Nm). Providing 'enhanced' sensory input during training (TRAIN + STIM) also led to increases in strength in the trained limb compared with STIM (79.3 ± 6.3 Nm vs. 59.8 ± 6.1 Nm). However, in the untrained limb no difference occurred between TRAIN + STIM and STIM (63.0 ± 3.7 Nm vs. 58.8 Nm). This suggests when 'enhanced' input was provided independent of timing with active muscle contraction, interlimb strength transfer to the untrained wrist extensors was blocked. This indicates that the sensory volley may have interfered with the integration of appropriate sensorimotor cues required to facilitate an interlimb transfer, highlighting the importance of appropriately timed cutaneous feedback.
Collapse
Affiliation(s)
- Trevor S. Barss
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
- Human Discovery ScienceInternational Collaboration on Repair Discoveries (ICORD)VancouverBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
| | - Taryn Klarner
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
- Human Discovery ScienceInternational Collaboration on Repair Discoveries (ICORD)VancouverBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
- School of KinesiologyLakehead UniversityThunder BayONUSA
| | - Yao Sun
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
- Human Discovery ScienceInternational Collaboration on Repair Discoveries (ICORD)VancouverBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
| | - Kristy Inouye
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
| | - E. Paul Zehr
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
- Human Discovery ScienceInternational Collaboration on Repair Discoveries (ICORD)VancouverBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
- Division of Medical SciencesUniversity of VictoriaBCCanada
- Zanshin Consulting Inc.VictoriaBCCanada
| |
Collapse
|
48
|
Aboodarda SJ, Iannetta D, Emami N, Varesco G, Murias JM, Millet GY. Effects of pre-induced fatigue vs. concurrent pain on exercise tolerance, neuromuscular performance and corticospinal responses of locomotor muscles. J Physiol 2020; 598:285-302. [PMID: 31826296 DOI: 10.1113/jp278943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Fatigue and muscle pain induced in a remote muscle group has been shown to alter neuromuscular performance in exercising muscles. Inhibitory neural feedback associated with activation of mechano- and metabo-sensitive muscle afferents has been implicated in this phenomenon. The present study aimed to quantify and compare the effects of pre-induced fatigue and concurrent rising pain (evoked by muscle ischaemia) on the contralateral leg exercise capacity, neuromuscular performance, and corticomotor excitability and inhibition of knee extensor muscles. Pre-induced fatigue in one leg had a greater detrimental effect than the concurrent rising pain on the contralateral limb cycling capacity. Furthermore, pre-induced fatigue, but not concurrent rising pain, reduced corticospinal inhibition recorded from tested contralateral muscles. Regardless of the origin or mechanisms modulating sensory afferents during single-leg cycling exercise (i.e. pre-induced fatigue vs. concurrent rising pain), the limit of exercise tolerance remained the same and exercise was terminated upon achievement of a sensory tolerance limit. ABSTRACT Individuals often need to maintain voluntary contractions during high intensity exercise in the presence of fatigue and pain. This investigation examined the effects of pre-induced fatigue and concurrent rising pain (evoked by muscle ischaemia) in one leg on motor fatigability and corticospinal excitability/inhibition of the contralateral limb. Twelve healthy males undertook four experimental protocols including unilateral cycling to task failure at 80% of peak power output with: (i) the right-leg (RL); (ii) the left-leg (LL); (iii) RL immediately preceded by LL protocol (FAT-RL); and (iv) RL when blood flow was occluded in the contralateral (left) leg (PAIN-RL). Participants performed maximal and submaximal 5 s right-leg knee extensions during which transcranial magnetic and femoral nerve electrical stimuli were delivered to elicit motor-evoked and compound muscle action potentials, respectively. The pre-induced fatigue reduced the right leg cycling time-to-task failure (mean ± SD; 332 ± 137 s) to a greater extent than concurrent pain (460 ± 158 s), compared to RL (580 ± 226 s) (P < 0.001). The maximum voluntary contraction force declined less following FAT-RL (P < 0.019) and PAIN-RL (P < 0.032) compared to RL. Voluntary activation declined and the corticospinal excitability recorded from knee extensors increased similarly after the three conditions (P < 0.05). However, the pre-induced fatigue, but not concurrent pain, reduced corticospinal inhibition compared to RL (P < 0.05). These findings suggest that regardless of the origin and/or mechanisms modulating sensory afferent feedback during single-leg cycling (e.g. pre-induced fatigue vs. concurrent rising pain), the limit of exercise tolerance remains the same, suggesting that exercise will be terminated upon achievement of sensory tolerance limit.
Collapse
Affiliation(s)
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Nader Emami
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Guillaume Y Millet
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Jean Monnet University, Saint-Etienne, France
| |
Collapse
|
49
|
Colomer-Poveda D, Hortobágyi T, Keller M, Romero-Arenas S, Márquez G. Training intensity-dependent increases in corticospinal but not intracortical excitability after acute strength training. Scand J Med Sci Sports 2019; 30:652-661. [PMID: 31785009 DOI: 10.1111/sms.13608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/04/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to determine whether the increases in corticospinal excitability (CSE) observed after one session of unilateral isometric strength training (ST) are related to changes in intracortical excitability measured by magnetic brain stimulation (TMS) in the trained and the contralateral untrained biceps brachii (BB) and whether such changes scale with training intensity. On three separate days, 15 healthy young men performed one ST session of 12 sets of eight isometric contractions of the right elbow flexors at 0% (control session), 25%, or 75% of the maximal voluntary contraction (MVC) in a random order. Before and after each session separated at least by 1 week, motor evoked potential (MEP) amplitude, short-interval intracortical inhibition (SICI), contralateral silent period (SP), and intracortical facilitation (ICF) generated by TMS were measured in the trained and the untrained BBs. Compared with baseline, MEPs recorded from the trained BB increased by ~47% after training at 75% of MVC (P < .05) but not after training at 0% (~4%) or 25% MVC (~5%, both P > .05). MEPs in the untrained BB and SICI, SP, and ICF in either BB did not change. Therefore, acute high-intensity but not low-intensity unilateral isometric ST increases CSE in the trained BB without modifications in intracortical inhibition or facilitation. Thus, increases in corticospinal neurons or α-α-motoneuron excitability could underlie the increases in CSE. Regardless of contraction intensity, acute isometric ST did not modify the excitability of the ipsilateral primary motor cortex measured by TMS.
Collapse
Affiliation(s)
- David Colomer-Poveda
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Keller
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Salvador Romero-Arenas
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sport, Catholic University of Murcia (UCAM), Murcia, Spain
| |
Collapse
|
50
|
Aboodarda SJ, Zhang CXY, Sharara R, Cline M, Millet GY. Exercise-Induced Fatigue in One Leg Does Not Impair the Neuromuscular Performance in the Contralateral Leg but Improves the Excitability of the Ipsilateral Corticospinal Pathway. Brain Sci 2019; 9:brainsci9100250. [PMID: 31557879 PMCID: PMC6827080 DOI: 10.3390/brainsci9100250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022] Open
Abstract
To investigate the influence of pre-induced fatigue in one leg on neuromuscular performance and corticospinal responses of the contralateral homologous muscles, three experiments were conducted with different exercise protocols; A (n = 12): a 60 s rest vs. time-matched sustained left leg knee extension maximum voluntary contraction (MVC), B (n = 12): a 60 s rest vs. time-matched left leg MVC immediately followed by 60 s right leg MVC, and C (n = 9): a similar protocol to experiment B, but with blood flow occluded in the left leg while the right leg was performing the 60 s MVC. The neuromuscular assessment included 5 s knee extensions at 100%, 75%, and 50% of MVC. At each force level, transcranial magnetic and peripheral nerve stimuli were elicited to investigate the influence of different protocols on the right (tested) knee extensors’ maximal force output, voluntary activation, corticospinal excitability, and inhibition. The pre-induced fatigue in the left leg did not alter the performance nor the neuromuscular responses recorded from the right leg in the three experiments (all p > 0.3). However, enhanced corticospinal pathway excitability was evident in the tested knee extensors (p = 0.002). These results suggest that the pre-induced fatigue and muscle ischemia in one leg did not compromise the central and peripheral components of the neuromuscular function in the tested contralateral leg.
Collapse
Affiliation(s)
| | - Cindy Xin Yu Zhang
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Ruva Sharara
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Madeleine Cline
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Guillaume Y Millet
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Inter-University Laboratory of Human Movement Biology, University of Lyon, UJM-Saint-Etienne, EA 7424, F-42023 Saint-Etienne, France.
| |
Collapse
|