1
|
Hari K, Lucas-Osma AM, Metz K, Lin S, Pardell N, Roszko DA, Black S, Minarik A, Singla R, Stephens MJ, Pearce RA, Fouad K, Jones KE, Gorassini MA, Fenrich KK, Li Y, Bennett DJ. GABA facilitates spike propagation through branch points of sensory axons in the spinal cord. Nat Neurosci 2022; 25:1288-1299. [PMID: 36163283 PMCID: PMC10042549 DOI: 10.1038/s41593-022-01162-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Movement and posture depend on sensory feedback that is regulated by specialized GABAergic neurons (GAD2+) that form axo-axonic contacts onto myelinated proprioceptive sensory axons and are thought to be inhibitory. However, we report here that activating GAD2+ neurons directly with optogenetics or indirectly by cutaneous stimulation actually facilitates sensory feedback to motor neurons in rodents and humans. GABAA receptors located at or near nodes of Ranvier of sensory axons cause this facilitation by preventing spike propagation failure at the many axon branch points, which is otherwise common without GABA. In contrast, GABAA receptors are generally lacking from axon terminals and so cannot inhibit transmitter release onto motor neurons, unlike GABAB receptors that cause presynaptic inhibition. GABAergic innervation near nodes and branch points allows individual branches to function autonomously, with GAD2+ neurons regulating which branches conduct, adding a computational layer to the neuronal networks generating movement and likely generalizing to other central nervous system axons.
Collapse
Affiliation(s)
- Krishnapriya Hari
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ana M Lucas-Osma
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Krista Metz
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Shihao Lin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Noah Pardell
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - David A Roszko
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sophie Black
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anna Minarik
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Rahul Singla
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Marilee J Stephens
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kelvin E Jones
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Monica A Gorassini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - David J Bennett
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
3
|
Bilchak JN, Yeakle K, Caron G, Malloy D, Côté MP. Enhancing KCC2 activity decreases hyperreflexia and spasticity after chronic spinal cord injury. Exp Neurol 2021; 338:113605. [PMID: 33453210 PMCID: PMC7904648 DOI: 10.1016/j.expneurol.2021.113605] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 01/09/2021] [Indexed: 02/03/2023]
Abstract
After spinal cord injury (SCI), the majority of individuals develop spasticity, a debilitating condition involving involuntary movements, co-contraction of antagonistic muscles, and hyperreflexia. By acting on GABAergic and Ca2+-dependent signaling, current anti-spastic medications lead to serious side effects, including a drastic decrease in motoneuronal excitability which impairs motor function and rehabilitation efforts. Exercise, in contrast, decreases spastic symptoms without decreasing motoneuron excitability. These functional improvements coincide with an increase in expression of the chloride co-transporter KCC2 in lumbar motoneurons. Thus, we hypothesized that spastic symptoms can be alleviated directly through restoration of chloride homeostasis and endogenous inhibition by increasing KCC2 activity. Here, we used the recently developed KCC2 enhancer, CLP257, to evaluate the effects of acutely increasing KCC2 extrusion capability on spastic symptoms after chronic SCI. Sprague Dawley rats received a spinal cord transection at T12 and were either bike-trained or remained sedentary for 5 weeks. Increasing KCC2 activity in the lumbar enlargement improved the rate-dependent depression of the H-reflex and reduced both phasic and tonic EMG responses to muscle stretch in sedentary animals after chronic SCI. Furthermore, the improvements due to this pharmacological treatment mirror those of exercise. Together, our results suggest that pharmacologically increasing KCC2 activity is a promising approach to decrease spastic symptoms in individuals with SCI. By acting to directly restore endogenous inhibition, this strategy has potential to avoid severe side effects and improve the quality of life of affected individuals.
Collapse
Affiliation(s)
- Jadwiga N Bilchak
- Marion Murray Spinal Cord Injury Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America
| | - Kyle Yeakle
- Marion Murray Spinal Cord Injury Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America
| | - Guillaume Caron
- Marion Murray Spinal Cord Injury Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America
| | - Dillon Malloy
- Marion Murray Spinal Cord Injury Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America
| | - Marie-Pascale Côté
- Marion Murray Spinal Cord Injury Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
4
|
Mousa MH, Elbasiouny SM. Dendritic distributions of L-type Ca 2+ and SK L channels in spinal motoneurons: a simulation study. J Neurophysiol 2020; 124:1285-1307. [PMID: 32937080 PMCID: PMC7717167 DOI: 10.1152/jn.00169.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Persistent inward currents are important to motoneuron excitability and firing behaviors and also have been implicated in excitotoxicity. In particular, L-type Ca2+ channels, usually located on motoneuron dendrites, play a primary role in amplification of synaptic inputs. However, recent experimental findings on L-type Ca2+ channel behaviors challenge some fundamental assumptions that have been used in interpreting experimental and computational modeling data. Thus, the objectives of this study were to incorporate recent experimental data into an updated, high-fidelity computational model in order to explain apparent inconsistencies and to better elucidate the spatial distributions, expression patterns, and functional roles of L-type Ca2+ and SKL channels. Specifically, the updated model incorporated asymmetric channel activation/deactivation kinetics, depolarization-dependent facilitation, randomness in channel gating, and coactivation of SKL channels. Our simulation results suggest that L-type Ca2+ and SKL channels colocalize primarily on distal dendrites of motoneurons in a punctate expression. Also, punctate expression, as opposed to a homogeneous expression, provides high synaptic current amplification, limits bistability and firing rates, and robustly regulates the Ca2+ persistent inward current, thereby reducing risk of excitotoxicity. The hysteresis and bistability observed experimentally in current-voltage and frequency-current relationships result from the L-type Ca2+ channels' distal location and intrinsic warm-up. Accordingly, our results indicate that punctate expression of L-type Ca2+ and SKL channels is a potent mechanism for regulating excitability, which would provide a strong neuroprotective effect. Our results could provide broader insights into the functional significance of warm-up and punctate expression of ion channels to regulation of cell excitability.NEW & NOTEWORTHY Recent experimental findings on L-type Ca2+ channels challenge fundamental assumptions used in interpreting experimental and computational modeling data. Here, we incorporated recent experimental data into an updated, high-fidelity computational model to explain apparent inconsistencies and better elucidate the distributions, expression patterns, and functional roles of L-type Ca2+ and SKL channels. Our results indicate that punctate expression of L-type Ca2+ and SKL channels is a potent mechanism for regulating motoneuron excitability, providing a strong neuroprotective effect.
Collapse
Affiliation(s)
- Mohamed H Mousa
- Department of Systems and Biomedical Engineering, Faculty of Engineering, Cairo University, Cairo, Egypt
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| | - Sherif M Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio
- Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| |
Collapse
|
5
|
Foley RCA, Kalmar JM. Estimates of persistent inward current in human motor neurons during postural sway. J Neurophysiol 2019; 122:2095-2110. [PMID: 31533012 DOI: 10.1152/jn.00254.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Persistent inward current (PIC) plays a critical role in setting the gain of spinal motor neurons. In humans, most estimates of PIC are made from plantarflexor or dorsiflexor motor units in a seated position. This seated and static posture negates the task-dependent nature of the monoaminergic drive and afferent inhibition that modulate PIC activation. Our purpose was to estimate PIC during both the conventional seated posture and in a more functionally relevant anterior postural sway. We hypothesized that paired motor unit estimates of PIC would be greater when during standing compared with sitting. Soleus motor neuron PIC was estimated via the paired motor unit (PMU) technique. For each motor unit pair, difference in reference unit firing frequency (ΔF) estimates of PIC were made during isometric ramps in plantarflexion force during sitting (conventional approach) and during standing anterior postural sway (new approach). Baseline reciprocal inhibition (RI) was also measured in each posture using the poststimulus time histogram technique. ΔF estimates during standing postural sway were not different [2.64 ± 0.95 pulses/s (pps), P = 0.098] from seated PIC estimates (3.15 ± 1.45 pps) measured from the same motor unit pair. Similarly, reciprocal inhibition at the onset of each task was the same in standing (-0.60 ± 0.32, P = 0.301) and seated (-0.86 ± 0.82) postures. PMU recordings made during standing postural sway met all assumptions that underlay the PMU technique, including rate modulation ≥0.5 pps (3.11 ± 1.90 pps), rate-rate correlation r ≥ 0.7 (0.84 ± 0.13), and time between reference and test unit recruitment ≥1 s (1.83 ± 0.81 s). This study presents a novel, functionally relevant standing method for investigating PIC in humans.NEW & NOTEWORTHY Paired motor unit (PMU) estimates of persistent inward current (PIC) in human soleus motor units are typically made in seated posture. Our study demonstrates that these estimates can be made during standing forward sway, a task that more accurately reflects the postural role of human soleus muscle. PMU recordings made during standing postural sway were validated using all previously published criteria used to test the assumptions of the PMU technique. Standing estimates of PIC did not differ from seated estimates made from the same motor unit pairs.
Collapse
|
6
|
Becker M, Parker D. Time course of functional changes in locomotor and sensory systems after spinal cord lesions in lamprey. J Neurophysiol 2019; 121:2323-2335. [DOI: 10.1152/jn.00120.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Changes in motor and sensory properties occur either side of spinal cord lesion sites from lower vertebrates to humans. We have previously examined these changes in the lamprey, a model system for studying recovery after spinal cord injury. These analyses were performed 8–12 wk after complete spinal cord lesions, a time when most animals have recovered good locomotor function. However, anatomical analyses have been performed at earlier and later times than this. Because there have been no functional studies at these times, in this study we have examined changes between 2 and 24+ wk after lesioning. Functional changes developed at different times in different regions of the spinal cord. Spinal cord excitability was significantly reduced above and below the lesion site less than 6 wk after lesioning but showed variable region-specific changes at later times. Excitatory synaptic inputs to motor neurons were increased above the lesion site during the recovery phase (2–8 wk after lesioning) but only increased below the lesion site once recovery had occurred (8 wk and later). These synaptic effects were associated with lesion-induced changes in connectivity between premotor excitatory interneurons. Sensory inputs were potentiated at 8 wk and later after lesioning but were markedly reduced at earlier times. There are thus time- and region-specific changes in motor and sensory properties above and below the lesion site. Although animals typically recover good locomotor function by 8 wk, there were further changes at 24+ wk. With the assumption that these changes can help to compensate for the reduced descending input to the spinal cord, effects at later times may reflect ongoing modifications as regeneration continues. NEW & NOTEWORTHY The lamprey is a model system for studying functional recovery and regeneration after spinal cord injury. We show that changes in spinal cord excitability and sensory inputs develop at different times above and below the lesion site during recovery. These changes may occur in response to the lesion-induced removal of descending inputs and may subsequently help to compensate for the reduction of the descending drive to allow locomotor recovery. Changes also continue once animals have recovered locomotor function, potentially reflecting adaptations to further regeneration at later recovery times.
Collapse
Affiliation(s)
- Matthew Becker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - David Parker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Lucas-Osma AM, Li Y, Murray K, Lin S, Black S, Stephens MJ, Ahn AH, Heckman CJ, Fenrich KK, Fouad K, Bennett DJ. 5-HT 1D receptors inhibit the monosynaptic stretch reflex by modulating C-fiber activity. J Neurophysiol 2019; 121:1591-1608. [PMID: 30625007 DOI: 10.1152/jn.00805.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The monosynaptic stretch reflex (MSR) plays an important role in feedback control of movement and posture but can also lead to unstable oscillations associated with tremor and clonus, especially when increased with spinal cord injury (SCI). To control the MSR and clonus after SCI, we examined how serotonin regulates the MSR in the sacrocaudal spinal cord of rats with and without a chronic spinal transection. In chronic spinal rats, numerous 5-HT receptor agonists, including zolmitriptan, methylergonovine, and 5-HT, inhibited the MSR with a potency highly correlated to their binding affinity to 5-HT1D receptors and not other 5-HT receptors. Selective 5-HT1D receptor antagonists blocked this agonist-induced inhibition, although antagonists alone had no action, indicating a lack of endogenous or constitutive receptor activity. In normal uninjured rats, the MSR was likewise inhibited by 5-HT, but at much higher doses, indicating a supersensitivity after SCI. This supersensitivity resulted from the loss of the serotonin transporter SERT with spinal transection, because normal and injured rats were equally sensitive to 5-HT after SERT was blocked or to agonists not transported by SERT (zolmitriptan). Immunolabeling revealed that the 5-HT1D receptor was confined to superficial lamina of the dorsal horn, colocalized with CGRP-positive C-fibers, and eliminated by dorsal rhizotomy. 5-HT1D receptor labeling was not found on large proprioceptive afferents or α-motoneurons of the MSR. Thus serotonergic inhibition of the MSR acts indirectly by modulating C-fiber activity, opening up new possibilities for modulating reflex function and clonus via pain-related pathways. NEW & NOTEWORTHY Brain stem-derived serotonin potently inhibits afferent transmission in the monosynaptic stretch reflex. We show that serotonin produces this inhibition exclusively via 5-HT1D receptors, and yet these receptors are paradoxically mostly confined to C-fibers. This suggests that serotonin acts by gating of C-fiber activity, which in turn modulates afferent transmission to motoneurons. We also show that the classic supersensitivity to 5-HT after spinal cord injury results from a loss of SERT, and not 5-HT1D receptor plasticity.
Collapse
Affiliation(s)
- Ana M Lucas-Osma
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Katie Murray
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Shihao Lin
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Sophie Black
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Marilee J Stephens
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Andrew H Ahn
- Teva Pharmaceuticals, Clinical Development, North Wales, Pennsylvania
| | - C J Heckman
- Department of Physiology, Northwestern University, Feinberg School of Medicine , Chicago, Illinois
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - David J Bennett
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
8
|
Lin S, Li Y, Lucas-Osma AM, Hari K, Stephens MJ, Singla R, Heckman CJ, Zhang Y, Fouad K, Fenrich KK, Bennett DJ. Locomotor-related V3 interneurons initiate and coordinate muscles spasms after spinal cord injury. J Neurophysiol 2019; 121:1352-1367. [PMID: 30625014 DOI: 10.1152/jn.00776.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury leads to a devastating loss of motor function and yet is accompanied by a paradoxical emergence of muscle spasms, which often involve complex muscle activation patterns across multiple joints, reciprocal muscle timing, and rhythmic clonus. We investigated the hypothesis that spasms are a manifestation of partially recovered function in spinal central pattern-generating (CPG) circuits that normally coordinate complex postural and locomotor functions. We focused on the commissural propriospinal V3 neurons that coordinate interlimb movements during locomotion and examined mice with a chronic spinal transection. When the V3 neurons were optogenetically activated with a light pulse, a complex coordinated pattern of motoneuron activity was evoked with reciprocal, crossed, and intersegmental activity. In these same mice, brief sensory stimulation evoked spasms with a complex pattern of activity very similar to that evoked by light, and the timing of these spasms was readily reset by activation of V3 neurons. Given that V3 neurons receive abundant sensory input, these results suggest that sensory activation of V3 neurons is alone sufficient to generate spasms. Indeed, when we silenced V3 neurons optogenetically, sensory evoked spasms were inhibited. Also, inhibiting general CPG activity by blocking N-methyl-d-aspartate (NMDA) receptors inhibited V3 evoked activity and associated spasms, whereas NMDA application did the opposite. Furthermore, overwhelming the V3 neurons with repeated optogenetic stimulation inhibited subsequent sensory evoked spasms, both in vivo and in vitro. Taken together, these results demonstrate that spasms are generated in part by sensory activation of V3 neurons and associated CPG circuits. NEW & NOTEWORTHY We investigated whether locomotor-related excitatory interneurons (V3) play a role in coordinating muscle spasm activity after spinal cord injury (SCI). Unexpectedly, we found that these neurons not only coordinate reciprocal motor activity but are critical for initiating spasms, as well. More generally, these results suggest that V3 neurons are important in initiating and coordinating motor output after SCI and thus provide a promising target for restoring residual motor function.
Collapse
Affiliation(s)
- Shihao Lin
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Ana M Lucas-Osma
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Krishnapriya Hari
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Marilee J Stephens
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Rahul Singla
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - C J Heckman
- Department of Physiology, Northwestern University, Feinberg School of Medicine , Chicago, Illinois
| | - Ying Zhang
- Department of Medical Neuroscience, Dalhousie University , Halifax, Nova Scotia , Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - David J Bennett
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
9
|
Lucas-Osma AM, Li Y, Lin S, Black S, Singla R, Fouad K, Fenrich KK, Bennett DJ. Extrasynaptic α 5GABA A receptors on proprioceptive afferents produce a tonic depolarization that modulates sodium channel function in the rat spinal cord. J Neurophysiol 2018; 120:2953-2974. [PMID: 30256739 DOI: 10.1152/jn.00499.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of GABAA receptors on sensory axons produces a primary afferent depolarization (PAD) that modulates sensory transmission in the spinal cord. While axoaxonic synaptic contacts of GABAergic interneurons onto afferent terminals have been extensively studied, less is known about the function of extrasynaptic GABA receptors on afferents. Thus, we examined extrasynaptic α5GABAA receptors on low-threshold proprioceptive (group Ia) and cutaneous afferents. Afferents were impaled with intracellular electrodes and filled with neurobiotin in the sacrocaudal spinal cord of rats. Confocal microscopy was used to reconstruct the afferents and locate immunolabelled α5GABAA receptors. In all afferents α5GABAA receptors were found throughout the extensive central axon arbors. They were most densely located at branch points near sodium channel nodes, including in the dorsal horn. Unexpectedly, proprioceptive afferent terminals on motoneurons had a relative lack of α5GABAA receptors. When recording intracellularly from these afferents, blocking α5GABAA receptors (with L655708, gabazine, or bicuculline) hyperpolarized the afferents, as did blocking neuronal activity with tetrodotoxin, indicating a tonic GABA tone and tonic PAD. This tonic PAD was increased by repeatedly stimulating the dorsal root at low rates and remained elevated for many seconds after the stimulation. It is puzzling that tonic PAD arises from α5GABAA receptors located far from the afferent terminal where they can have relatively little effect on terminal presynaptic inhibition. However, consistent with the nodal location of α5GABAA receptors, we find tonic PAD helps produce sodium spikes that propagate antidromically out the dorsal roots, and we suggest that it may well be involved in assisting spike transmission in general. NEW & NOTEWORTHY GABAergic neurons are well known to form synaptic contacts on proprioceptive afferent terminals innervating motoneurons and to cause presynaptic inhibition. However, the particular GABA receptors involved are unknown. Here, we examined the distribution of extrasynaptic α5GABAA receptors on proprioceptive Ia afferents. Unexpectedly, these receptors were found preferentially near nodal sodium channels throughout the afferent and were largely absent from afferent terminals. These receptors produced a tonic afferent depolarization that modulated sodium spikes, consistent with their location.
Collapse
Affiliation(s)
- Ana M Lucas-Osma
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Shihao Lin
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Sophie Black
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Rahul Singla
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | - David J Bennett
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
10
|
Parker D. The Lesioned Spinal Cord Is a "New" Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey. Front Neural Circuits 2017; 11:84. [PMID: 29163065 PMCID: PMC5681538 DOI: 10.3389/fncir.2017.00084] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/16/2017] [Indexed: 01/13/2023] Open
Abstract
Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where comparisons with mammalian systems can be made effects seem to be conserved, improving functional recovery in higher vertebrates will require interventions that generate the optimal spinal cord conditions conducive to recovery. The analyses needed to identify these conditions are difficult in the mammalian spinal cord, but lower vertebrate systems should help to identify the principles of the optimal spinal cord response to injury.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Tysseling VM, Klein DA, Imhoff-Manuel R, Manuel M, Heckman CJ, Tresch MC. Constitutive activity of 5-HT 2C receptors is present after incomplete spinal cord injury but is not modified after chronic SSRI or baclofen treatment. J Neurophysiol 2017; 118:2944-2952. [PMID: 28877964 DOI: 10.1152/jn.00190.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/17/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022] Open
Abstract
After spinal cord injury (SCI), reflexes become hyperexcitable, leading to debilitating muscle spasms and compromised motor function. Previous work has described adaptations in spinal systems that might underlie this hyperexcitability, including an increase in constitutively active 5-HT2C receptors in spinal motoneurons. That work, however, examined adaptations following complete transection SCI, whereas SCI in humans is usually anatomically and functionally incomplete. We therefore evaluated whether constitutive activity of 5-HT2C receptors contributes to reflex hyperexcitability in an incomplete compression model of SCI and to spasms in vitro and in vivo. Our results confirm that 5-HT2C receptor constitutive activity contributes to reflex excitability after incomplete SCI. We also evaluated whether constitutive activity could be altered by manipulation of neural activity levels after SCI, testing the hypothesis that it reflects homeostatic processes acting to maintain spinal excitability. We decreased neural activity after SCI by administering baclofen and increased activity by administering the selective serotonin reuptake inhibitor (SSRI) fluoxetine. We found that drug administration produced minimal alterations in in vivo locomotor function or reflex excitability. Similarly, we found that neither baclofen nor fluoxetine altered the contribution of constitutively active 5-HT2C receptors to reflexes after SCI, although the contribution of 5-HT2C receptors to reflex activity was altered after SSRIs. These results confirm the importance of constitutive activity in 5-HT2C receptors to spinal hyperexcitability following SCI in the clinically relevant case of incomplete SCI but suggest that this activity is not driven by homeostatic processes that act to maintain overall levels of spinal excitability.NEW & NOTEWORTHY After spinal cord injury (SCI), most people will develop muscle spasms below their level of injury that can severely impact function. In this work, we examine the adaptations that occur within the spinal cord after SCI that contribute to these motor dysfunctions. We also evaluate one hypothesis about how these adaptations develop, which will potentially lead to intervention strategies to improve functional outcomes in persons with SCI.
Collapse
Affiliation(s)
- V M Tysseling
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois; .,Department of Physiology, Northwestern University, Chicago, Illinois
| | - D A Klein
- Department of Physiology, Northwestern University, Chicago, Illinois
| | - R Imhoff-Manuel
- Department of Physiology, Northwestern University, Chicago, Illinois
| | - M Manuel
- Department of Physiology, Northwestern University, Chicago, Illinois
| | - C J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois.,Department of Physiology, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois.,Shirley Ryan AbilityLab, Chicago, Illinois; and
| | - M C Tresch
- Department of Physiology, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois.,Shirley Ryan AbilityLab, Chicago, Illinois; and.,McCormick School of Biomedical Engineering, Northwestern University, Technological Institute, Evanston, Illinois
| |
Collapse
|
12
|
Ryu Y, Ogata T, Nagao M, Kitamura T, Morioka K, Ichihara Y, Doi T, Sawada Y, Akai M, Nishimura R, Fujita N. The swimming test is effective for evaluating spasticity after contusive spinal cord injury. PLoS One 2017; 12:e0171937. [PMID: 28182676 PMCID: PMC5300247 DOI: 10.1371/journal.pone.0171937] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/28/2017] [Indexed: 12/27/2022] Open
Abstract
Spasticity is a frequent chronic complication in individuals with spinal cord injury (SCI). However, the severity of spasticity varies in patients with SCI. Therefore, an evaluation method is needed to determine the severity of spasticity. We used a contusive SCI model that is suitable for clinical translation. In this study, we examined the feasibility of the swimming test and an EMG for evaluating spasticity in a contusive SCI rat model. Sprague-Dawley rats received an injury at the 8th thoracic vertebra. Swimming tests were performed 3 to 6 weeks after SCI induction. We placed the SCI rats into spasticity-strong or spasticity-weak groups based on the frequency of spastic behavior during the swimming test. Subsequently, we recorded the Hoffman reflex (H-reflex) and examined the immunoreactivity of serotonin (5-HT) and its receptor (5-HT2A) in the spinal tissues of the SCI rats. The spasticity-strong group had significantly decreased rate-dependent depression of the H-reflex compared to the spasticity-weak group. The area of 5-HT2A receptor immunoreactivity was significantly increased in the spasticity-strong group. Thus, both electrophysiological and histological evaluations indicate that the spasticity-strong group presented with a more severe upper motor neuron syndrome. We also observed the groups in their cages for 20 hours. Our results suggest that the swimming test provides an accurate evaluation of spasticity in this contusive SCI model. We believe that the swimming test is an effective method for evaluating spastic behaviors and developing treatments targeting spasticity after SCI.
Collapse
Affiliation(s)
- Youngjae Ryu
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
- * E-mail:
| | - Motoshi Nagao
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
| | - Taku Kitamura
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
| | - Kazuhito Morioka
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California, San Francisco, California, United States of America
| | - Yoshinori Ichihara
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
| | - Toru Doi
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
| | - Yasuhiro Sawada
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
| | - Masami Akai
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
- Graduate School, International University of Health and Welfare, Tokyo, Japan
| | - Ryohei Nishimura
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Fujita
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Thaweerattanasinp T, Heckman CJ, Tysseling VM. Firing characteristics of deep dorsal horn neurons after acute spinal transection during administration of agonists for 5-HT1B/1D and NMDA receptors. J Neurophysiol 2016; 116:1644-1653. [PMID: 27486104 PMCID: PMC5144700 DOI: 10.1152/jn.00198.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/07/2016] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) results in a loss of serotonin (5-HT) to the spinal cord and a loss of inhibition to deep dorsal horn (DDH) neurons, which produces an exaggerated excitatory drive to motoneurons. The mechanism of this excitatory drive could involve the DDH neurons triggering long excitatory postsynaptic potentials in motoneurons, which may ultimately drive muscle spasms. Modifying the activity of DDH neurons with drugs such as NMDA or the 5-HT1B/1D receptor agonist zolmitriptan could have a large effect on motoneuron activity and, therefore, on muscle spasms. In this study, we characterize the firing properties of DDH neurons after acute spinal transection in adult mice during administration of zolmitriptan and NMDA, using the in vitro sacral cord preparation and extracellular electrophysiology. DDH neurons can be categorized into three major types with distinct evoked and spontaneous firing characteristics: burst (bursting), simple (single spiking), and tonic (spontaneously tonic firing) neurons. The burst neurons likely contribute to muscle spasm mechanisms because of their bursting behavior. Only the burst neurons show significant changes in their firing characteristics during zolmitriptan and NMDA administration. Zolmitriptan suppresses the burst neurons by reducing their evoked spikes, burst duration, and spontaneous firing rate. Conversely, NMDA facilitates them by enhancing their burst duration and spontaneous firing rate. These results suggest that zolmitriptan may exert its antispastic effect on the burst neurons via activation of 5-HT1B/1D receptors, whereas activation of NMDA receptors may facilitate the burst neurons in contributing to muscle spasm mechanisms following SCI.
Collapse
Affiliation(s)
| | - Charles J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Physical Therapy and Human Movement Science, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Vicki M Tysseling
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Physical Therapy and Human Movement Science, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
14
|
Ganzer PD, Meyers EC, Sloan AM, Maliakkal R, Ruiz A, Kilgard MP, Robert LR. Awake behaving electrophysiological correlates of forelimb hyperreflexia, weakness and disrupted muscular synchronization following cervical spinal cord injury in the rat. Behav Brain Res 2016; 307:100-11. [PMID: 27033345 DOI: 10.1016/j.bbr.2016.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/26/2016] [Indexed: 01/22/2023]
Abstract
Spinal cord injury usually occurs at the level of the cervical spine and results in profound impairment of forelimb function. In this study, we recorded awake behaving intramuscular electromyography (EMG) from the biceps and triceps muscles of the impaired forelimb during volitional and reflexive forelimb movements before and after unilateral cervical spinal cord injury (cSCI) in rats. C5/C6 hemicontusion reduced volitional forelimb strength by more than 50% despite weekly rehabilitation for one month post-injury. Triceps EMG during volitional strength assessment was reduced by more than 60% following injury, indicating reduced descending drive. Biceps EMG during reflexive withdrawal from a thermal stimulus was increased by 500% following injury, indicating flexor withdrawal hyperreflexia. The reduction in volitional forelimb strength was significantly correlated with volitional and reflexive biceps EMG activity. Our results support the hypothesis that biceps hyperreflexia and descending volitional drive both significantly contribute to forelimb strength deficits after cSCI and provide new insight into dynamic muscular dysfunction after cSCI. The use of multiple automated quantitative measures of forelimb dysfunction in the rodent cSCI model will likely aid the search for effective regenerative, pharmacological, and neuroprosthetic treatments for spinal cord injury.
Collapse
Affiliation(s)
- Patrick Daniel Ganzer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Eric Christopher Meyers
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Andrew Michael Sloan
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Reshma Maliakkal
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - Andrea Ruiz
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - Michael Paul Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - LeMoine Rennaker Robert
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|
15
|
Ascending vestibular drive is asymmetrically distributed to the inferior oblique motoneuron pools in a subset of hemispheric stroke survivors. Clin Neurophysiol 2016; 127:2022-30. [PMID: 26971485 DOI: 10.1016/j.clinph.2016.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Aberrant vestibular nuclear function is proposed to be a principle driver of limb muscle spasticity after stroke. Although spasticity does not manifest in ocular muscles, we sought to determine whether altered cortical modulation of ascending vestibuloocular pathways post-stroke could impact the excitability of ocular motoneurons. METHODS Nineteen chronic stroke survivors, aged 49-68 yrs. were enrolled. Vestibular evoked myogenic potentials (VEMPs) were recorded from the inferior oblique muscles of the eye using surface EMG electrodes. We assessed the impact of ascending otolith pathways on eye muscle activity and evaluated the relationship between otolith-ocular function and the severity of spasticity. RESULTS VEMP responses were recorded bilaterally in 14/19 subjects. Response magnitude on the affected side was significantly larger than on the spared side. In a subset of subjects, there was a strong relationship between affected response amplitude and the severity of limb spasticity, as estimated using a standard clinical scale. CONCLUSIONS This study suggests that alterations in ascending vestibular drive to ocular motoneurons contribute to post-stroke spasticity in a subset of spastic stroke subjects. We speculate this imbalance is a consequence of the unilateral disruption of inhibitory corticobulbar projections to the vestibular nuclei. SIGNIFICANCE This study potentially sheds light on the underlying mechanisms of post-stroke spasticity.
Collapse
|
16
|
Becker MI, Parker D. Changes in functional properties and 5-HT modulation above and below a spinal transection in lamprey. Front Neural Circuits 2015; 8:148. [PMID: 25653594 PMCID: PMC4299445 DOI: 10.3389/fncir.2014.00148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022] Open
Abstract
In addition to the disruption of neural function below spinal cord injuries (SCI), there also can be changes in neuronal properties above and below the lesion site. The relevance of these changes is generally unclear, but they must be understood if we are to provide rational interventions. Pharmacological approaches to improving locomotor function have been studied extensively, but it is still unclear what constitutes an optimal approach. Here, we have used the lamprey to compare the modulatory effects of 5-HT and lesion-induced changes in cellular and synaptic properties in unlesioned and lesioned animals. While analyses typically focus on the sub-lesion spinal cord, we have also examined effects above the lesion to see if there are changes here that could potentially contribute to the functional recovery. Cellular and synaptic properties differed in unlesioned and lesioned spinal cords and above and below the lesion site. The cellular and synaptic modulatory effects of 5-HT also differed in lesioned and unlesioned animals, again in region-specific ways above and below the lesion site. A role for 5-HT in promoting recovery was suggested by the potential for improvement in locomotor activity when 5-HT was applied to poorly recovered animals, and by the consistent failure of animals to recover when they were incubated in PCPA to deplete 5-HT. However, PCPA did not affect swimming in animals that had already recovered, suggesting a difference in 5-HT effects after lesioning. These results show changes in 5-HT modulation and cellular and synaptic properties after recovery from a spinal cord transection. Importantly, effects are not confined to the sub-lesion spinal cord but also occur above the lesion site. This suggests that the changes may not simply reflect compensatory responses to the loss of descending inputs, but reflect the need for co-ordinated changes above and below the lesion site. The changes in modulatory effects should be considered in pharmacological approaches to functional recovery, as assumptions based on effects in the unlesioned spinal cord may not be justified.
Collapse
Affiliation(s)
- Matthew I Becker
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| | - David Parker
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| |
Collapse
|
17
|
Spinal cord injury enables aromatic L-amino acid decarboxylase cells to synthesize monoamines. J Neurosci 2014; 34:11984-2000. [PMID: 25186745 DOI: 10.1523/jneurosci.3838-13.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Serotonin (5-HT), an important modulator of both sensory and motor functions in the mammalian spinal cord, originates mainly in the raphe nuclei of the brainstem. However, following complete transection of the spinal cord, small amounts of 5-HT remain detectable below the lesion. It has been suggested, but not proven, that this residual 5-HT is produced by intraspinal 5-HT neurons. Here, we show by immunohistochemical techniques that cells containing the enzyme aromatic l-amino acid decarboxylase (AADC) occur not only near the central canal, as reported by others, but also in the intermediate zone and dorsal horn of the spinal gray matter. We show that, following complete transection of the rat spinal cord at S2 level, AADC cells distal to the lesion acquire the ability to produce 5-HT from its immediate precursor, 5-hydroxytryptophan. Our results indicate that this phenotypic change in spinal AADC cells is initiated by the loss of descending 5-HT projections due to spinal cord injury (SCI). By in vivo and in vitro electrophysiology, we show that 5-HT produced by AADC cells increases the excitability of spinal motoneurons. The phenotypic change in AADC cells appears to result from a loss of inhibition by descending 5-HT neurons and to be mediated by 5-HT1B receptors expressed by AADC cells. These findings indicate that AADC cells are a potential source of 5-HT at spinal levels below an SCI. The production of 5-HT by AADC cells, together with an upregulation of 5-HT2 receptors, offers a partial explanation of hyperreflexia below a chronic SCI.
Collapse
|
18
|
Iafarova GG, Tumakaev RF, Hazieva AR, Baltina TV. Effect of local hypothermia on H- and M-responses after spinal cord contusion in dogs. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914050303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Serotonergic transmission after spinal cord injury. J Neural Transm (Vienna) 2014; 122:279-95. [PMID: 24866695 DOI: 10.1007/s00702-014-1241-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/06/2014] [Indexed: 12/27/2022]
Abstract
Changes in descending serotonergic innervation of spinal neural activity have been implicated in symptoms of paralysis, spasticity, sensory disturbances and pain following spinal cord injury (SCI). Serotonergic neurons possess an enhanced ability to regenerate or sprout after many types of injury, including SCI. Current research suggests that serotonine (5-HT) release within the ventral horn of the spinal cord plays a critical role in motor function, and activation of 5-HT receptors mediates locomotor control. 5-HT originating from the brain stem inhibits sensory afferent transmission and associated spinal reflexes; by abolishing 5-HT innervation SCI leads to a disinhibition of sensory transmission. 5-HT denervation supersensitivity is one of the key mechanisms underlying the increased motoneuron excitability that occurs after SCI, and this hyperexcitability has been demonstrated to underlie the pathogenesis of spasticity after SCI. Moreover, emerging evidence implicates serotonergic descending facilitatory pathways from the brainstem to the spinal cord in the maintenance of pathologic pain. There are functional relevant connections between the descending serotonergic system from the rostral ventromedial medulla in the brainstem, the 5-HT receptors in the spinal dorsal horn, and the descending pain facilitation after tissue and nerve injury. This narrative review focussed on the most important studies that have investigated the above-mentioned effects of impaired 5-HT-transmission in humans after SCI. We also briefly discussed the promising therapeutical approaches with serotonergic drugs, monoclonal antibodies and intraspinal cell transplantation.
Collapse
|
20
|
Miller DM, Klein CS, Suresh NL, Rymer WZ. Asymmetries in vestibular evoked myogenic potentials in chronic stroke survivors with spastic hypertonia: evidence for a vestibulospinal role. Clin Neurophysiol 2014; 125:2070-8. [PMID: 24680197 DOI: 10.1016/j.clinph.2014.01.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Indirect evidence suggests that lateralized changes in motoneuron behavior post-stroke are potentially due to a depolarizing supraspinal drive to the motoneuron pool, but the pathways responsible are unknown. In this study, we assessed vestibular evoked myogenic potentials (VEMPs) in the neck muscles of hemispheric stroke survivors with contralesional spasticity to quantify the relative levels of vestibular drive to the spastic-paretic and contralateral motoneuron pools. METHODS VEMPs were recorded from each sternocleidomastoid muscle in chronic stroke survivors. Side-to-side differences in cVEMP amplitude were calculated and expressed as an asymmetry ratio, a proxy for the relative amount of vestibular drive to each side. RESULTS Spastic-paretic VEMPs were larger than contralateral VEMPs in 13/16 subjects. There was a strong positive relationship between the degree of asymmetry and the severity of spasticity in this subset of subjects. Remaining subjects had larger contralateral responses. CONCLUSION Vestibular drive to cervical motoneurons is asymmetric in spastic stroke survivors, supporting our hypothesis that there is an imbalance in descending vestibular drive to motoneuron pools post-stroke. We speculate this imbalance is a consequence of the unilateral disruption of inhibitory corticobulbar projections to the vestibular nuclei. SIGNIFICANCE This study sheds new light on the underlying mechanisms of post-stroke spasticity.
Collapse
Affiliation(s)
- Derek M Miller
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.
| | - Cliff S Klein
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA
| | - Nina L Suresh
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA
| | - William Z Rymer
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Abstract
Movement is accomplished by the controlled activation of motor unit populations. Our understanding of motor unit physiology has been derived from experimental work on the properties of single motor units and from computational studies that have integrated the experimental observations into the function of motor unit populations. The article provides brief descriptions of motor unit anatomy and muscle unit properties, with more substantial reviews of motoneuron properties, motor unit recruitment and rate modulation when humans perform voluntary contractions, and the function of an entire motor unit pool. The article emphasizes the advances in knowledge on the cellular and molecular mechanisms underlying the neuromodulation of motoneuron activity and attempts to explain the discharge characteristics of human motor units in terms of these principles. A major finding from this work has been the critical role of descending pathways from the brainstem in modulating the properties and activity of spinal motoneurons. Progress has been substantial, but significant gaps in knowledge remain.
Collapse
Affiliation(s)
- C J Heckman
- Northwestern University, Evanston, Illinois, USA.
| | | |
Collapse
|
22
|
Spinal cord injury induces serotonin supersensitivity without increasing intrinsic excitability of mouse V2a interneurons. J Neurosci 2012; 32:13145-54. [PMID: 22993431 DOI: 10.1523/jneurosci.2995-12.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Denervation-induced plastic changes impair locomotor recovery after spinal cord injury (SCI). Spinal motoneurons become hyperexcitable after SCI, but the plastic responses of locomotor network interneurons (INs) after SCI have not been studied. Using an adult mouse SCI model, we analyzed the effects of complete spinal cord lesions on the intrinsic electrophysiological properties, excitability, and neuromodulatory responses to serotonin (5-HT) in mouse lumbar V2a spinal INs, which help regulate left-right alternation during locomotion. Four weeks after SCI, V2a INs showed almost no changes in baseline excitability or action potential properties; the only parameter that changed was a reduced input resistance. However, V2a INs became 100- to 1000-fold more sensitive to 5-HT. Immunocytochemical analysis showed that SCI caused a coordinated loss of serotonergic fibers and the 5-HT transporter (SERT). Blocking the SERT with citalopram in intact mice did not increase 5-HT sensitivity to the level seen after SCI. SCI also evoked an increase in 5-HT(2C) receptor cluster number and intensity, suggesting that several plastic changes cooperate in increasing 5-HT sensitivity. Our results suggest that different components of the spinal neuronal network responsible for coordinating locomotion are differentially affected by SCI, and highlight the importance of understanding these changes when considering therapies targeted at functional recovery.
Collapse
|
23
|
Venugopal S, Hamm TM, Jung R. Differential contributions of somatic and dendritic calcium-dependent potassium currents to the control of motoneuron excitability following spinal cord injury. Cogn Neurodyn 2012; 6:283-93. [PMID: 23730358 DOI: 10.1007/s11571-012-9191-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 12/04/2011] [Accepted: 01/23/2012] [Indexed: 12/12/2022] Open
Abstract
The hyperexcitability of alpha-motoneurons and accompanying spasticity following spinal cord injury (SCI) have been attributed to enhanced persistent inward currents (PICs), including L-type calcium and persistent sodium currents. Factors controlling PICs may offer new therapies for managing spasticity. Such factors include calcium-activated potassium (KCa) currents, comprising in motoneurons an after-hyperpolarization-producing current (I KCaN) activated by N/P-type calcium currents, and a second current (I KCaL) activated by L-type calcium currents (Li and Bennett in J neurophysiol 97:767-783, 2007). We hypothesize that these two currents offer differential control of PICs and motoneuron excitability based on their probable somatic and dendritic locations, respectively. We reproduced SCI-induced PIC enhancement in a two-compartment motoneuron model that resulted in persistent dendritic plateau potentials. Removing dendritic I KCaL eliminated primary frequency range discharge and produced an abrupt transition into tertiary range firing without significant changes in the overall frequency gain. However, I KCaN removal mainly increased the gain. Steady-state analyses of dendritic membrane potential showed that I KCaL limits plateau potential magnitude and strongly modulates the somatic injected current thresholds for plateau onset and offset. In contrast, I KCaN had no effect on the plateau magnitude and thresholds. These results suggest that impaired function of I KCaL may be an important intrinsic mechanism underlying PIC-induced motoneuron hyperexcitability following SCI.
Collapse
Affiliation(s)
- Sharmila Venugopal
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | | | | |
Collapse
|
24
|
Wallace DM, Ross BH, Thomas CK. Characteristics of lower extremity clonus after human cervical spinal cord injury. J Neurotrauma 2011; 29:915-24. [PMID: 21910643 DOI: 10.1089/neu.2010.1549] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clonus can interfere with self-care and rehabilitation of people with spinal cord injury. Our aim was to characterize clonus and to evaluate factors that influence clonus duration in muscles paralyzed chronically by spinal cord injury. Electromyographic activity was recorded from soleus and 7 other limb muscles (5 ipsilateral, 2 contralateral) during clonus. In 14 subjects, clonus frequency in soleus averaged 5.4±0.9 Hz and was slower when the reflex path was longer. Contraction frequency slowed at the beginning and end of clonus (sometimes by 2 Hz). The magnitude of one cycle changed the timing and magnitude of the next cycle. These data suggest that afferent input influences the frequency and maintenance of clonus. Recording from many muscles revealed that clonus was prolonged (>40 sec) when only ipsilateral triceps surae or triceps surae and tibialis anterior were involved. Therefore, localized inputs to spinal circuits were important to sustain clonus. Clonus was intermediate (median: 21 sec) with activation of three or four ipsilateral muscles and these contractions were associated with greater activation of ipsilateral flexors. Clonus was short (<5 sec) when ipsilateral and contralateral muscles were activated (five or six muscles). Activation of extraneous afferent input, particularly contralateral muscles, may provide a way to shorten clonus after spinal cord injury.
Collapse
Affiliation(s)
- Douglas M Wallace
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
25
|
Hochman S. Long-term patch recordings from adult spinal neurons herald new era of opportunity. J Neurophysiol 2011; 106:2794-5. [PMID: 21957222 DOI: 10.1152/jn.00873.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, Andreas Husch, Nathan Cramer, and Ronald M. Harris-Warrick achieved a remarkable breakthrough in patch-clamp recordings of ventral horn neurons in the adult spinal cord slice preparation. This landmark study that breaks the "age barrier" is titled "Long-duration perforated patch recordings from spinal interneurons of adult mice" (Husch et al., in press). In it, the authors demonstrate the unprecedented ability to undertake day-long (up to 12 h), and utterly stable perforated patch recordings. A description of the methodology is detailed in their paper. Here, I give a brief overview before providing context to this extraordinary achievement.
Collapse
Affiliation(s)
- Shawn Hochman
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
26
|
Murray KC, Stephens MJ, Rank M, D'Amico J, Gorassini MA, Bennett DJ. Polysynaptic excitatory postsynaptic potentials that trigger spasms after spinal cord injury in rats are inhibited by 5-HT1B and 5-HT1F receptors. J Neurophysiol 2011; 106:925-43. [PMID: 21653728 PMCID: PMC3154834 DOI: 10.1152/jn.01011.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 05/26/2011] [Indexed: 02/07/2023] Open
Abstract
Sensory afferent transmission and associated spinal reflexes are normally inhibited by serotonin (5-HT) derived from the brain stem. Spinal cord injury (SCI) that eliminates this 5-HT innervation leads to a disinhibition of sensory transmission and a consequent emergence of unusually long polysynaptic excitatory postsynaptic potentials (EPSPs) in motoneurons. These EPSPs play a critical role in triggering long polysynaptic reflexes (LPRs) that initiate muscles spasms. In the present study we examined which 5-HT receptors modulate the EPSPs and whether these receptors adapt to a loss of 5-HT after chronic spinal transection in rats. The EPSPs and associated LPRs recorded in vitro in spinal cords from chronic spinal rats were consistently inhibited by 5-HT(1B) or 5-HT(1F) receptor agonists, including zolmitriptan (5-HT(1B/1D/1F)) and LY344864 (5-HT(1F)), with a sigmoidal dose-response relation, from which we computed the 50% inhibition (EC(50)) and potency (-log EC(50)). The potencies of 5-HT receptor agonists were highly correlated with their binding affinity to 5-HT(1B) and 5-HT(1F) receptors, and not to other 5-HT receptors. Zolmitriptan also inhibited the LPRs and general muscle spasms recorded in vivo in the awake chronic spinal rat. The 5-HT(1B) receptor antagonists SB216641 and GR127935 and the inverse agonist SB224289 reduced the inhibition of LPRs by 5-HT(1B) agonists (zolmitriptan). However, when applied alone, SB224289, SB216641, and GR127935 had no effect on the LPRs, indicating that 5-HT(1B) receptors do not adapt to chronic injury, remaining silent, without constitutive activity. The reduction in EPSPs with zolmitriptan unmasked a large glycine-mediated inhibitory postsynaptic current (IPSC) after SCI. This IPSC and associated chloride current reversed at -73 mV, slightly below the resting membrane potential. Zolmitriptan did not change motoneuron properties. Our results demonstrate that 5-HT(1B/1F) agonists, such as zolmitriptan, can restore inhibition of sensory transmission after SCI without affecting general motoneuron function and thus may serve as a novel class of antispastic drugs.
Collapse
Affiliation(s)
- Katherine C Murray
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Venugopal S, Hamm TM, Crook SM, Jung R. Modulation of inhibitory strength and kinetics facilitates regulation of persistent inward currents and motoneuron excitability following spinal cord injury. J Neurophysiol 2011; 106:2167-79. [PMID: 21775715 DOI: 10.1152/jn.00359.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spasticity is commonly observed after chronic spinal cord injury (SCI) and many other central nervous system disorders (e.g., multiple sclerosis, stroke). SCI-induced spasticity has been associated with motoneuron hyperexcitability partly due to enhanced activation of intrinsic persistent inward currents (PICs). Disrupted spinal inhibitory mechanisms also have been implicated. Altered inhibition can result from complex changes in the strength, kinetics, and reversal potential (E(Cl(-))) of γ-aminobutyric acid A (GABA(A)) and glycine receptor currents. Development of optimal therapeutic strategies requires an understanding of the impact of these interacting factors on motoneuron excitability. We employed computational methods to study the effects of conductance, kinetics, and E(Cl(-)) of a dendritic inhibition on PIC activation and motoneuron discharge. A two-compartment motoneuron with enhanced PICs characteristic of SCI and receiving recurrent inhibition from Renshaw cells was utilized in these simulations. This dendritic inhibition regulated PIC onset and offset and exerted its strongest effects at motoneuron recruitment and in the secondary range of the current-frequency relationship during PIC activation. Increasing inhibitory conductance compensated for moderate depolarizing shifts in E(Cl(-)) by limiting PIC activation and self-sustained firing. Furthermore, GABA(A) currents exerted greater control on PIC activation than glycinergic currents, an effect attributable to their slower kinetics. These results suggest that modulation of the strength and kinetics of GABA(A) currents could provide treatment strategies for uncontrollable spasms.
Collapse
Affiliation(s)
- Sharmila Venugopal
- Center for Adaptive Neural Systems, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA
| | | | | | | |
Collapse
|
28
|
Revill AL, Fuglevand AJ. Effects of persistent inward currents, accommodation, and adaptation on motor unit behavior: a simulation study. J Neurophysiol 2011; 106:1467-79. [PMID: 21697447 DOI: 10.1152/jn.00419.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motor neurons are often assumed to generate spikes in proportion to the excitatory synaptic input received. There are, however, many intrinsic properties of motor neurons that might affect this relationship, such as persistent inward currents (PICs), spike-threshold accommodation, or spike-frequency adaptation. These nonlinear properties have been investigated in reduced animal preparation but have not been well studied during natural motor behaviors because of the difficulty in characterizing synaptic input in intact animals. Therefore, we studied the influence of each of these intrinsic properties on spiking responses and muscle force using a population model of motor units that simulates voluntary contractions in human subjects. In particular, we focused on the difference in firing rate of low-threshold motor units when higher threshold motor units were recruited and subsequently derecruited, referred to as ΔF. Others have used ΔF to evaluate the extent of PIC activation during voluntary behavior. Our results showed that positive ΔF values could arise when any one of these nonlinear properties was included in the simulations. Therefore, a positive ΔF should not be considered as exclusive evidence for PIC activation. Furthermore, by systematically varying contraction duration and speed in our simulations, we identified a means that might be used experimentally to distinguish among PICs, accommodation, and adaptation as contributors to ΔF.
Collapse
Affiliation(s)
- Ann L Revill
- Department of Physiology, College of Medicine, PO Box 210093, University of Arizona, Tucson, AZ 85721-0093, USA
| | | |
Collapse
|
29
|
Rank MM, Murray KC, Stephens MJ, D'Amico J, Gorassini MA, Bennett DJ. Adrenergic receptors modulate motoneuron excitability, sensory synaptic transmission and muscle spasms after chronic spinal cord injury. J Neurophysiol 2010; 105:410-22. [PMID: 21047936 DOI: 10.1152/jn.00775.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain stem provides most of the noradrenaline (NA) present in the spinal cord, which functions to both increase spinal motoneuron excitability and inhibit sensory afferent transmission to motoneurons (excitatory postsynaptic potentials; EPSPs). NA increases motoneuron excitability by facilitating calcium-mediated persistent inward currents (Ca PICs) that are crucial for sustained motoneuron firing. Spinal cord transection eliminates most NA and accordingly causes an immediate loss of PICs and emergence of exaggerated EPSPs. However, with time PICs recover, and thus the exaggerated EPSPs can then readily trigger these PICs, which in turn produce muscle spasms. Here we examined the contribution of adrenergic receptors to spasms in chronic spinal rats. Selective activation of the α(1A) adrenergic receptor with the agonists methoxamine or A61603 facilitated Ca PIC and spasm activity, recorded both in vivo and in vitro. In contrast, the α(2) receptor agonists clonidine and UK14303 did not facilitate Ca PICs, but did decrease the EPSPs that trigger spasms. Moreover, in the absence of agonists, spasms recorded in vivo were inhibited by the α(1) receptor antagonists WB4010, prazosin, and REC15/2739, and increased by the α(2) receptor antagonist RX821001, suggesting that both adrenergic receptors were endogenously active. In contrast, spasm activity recorded in the isolated in vitro cord was inhibited only by the α(1) antagonists that block constitutive receptor activity (activity in the absence of NA; inverse agonists, WB4010 and prazosin) and not by the neutral antagonist REC15/2739, which only blocks conventional NA-mediated receptor activity. RX821001 had no effect in vitro even though it is an α(2) receptor inverse agonist. Our results suggest that after chronic spinal cord injury Ca PICs and spasms are facilitated, in part, by constitutive activity in α(1) adrenergic receptors. Additionally, peripherally derived NA (or similar ligand) activates both α(1) and α(2) adrenergic receptors, controlling PICs and EPSPs, respectively.
Collapse
Affiliation(s)
- M M Rank
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Murray KC, Stephens MJ, Ballou EW, Heckman CJ, Bennett DJ. Motoneuron excitability and muscle spasms are regulated by 5-HT2B and 5-HT2C receptor activity. J Neurophysiol 2010; 105:731-48. [PMID: 20980537 DOI: 10.1152/jn.00774.2010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immediately after spinal cord injury (SCI), a devastating paralysis results from the loss of brain stem and cortical innervation of spinal neurons that control movement, including a loss of serotonergic (5-HT) innervation of motoneurons. Over time, motoneurons recover from denervation and function autonomously, exhibiting large persistent calcium currents (Ca PICs) that both help with functional recovery and contribute to uncontrolled muscle spasms. Here we systematically evaluated which 5-HT receptor subtypes influence PICs and spasms after injury. Spasms were quantified by recording the long-lasting reflexes (LLRs) on ventral roots in response to dorsal root stimulation, in the chronic spinal rat, in vitro. Ca PICs were quantified by intracellular recording in synaptically isolated motoneurons. Application of agonists selective to 5-HT(2B) and 5-HT(2C) receptors (including BW723C86) significantly increased the LLRs and associated Ca PICs, whereas application of agonists to 5-HT(1), 5-HT(2A), 5-HT(3), or 5-HT(4/5/6/7) receptors (e.g., 8-OH-DPAT) did not. The 5-HT(2) receptor agonist-induced increases in LLRs were dose dependent, with doses for 50% effects (EC(50)) highly correlated with published doses for agonist receptor binding (K(i)) at 5-HT(2B) and 5-HT(2C) receptors. Application of selective antagonists to 5-HT(2B) (e.g., RS127445) and 5-HT(2C) (SB242084) receptors inhibited the agonist-induced increase in LLR. However, antagonists that are known to specifically be neutral antagonists at 5-HT(2B/C) receptors (e.g., RS127445) had no effect when given by themselves, indicating that these receptors were not activated by residual 5-HT in the spinal cord. In contrast, inverse agonists (such as SB206553) that block constitutive activity at 5-HT(2B) or 5-HT(2C) receptors markedly reduced the LLRs, indicating the presence of constitutive activity in these receptors. 5-HT(2B) or 5-HT(2C) receptors were confirmed to be on motoneurons by immunolabeling. In summary, 5-HT(2B) and 5-HT(2C) receptors on motoneurons become constitutively active after injury and ultimately contribute to recovery of motoneuron function and emergence of spasms.
Collapse
Affiliation(s)
- Katherine C Murray
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
31
|
Rashid MH, Lopez-Garcia JA, Cervero F. Stimulation of dorsal root afferents increases the excitability of ascending sensory axons in the isolated spinal cord of mature mice. Brain Res 2010; 1356:24-31. [PMID: 20696144 DOI: 10.1016/j.brainres.2010.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/26/2010] [Accepted: 08/03/2010] [Indexed: 11/30/2022]
Abstract
The phenomenon of windup has often been used to assess excitability increases of spinal neurons induced by repetitive stimulation of nociceptive afferents. Windup has been studied in individual spinal cord neurons and in spinal motor reflexes neither of which accurately reflect the forward transmission of nociceptive signals to the brain. In addition, most in vitro studies of spinal windup have been conducted on immature or juvenile animals and it is challenging to extrapolate these results to the adult spinal cord. In the present study, we have used an in vitro whole spinal cord preparation from functionally mature mice (up to 8 weeks old) to record windup activity in ascending axons in the mid-thoracic region evoked by electrical stimulation of a lumbar or sacral dorsal root. Windup responses were observed in axons in the ipsi- and contralateral dorsolateral funiculus (iDLF and cDLF) and in the contralateral ventrolateral funiculus (cVLF). No windup responses were evoked in postsynaptic axons of the ipsilateral dorsal columns (iDC) and no postsynaptic responses were elicited in the ipsilateral ventrolateral funiculus (iVLF) or contralateral dorsal columns (cDC). Between 40% and 45% of all axons in the DLF and cVLF that responded to a single dorsal root stimulus also showed windup. The NMDA receptor antagonist MK-801 reversibly blocked such windup responses. These results illustrate that windup can be consistently recorded from ascending pathways in the mature spinal cord in vitro but also show that windup can only be elicited in a proportion of sensory axons projecting through some, but not all, ascending spinal cord pathways.
Collapse
Affiliation(s)
- Md Harunor Rashid
- Anesthesia Research Unit, Faculty of Medicine, Faculty of Dentistry and the Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | | | | |
Collapse
|
32
|
ElBasiouny SM, Schuster JE, Heckman CJ. Persistent inward currents in spinal motoneurons: important for normal function but potentially harmful after spinal cord injury and in amyotrophic lateral sclerosis. Clin Neurophysiol 2010; 121:1669-79. [PMID: 20462789 PMCID: PMC3000632 DOI: 10.1016/j.clinph.2009.12.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/28/2009] [Accepted: 12/14/2009] [Indexed: 10/19/2022]
Abstract
Meaningful body movements depend on the interplay between synaptic inputs to motoneurons and their intrinsic properties. Injury and disease often alter either or both of these factors and cause motoneuron and movement dysfunction. The ability of the motoneuronal membrane to generate persistent inward currents (PICs) is especially potent in setting the intrinsic excitability of motoneurons and can drastically change the motoneuron output to a given input. In this article, we review the role of PICs in modulating the excitability of spinal motoneurons during health, and their contribution to motoneuron excitability after spinal cord injury (SCI) and in amyotrophic lateral sclerosis (ALS) leading to exaggerated long-lasting reflexes and muscle spasms, and contributing to neuronal degeneration, respectively.
Collapse
Affiliation(s)
- S M ElBasiouny
- Physiology, Physical Medicine and Rehabilitation, Physical Therapy and Human Movement Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | | | | |
Collapse
|
33
|
Fouad K, Rank MM, Vavrek R, Murray KC, Sanelli L, Bennett DJ. Locomotion after spinal cord injury depends on constitutive activity in serotonin receptors. J Neurophysiol 2010; 104:2975-84. [PMID: 20861436 DOI: 10.1152/jn.00499.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Following spinal cord injury (SCI) neurons caudal to the injury are capable of rhythmic locomotor-related activity that can form the basis for substantial functional recovery of stepping despite the loss of crucial brain stem-derived neuromodulators like serotonin (5-HT). Here we investigated the contribution of constitutive 5-HT(2) receptor activity (activity in the absence of 5-HT) to locomotion after SCI. We used a staggered hemisection injury model in rats to study this because these rats showed a robust recovery of locomotor function and yet a loss of most descending axons. Immunolabeling for 5-HT showed little remaining 5-HT below the injury, and locomotor ability was not correlated with the amount of residual 5-HT. Furthermore, blocking 5-HT(2) receptors with an intrathecal (IT) application of the neutral antagonist SB242084 did not affect locomotion (locomotor score and kinematics were unaffected), further indicating that residual 5-HT below the injury did not contribute to generation of locomotion. As a positive control, we found that the same application of SB242084 completely antagonized the muscle activity induced by exogenous application of the 5-HT(2) receptor agonists alpha-methyl-5-HT (IT). In contrast, blocking constitutive 5-HT(2) receptor activity with the potent inverse agonist SB206553 (IT) severely impaired stepping as assessed with kinematic recordings, eliminating most hindlimb weight support and overall reducing the locomotor score in both hind legs. However, even in the most severely impaired animals, rhythmic sweeping movements of the hindlimb feet were still visible during forelimb locomotion, suggesting that SB206553 did not completely eliminate locomotor drive to the motoneurons or motoneuron excitability. The same application of SB206553 had no affect on stepping in normal rats. Thus while normal rats can compensate for loss of 5-HT(2) receptor activity, after severe spinal cord injury rats require constitutive activity in these 5-HT(2) receptors to produce locomotion.
Collapse
Affiliation(s)
- K Fouad
- Centre for Neuroscience, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Udina E, D'Amico J, Bergquist AJ, Gorassini MA. Amphetamine increases persistent inward currents in human motoneurons estimated from paired motor-unit activity. J Neurophysiol 2010; 103:1295-303. [PMID: 20053846 DOI: 10.1152/jn.00734.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recruitment and repetitive firing of spinal motoneurons depend on the activation of persistent inward calcium and sodium currents (PICs) that are in turn facilitated by serotonin and norepinephrine that arise primarily from the brain stem. Considering that in rats motoneuron PICs are greatly facilitated by increasing the presynaptic release of norepinephrine with amphetamine, we sought similar evidence for the modulation of PICs in human motoneurons. Pairs of motor units were recorded during a gradually increasing and then decreasing voluntary contraction. The firing frequency (F) of the lower-threshold (control) motor unit was used as an estimate of the synaptic input to the higher-threshold (test) motor unit. Generally, PICs are initiated during the recruitment of a motoneuron and subsequently provide a fixed depolarizing current that helps the synaptic input maintain firing until derecruitment. Thus the amplitude of the PIC in the test motor unit was estimated from the difference in synaptic input (DeltaF) needed to maintain minimal firing once the PIC was fully activated (measured at the time of test unit derecruitment) compared with the larger synaptic input required to initiate firing prior to full PIC activation (measured at the time of test unit recruitment; DeltaF = F(recruit) - F(derecruit)). Moreover, the activation time of the PIC was estimated as the minimal contraction duration needed to produce a maximal PIC (DeltaF). In five subjects, oral administration of amphetamine, but not placebo, increased the DeltaF by 62% [from 3.7 +/- 0.6 to 6.0 +/- 0.8 (SD) imp/s, P = 0.001] and decreased the time needed to activate a maximal DeltaF from approximately 2 to 0.5 s. Both findings suggest that the endogenous facilitation of PICs from brain stem derived norepinephrine plays an important role in modulating human motoneuron excitability, readying motoneurons for rapid and sustained activity during periods of high arousal such as stress or fear.
Collapse
Affiliation(s)
- Esther Udina
- Institut of Neurosciences, Department Cell Biology, Physiology and Immunology and Centro de Investigación en Red sobre Enfermedades Neurodegenerativas, Universitat Autonoma de Barcelona, Spain
| | | | | | | |
Collapse
|
35
|
Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J. Motoneuron excitability: the importance of neuromodulatory inputs. Clin Neurophysiol 2009; 120:2040-2054. [PMID: 19783207 DOI: 10.1016/j.clinph.2009.08.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 11/28/2022]
Abstract
The excitability of spinal motoneurons is both fundamental for motor behavior and essential in diagnosis of neural disorders. There are two mechanisms for altering this excitability. The classic mechanism is mediated by synaptic inputs that depolarize or hyperpolarize motoneurons by generating postsynaptic potentials. This "ionotropic" mechanism works via neurotransmitters that open ion channels in the cell membrane. In the second mechanism, neurotransmitters bind to receptors that activate intracellular signaling pathways. These pathways modulate the properties of the voltage-sensitive channels that determine the intrinsic input-output properties of motoneurons. This "neuromodulatory" mechanism usually does not directly activate motoneurons but instead dramatically alters the neuron's response to ionotropic inputs. We present extensive evidence that neuromodulatory inputs exert a much more powerful effect on motoneuron excitability than ionotropic inputs. The most potent neuromodulators are probably serotonin and norepinephrine, which are released by axons originating in the brainstem and can increase motoneuron excitability fivefold or more. Thus, the standard tests of motoneuron excitability (H-reflexes, tendon taps, tendon vibration and stretch reflexes) are strongly influenced by the level of neuromodulatory input to motoneurons. This insight is likely to be profoundly important for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- C J Heckman
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA.
| | - Carol Mottram
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| | - Kathy Quinlan
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| | - Renee Theiss
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| | - Jenna Schuster
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| |
Collapse
|
36
|
Elbasiouny SM, Moroz D, Bakr MM, Mushahwar VK. Management of spasticity after spinal cord injury: current techniques and future directions. Neurorehabil Neural Repair 2009; 24:23-33. [PMID: 19723923 DOI: 10.1177/1545968309343213] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spasticity, resulting in involuntary and sustained contractions of muscles, may evolve in patients with stroke, cerebral palsy, multiple sclerosis, brain injury, and spinal cord injury (SCI). The authors critically review the neural mechanisms that may contribute to spasticity after SCI and assess their likely degree of involvement and relative significance to its pathophysiology. Experimental data from patients and animal models of spasticity as well as computer simulations are evaluated. The current clinical methods used for the management of spasticity and the pharmacological actions of drugs are discussed in relation to their effects on spinal mechanisms. Critical assessment of experimental findings indicates that increased excitability of both motoneurons and interneurons plays a crucial role in pathophysiology of spasticity. New interventions, including forms of spinal electrical stimulation to suppress increased neuronal excitability, may reduce the severity of spasticity and its complications.
Collapse
Affiliation(s)
- Sherif M Elbasiouny
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
37
|
Garrison MK, Schmit BD. Flexor reflex decreases during sympathetic stimulation in chronic human spinal cord injury. Exp Neurol 2009; 219:507-15. [PMID: 19615998 DOI: 10.1016/j.expneurol.2009.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/29/2009] [Accepted: 07/06/2009] [Indexed: 11/18/2022]
Abstract
A better understanding of autonomic influence on motor reflex pathways in spinal cord injury is important to the clinical management of autonomic dysreflexia and spasticity in spinal cord injured patients. The purpose of this study was to examine the modulation of flexor reflex windup during episodes of induced sympathetic activity in chronic human spinal cord injury (SCI). We simultaneously measured peripheral vascular conductance and the windup of the flexor reflex in response to conditioning stimuli of electrocutaneous stimulation to the opposite leg and bladder percussion. Flexor reflexes were quantified using torque measurements of the response to a noxious electrical stimulus applied to the skin of the medial arch of the foot. Both bladder percussion and skin conditioning stimuli produced a reduction (43-67%) in the ankle and hip flexor torques (p<0.05) of the flexor reflex. This reduction was accompanied by a simultaneous reduction in vascular conductance, measured using venous plethysmography, with a time course that matched the flexor reflex depression. While there was an overall attenuation of the flexor reflex, windup of the flexor reflex to repeated stimuli was maintained during periods of increased sympathetic activity. This paradoxical depression of flexor reflexes and minimal effect on windup is consistent with inhibition of afferent feedback within the superficial dorsal horn. The results of this study bring attention to the possible interaction of motor and sympathetic reflexes in SCI above and below the T5 spinal level, and have implications for clinicians in spasticity management and for researchers investigating motor reflexes post SCI.
Collapse
Affiliation(s)
- M Kevin Garrison
- Marquette University, Department of Biomedical Engineering, P.O. Box 1881, Milwaukee, Wisconsin 53233, USA
| | | |
Collapse
|
38
|
Cooke RM, Parker D. Locomotor Recovery after Spinal Cord Lesions in the Lamprey Is Associated with Functional and Ultrastructural Changes below Lesion Sites. J Neurotrauma 2009; 26:597-612. [PMID: 19271969 DOI: 10.1089/neu.2008.0660] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ria Mishaal Cooke
- Department of Physiology, Development, and Neuroscience and Department of Zoology, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - David Parker
- Department of Physiology, Development, and Neuroscience and Department of Zoology, University of Cambridge, Downing Site, Cambridge, United Kingdom
| |
Collapse
|
39
|
Peng HY, Chang HM, Chang SY, Tung KC, Lee SD, Chou D, Lai CY, Chiu CH, Chen GD, Lin TB. Orexin-A modulates glutamatergic NMDA-dependent spinal reflex potentiation via inhibition of NR2B subunit. Am J Physiol Endocrinol Metab 2008; 295:E117-29. [PMID: 18477704 DOI: 10.1152/ajpendo.90243.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose-sensitive neurons in the lateral hypothalamic area produce orexin-A (OxA) as well as orexin-B (OxB) and send their axons to the spinal dorsal horn, which predominantly expresses orexin receptor-1 (OX-1), showing a higher sensitivity to OxA. The purpose of the present study was to assess the effects of OxA on the induction of a novel form of activity-dependent reflex potentiation, spinal reflex potentiation (SRP), in the pelvic-urethral reflex activity. External urethra sphincter electromyogram in response to pelvic afferent nerve test stimulation (TS; 1/30 Hz) or repetitive stimulation (RS; 1 Hz) was recorded in anesthetized rats. TS evoked a baseline reflex activity, whereas RS produced SRP, which was abolished by intrathecal OxA (30 nM, 10 mul). Intrathecal SB-408124 (10 muM, 10 mul), an OX-1 antagonist, reversed the abolition on SRP caused by OxA. Although there is, so far, no NR2A- and NR2B-specific agonist available, N-methyl-d-aspartate (NMDA) reversed the abolition on the RS-induced SRP caused by the co-administration of OxA and Co-101244 (30 nM, 10 mul; an NMDA NR2B subunit antagonist), but it did not reverse the abolition by the co-administration of OxA and PPPA (300 nM, 10 mul; an NMDA NR2A subunit antagonist). In conclusion, the activation of descending orexinergic fibers may inhibit the repetitive afferent input-induced central sensitization of pelvic-urethral reflex activity and urethra hyperactivity, indicating that spinal orexinergic neural transmission may be a novel target for the treatment of patients with neuropathetic or postinflammatory pain of pelvic origin.
Collapse
Affiliation(s)
- Hsien-Yu Peng
- Department of Physiology, College of Medicine, Chung-Shan Medical University Hospital, 110, Chang-Kuo North Rd., Section 1, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Heckman CJ, Johnson M, Mottram C, Schuster J. Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. Neuroscientist 2008; 14:264-75. [PMID: 18381974 PMCID: PMC3326417 DOI: 10.1177/1073858408314986] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Persistent inward currents (PICs) are present in many types of neurons and likely have diverse functions. In spinal motoneurons, PICs are especially strong, primarily located in dendritic regions, and subject to particularly strong neuromodulation by the monoamines serotonin and norepinephrine. Because motoneurons drive muscle fibers, it has been possible to study the functional role of their PICs in motor output and to identify PIC-mediated effects on motoneuron firing patterns in human subjects. The PIC markedly amplifies synaptic input, up to fivefold or more, depending on the level of monoaminergic input. PICs also tend to greatly prolong input time course, allowing brief inputs to initiate long-lasting self-sustained firing (i.e., bistable behavior). PIC deactivation usually requires inhibitory input and PIC amplitude can increase to repeated activation. All of these behaviors markedly increase motoneuron excitability. Thus, in the absence of monoaminergic input, motoneuron excitability is very low. Yet PICs have another effect: once active, they tend to sharply limit efficacy of additional synaptic input. All of these PIC effects have been detected in motoneuron firing patterns in human subjects and, hence, PICs are likely a fundamental component of normal motor output.
Collapse
Affiliation(s)
- C J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- D J Bennett
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Elbasiouny SM, Mushahwar VK. Suppressing the excitability of spinal motoneurons by extracellularly applied electrical fields: insights from computer simulations. J Appl Physiol (1985) 2007; 103:1824-36. [PMID: 17702836 DOI: 10.1152/japplphysiol.00362.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of extracellularly applied electrical fields on neuronal excitability and firing behavior is attributed to the interaction between neuronal morphology and the spatial distribution and level of differential polarization induced by the applied field in different elements of the neuron. The presence of voltage-gated ion channels that mediate persistent inward currents (PICs) on the dendrites of spinal motoneurons enhances the influence of electrical fields on the motoneuronal firing behavior. The goal of the present study was to investigate, with a realistic motoneuron computer model, the effects of extracellularly applied electrical fields on the excitability of spinal motoneurons with the aim of reducing the increased motoneuronal excitability after spinal cord injury (SCI). Our results suggest that electrical fields could suppress the excitability of motoneurons and reduce their firing rate significantly by modulating the magnitude of their dendritic PIC. This effect was achieved at different field directions, intensities, and polarities. The reduction in motoneuronal firing rate resulted from the reduction in the magnitude of the dendritic PIC reaching the soma by the effect of the applied electrical field. This reduction in PIC was attributed to the dendritic field-induced differential polarization and the nonlinear current-voltage relationship of the dendritic PIC-mediating channels. Because of the location of the motoneuronal somata and initial segment with respect to the dendrites, these structures were minimally polarized by the applied field compared with the extended dendrites. In conclusion, electrical fields could be used for suppressing the hyperexcitability of spinal motoneurons after SCI and reducing the level of spasticity.
Collapse
Affiliation(s)
- Sherif M Elbasiouny
- Department of Biomedical Engineering , Univ. of Alberta, Edmonton, AB, Canada T6G 2S2
| | | |
Collapse
|
43
|
Heckman CJ, Hyngstrom AS, Johnson MD. Active properties of motoneurone dendrites: diffuse descending neuromodulation, focused local inhibition. J Physiol 2007; 586:1225-31. [PMID: 17947305 DOI: 10.1113/jphysiol.2007.145078] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The dendrites of spinal motoneurones are highly active, generating a strong persistent inward current (PIC) that has an enormous impact on processing of synaptic input. The PIC is subject to regulation by descending neuromodulatory systems releasing the monoamines serotonin and noradrenaline. At high monoaminergic drive levels, the PIC dominates synaptic integration, generating an intrinsic dendritic current that is as much as 5-fold larger than the current entering via synapses. Without the PIC, motoneurone excitability is very low. Presumably, this descending control of the synaptic integration via the PIC is used to adjust the excitability (gain) of motoneurones for different motor tasks. A problem with this gain control is that monoaminergic input to the cord is very diffuse, affecting many motor pools simultaneously, probably including both agonists and antagonists. The PIC is, however, exquisitely sensitive to the reciprocal inhibition mediated by length sensitive muscle spindle Ia afferents and Ia interneurones. Reciprocal inhibition is tightly focused, shared only between strict mechanical antagonists, and thus can act to 'sculpt' specific movement patterns out of a background of diffuse neuromodulation. Thus it is likely that motoneurone gain is set by the interaction between diffuse descending neuromodulation and specific and focused local synaptic inhibitory circuits.
Collapse
Affiliation(s)
- C J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA.
| | | | | |
Collapse
|
44
|
Li X, Bennett DJ. Apamin-sensitive calcium-activated potassium currents (SK) are activated by persistent calcium currents in rat motoneurons. J Neurophysiol 2007; 97:3314-30. [PMID: 17360829 PMCID: PMC5718199 DOI: 10.1152/jn.01068.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low voltage-activated persistent inward calcium currents (Ca PICs) occur in rat motoneurons and are mediated by Cav1.3 L-type calcium channels (L-Ca current). The objectives of this paper were to determine whether this L-Ca current activates a sustained calcium-activated potassium current (SK current) and examine how such SK currents change with spinal injury. For comparison, the SK current that produces the postspike afterhyperpolarization (mAHP) was also quantified. Intracellular recordings were made from motoneurons of adult acute and chronic spinal rats while the whole sacrocaudal spinal cord was maintained in vitro. Spikes/AHPs were evoked with current injection or ventral root stimulation. Application of the SK channel blocker apamin completely eliminated the mAHP, which was not significantly different in chronic and acute spinal rats. The Ca PICs were measured with slow voltage ramps (or steps) with TTX to block sodium currents. In chronic spinal rats, the PICs were activated at -58.6 +/- 6.0 mV and were 2.2 +/- 1.2 nA in amplitude, significantly larger than in acute spinal rats. Apamin significantly increased the PIC, indicating that there was an SK current activated by L-Ca currents (SK(L) current), which ultimately reduced the net PIC. This SK(L) current was not different in acute and chronic spinal rats. The SK(AHP) and the SK(L) currents were activated by different calcium currents because the mAHP/SK(AHP) was blocked by the N, P-type calcium channel blocker omega-conotoxin MVIIC and was resistant to the L-type calcium channel blocker nimodipine, whereas the L-Ca and SK(L) currents were blocked by nimodipine. Furthermore, the SK(AHP) current activated within 10 ms of the spike, whereas the SK(L) current was delayed approximately 100 ms after the onset of the L-Ca current, suggesting that the SK(L) currents were not as spatially close to the L-Ca currents. Finally, the SK(L) and the L-Ca currents were poorly space clamped, with oscillations at their onset and hysteresis in their activation and deactivation voltages, consistent with currents of dendritic origin. The impact of these dendritic currents was especially pronounced in 15% of motoneurons, where apamin led to uncontrollable L-Ca currents that could not be deactivated, even with large hyperpolarizations of the soma. Thus, although the SK(L) currents are fairly small, they play a critical role in terminating the dendritic L-Ca currents.
Collapse
Affiliation(s)
- X Li
- University of Alberta, Edmonton, AB T6G 2S2, Canada
| | | |
Collapse
|
45
|
Rank MM, Li X, Bennett DJ, Gorassini MA. Role of endogenous release of norepinephrine in muscle spasms after chronic spinal cord injury. J Neurophysiol 2007; 97:3166-80. [PMID: 17360828 PMCID: PMC2117896 DOI: 10.1152/jn.01168.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recovery of persistent inward currents (PICs) and motoneuron excitability after chronic spinal cord transection is mediated, in part, by the development of supersensitivity to residual serotonin (5HT) below the lesion. The purpose of this paper is to investigate if, like 5HT, endogenous sources of norepinephrine (NE) facilitate motoneuron PICs after chronic spinal transection. Cutaneous-evoked reflex responses in tail muscles of awake chronic spinal rats were measured after increasing presynaptic release of NE by administration of amphetamine. An increase in long-lasting reflexes, known to be mediated by the calcium component of the PIC (CaPIC), was observed even at low doses (0.1-0.2 mg/kg) of amphetamine. These findings were repeated in a reduced S2 in vitro preparation, demonstrating that the increased long-lasting reflexes by amphetamine were neural. Under intracellular voltage clamp, amphetamine application led to a large facilitation of the motoneuron CaPIC. This indicates that the increases in long-lasting reflexes induced by amphetamine in the awake animal were, in part, due to actions directly on the motoneuron. Reflex responses in acutely spinal animals were facilitated by amphetamine similar to chronic animals but only at doses that were ten times greater than that required in chronic animals (0.2 mg/kg chronic vs. 2.0 mg/kg acute), pointing to a development of supersensitivity to endogenous NE in chronic animals. In summary, the increases in long-lasting reflexes and associated motoneuron CaPICs by amphetamine are likely due to an increased release of endogenous NE, which motoneurons become supersensitive to in the chronic stages of spinal cord injury.
Collapse
Affiliation(s)
- Michelle M Rank
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|
46
|
Anelli R, Sanelli L, Bennett DJ, Heckman CJ. Expression of L-type calcium channel alpha(1)-1.2 and alpha(1)-1.3 subunits on rat sacral motoneurons following chronic spinal cord injury. Neuroscience 2007; 145:751-63. [PMID: 17291691 DOI: 10.1016/j.neuroscience.2006.12.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 12/10/2006] [Accepted: 12/11/2006] [Indexed: 12/22/2022]
Abstract
In the presence of the monoamines serotonin and norepinephrine, motoneurons readily generate large persistent inward currents (PICs). The resulting plateau potentials amplify and sustain motor output. Monoaminergic input to the cord originates in the brainstem and the sharp reduction in monoamine levels that occurs following acute spinal cord injury greatly decreases motoneuron excitability. However, recent studies in the adult sacral cord of the rat have shown that motoneurons reacquire the ability to generate PICs and plateau potentials within 1-2 months following spinal transection. Ca(v)1.3 L-type calcium channels are involved in generating PICs in both healthy and injured animals. Additionally, expression of Ca(v)1.2 and Ca(v)1.3 L-type calcium channels is altered in several pathological conditions. Therefore, in this paper we analyzed the expression of L-type calcium channel alpha(1) subunits within the motoneuron pool following a complete transection of the spinal cord at the level of the sacral vertebra (S)2 segment. The analysis was done both caudally (S4 segment) and rostrally [thoracic vertebra (T)6 segment] from the injury site. The S4 segment was significantly reduced in diameter when compared with control animals, and this reduction was more evident in the white matter. Ca(v)1.2 alpha(1) subunit expression significantly increased (26%) in the motoneuron pool located caudally but not rostrally from the injury site. In contrast, the expression of Ca(v)1.3 alpha(1) subunit remained unchanged in both S4 and T6 segments. The differential expression of the two alpha(1) subunits in spinal injury suggests that Ca(v)1.2 and Ca(v)1.3 channels have different functions in neuronal adaptation following spinal cord injury.
Collapse
Affiliation(s)
- R Anelli
- Department of Physiology, Northwestern University Feinberg School of Medicine, Morton 5-666, 303 East Chicago Avenue (M211), Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
47
|
Elbasiouny SM, Mushahwar VK. Modulation of motoneuronal firing behavior after spinal cord injury using intraspinal microstimulation current pulses: a modeling study. J Appl Physiol (1985) 2007; 103:276-86. [PMID: 17234800 DOI: 10.1152/japplphysiol.01222.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We simulated the effects of delivering focal electrical stimuli to the central nervous system to modulate the firing rate of neurons and alleviate motor disorders. Application of these stimuli to the spinal cord to reduce the increased excitability of motoneurons and resulting spasticity after spinal cord injury (SCI) was examined by means of a morphologically detailed computer model of a spinal motoneuron. High-frequency sinusoidal and rectangular pulses as well as biphasic charge-balanced and charge-imbalanced pulses were examined. Our results suggest that suprathreshold high-frequency sinusoidal or rectangular current pulses could inactivate the Na+ channels in the soma and initial segment, and block action potentials from propagating through the axon. Subthreshold biphasic charge-imbalanced pulses reduced the motoneuronal firing rate significantly (up to approximately 25% reduction). The reduction in firing rate was achieved through stimulation-induced hyperpolarization generated in the first node of Ranvier. Because of their low net DC current, these pulses could be tolerated safely by the tissue. To deliver charge-imbalanced pulses with the lowest net DC current and induce the largest reduction in motoneuronal firing rate, we studied the effect of various charge-imbalanced pulse parameters. Short pulse durations were found to induce the largest reduction in firing rate for the same net DC level. Subthreshold high-frequency sinusoidal and rectangular current pulses and low-frequency biphasic charge-balanced pulses, on the other hand, were ineffective in reducing the motoneuronal firing rate. In conclusion, the proposed electrical stimulation paradigms could provide potential rehabilitation interventions for suppressing the excitability of neurons to reduce the severity of motor disorders after injury to the central nervous system.
Collapse
Affiliation(s)
- Sherif M Elbasiouny
- Department of Biomedical Engineering and Centre for Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
48
|
Kitzman P. VGLUT1 and GLYT2 labeling of sacrocaudal motoneurons in the spinal cord injured spastic rat. Exp Neurol 2006; 204:195-204. [PMID: 17134699 DOI: 10.1016/j.expneurol.2006.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/26/2006] [Accepted: 10/21/2006] [Indexed: 11/19/2022]
Abstract
Spasticity of the midline (axial) musculature may hinder (1) performing transfers, (2) efficient extremity and head movements, and (3) efficient respiration. Currently, gaps exist in our knowledge of the pathophysiology involved in spasticity development within the axial musculature. The goals of this study were (1) to study the effects of S(2) transection on the number and distribution of glutamatergic inputs, arising from primary afferents, and glycinergic inputs to sacrocaudal motoneurons; and (2) to correlate changes in these synaptic inputs with the development of spasticity within the tail musculature, which are the caudal counterparts to the trunk axial musculature. Animals with S(2) spinal transection were tested behaviorally using our established system. At 1, 2, 4, and 12 weeks post-injury, sacrocaudal motoneurons were retrogradely labeled with cholera toxin beta-subunit (CTB), and temporal changes in vesicular glutamate transporter 1 (VGLUT1) and glycine transporter 2 (GlyT2) inputs to CTB-labeled motoneurons were visualized using antibodies specific for each synaptic type and confocal microscopy. These time points correspond to each of 4 stages of spasticity development. There was no significant change in either VGLUT1 or GlyT2 labeling of sacrocaudal motoneurons at any of the time points examined. Spinal cord injury-induced spasticity, in the tail musculature, does not appear to involve either an increase in monosynaptic glutamatergic inputs from myelinated afferents or a decrease in glycinergic inputs to sacrocaudal motoneurons.
Collapse
Affiliation(s)
- Patrick Kitzman
- Department of Rehabilitation Sciences, The University of Kentucky, Charles T. Wethington Building, Rm. 210D, 900 S. Limestone Avenue, Lexington, KY 40536-0200, USA.
| |
Collapse
|
49
|
Li X, Murray K, Harvey PJ, Ballou EW, Bennett DJ. Serotonin facilitates a persistent calcium current in motoneurons of rats with and without chronic spinal cord injury. J Neurophysiol 2006; 97:1236-46. [PMID: 17079337 PMCID: PMC5718189 DOI: 10.1152/jn.00995.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the months after spinal cord transection, motoneurons in the rat spinal cord develop large persistent inward currents (PICs) that are responsible for muscle spasticity. These PICs are mediated by low-threshold TTX-sensitive sodium currents (Na PIC) and L-type calcium currents (Ca PIC). Recently, the Na PIC was shown to become supersensitive to serotonin (5-HT) after chronic injury. In the present paper, a similar change in the sensitivity of the Ca PIC to 5-HT was investigated after injury. The whole sacrocaudal spinal cord from acute spinal rats and spastic chronic spinal rats (S2 level transection 2 mo previously) was studied in vitro. Intracellular recordings were made from motoneurons and slow voltages ramps were applied to measure PICs. TTX was used to block the Na PIC. For motoneurons of chronic spinal rats, a low dose of 5-HT (1 microM) significantly lowered the threshold of the Ca PIC from -56.7 +/- 6.0 to -63.1 +/- 7.1 mV and increased the amplitude of the Ca PIC from 2.4 +/- 1.0 to 3.0 +/- 0.73 nA. Higher doses of 5-HT acted similarly. For motoneurons of acute spinal rats, low doses of 5-HT had no significant effects, whereas a high dose (about 30 microM) significantly lowered the threshold of the L-Ca PIC from -58.5 +/- 14.8 to -62.5 +/- 3.6 mV and increased the amplitude of the Ca PIC from 0.69 +/- 1.05 to 1.27 +/- 1.1 nA. Thus Ca PICs in motoneurons are about 30-fold supersensitive to 5-HT in chronic spinal rats. The 5-HT-induced facilitation of the Ca PIC was blocked by nimodipine, not by the I(h) current blocker Cs(+) (3 mM) or the SK current blocker apamin (0.15 microM), and it lasted for hours after the removal of 5-HT from the nCSF, even increasing initially after removing 5-HT. The effects of 5-HT make motoneurons more excitable and ultimately lead to larger, more easily activated plateaus and self-sustained firing. The supersensitivity to 5-HT suggests the small amounts of endogenous 5-HT below the injury in a chronic spinal rat may act on supersensitive receptors to produce large Ca PICs and ultimately enable muscle spasms.
Collapse
Affiliation(s)
- X Li
- Centre for Neuroscience 513 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | |
Collapse
|
50
|
Jiang MC, Heckman CJ. In vitro sacral cord preparation and motoneuron recording from adult mice. J Neurosci Methods 2006; 156:31-6. [PMID: 16574242 DOI: 10.1016/j.jneumeth.2006.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/02/2006] [Accepted: 02/02/2006] [Indexed: 01/07/2023]
Abstract
We report the development of an intracellular recording technique for adult mouse motoneurons in sacral spinal cord. Based on a similar preparation for adult rat, we modified the cord preparation solution and filled the sharp electrode with a solution that has physiological osmolarity and pH. The viability of the preparation was examined by recording root reflexes. Short-latency reflexes mediated through monosynaptic transmission between S1 and S3 ventral root were reliably produced by dorsal root electrical stimuli and were stably recorded for more than eight hours. Long-lasting potentiation of the root reflex was observed by bath application of methoxamine, a noradrenergic alpha1 receptor agonist. Bath application of strychnine and picrotoxin, antagonists for glycine and GABA(A) receptors respectively, unmasked long-lasting reflexes that may contain polysynaptic components. In addition, on the background of strychnine and picrotoxin, adding methoxamine induced spontaneous ventral root activity. For intracellular recording, the motoneurons could be reliably penetrated and held for up to 30 min. In all 16 motoneurons recorded, resting membrane potential, input resistance, action potentials and repetitive firing were comparable to those of rat motoneurons. Thus, this preparation is viable and provides a new method for combined electrophysiological and genetic studies of the adult mouse spinal cord.
Collapse
Affiliation(s)
- M C Jiang
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|