1
|
Piña R, Ugarte G, Guevara C, Pino R, Valdebenito K, Romero S, Gómez del Campo A, Cornejo VH, Pertusa M, Madrid R. A functional unbalance of TRPM8 and Kv1 channels underlies orofacial cold allodynia induced by peripheral nerve damage. Front Pharmacol 2024; 15:1484387. [PMID: 39703391 PMCID: PMC11655194 DOI: 10.3389/fphar.2024.1484387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Cold allodynia is a debilitating symptom of orofacial neuropathic pain resulting from trigeminal nerve damage. The molecular and neural bases of this sensory alteration are still poorly understood. Here, using chronic constriction injury (CCI) of the infraorbital nerve (IoN) (IoN-CCI) in mice, combined with behavioral analysis, Ca2+ imaging and patch-clamp recordings of retrogradely labeled IoN neurons in culture, immunohistochemistry, and adeno-associated viral (AAV) vector-based delivery in vivo, we explored the mechanisms underlying the altered orofacial cold sensitivity resulting from axonal damage in this trigeminal branch. We found that cold allodynia induced by IoN-CCI is linked to an increase in the proportion of cold-sensitive neurons (CSNs) contributing to this branch and a shift in their thermal thresholds to higher temperatures. These changes are correlated to a reduction of the Kv1.1-1.2-dependent brake potassium current IKD in IoN CSNs and a rise in the percentage of trigeminal neurons expressing TRPM8. The analysis of the electrophysiological properties of CSNs contributing to the IoN suggests that painful cold hypersensitivity involves the recruitment of silent nociceptive afferents that become sensitive to mild cold in response to nerve damage. Notably, pharmacological suppression of TRPM8 channels and AAV-based transduction of trigeminal neurons with the Kv1.1 channel in vivo effectively reverted the nociceptive phenotype in injured animals. Altogether, our results unveil a crucial role of TRPM8 and Kv1 channels in orofacial cold allodynia, suggesting that both the specific TRPM8-blocking and the AAV-driven expression of potassium channels underlying IKD in trigeminal neurons can be effective tools to revert this damage-triggered sensory alteration.
Collapse
Affiliation(s)
- Ricardo Piña
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Gonzalo Ugarte
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Camilo Guevara
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
| | - Richard Pino
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Katherine Valdebenito
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sofía Romero
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Ana Gómez del Campo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Víctor Hugo Cornejo
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases - MiNICAD, Santiago, Chile
- Millennium Nucleus for the Study of Pain - MiNuSPain, Santiago, Chile
| |
Collapse
|
2
|
Caudle RM, Neubert JK. Effects of Oxaliplatin on Facial Sensitivity to Cool Temperatures and TRPM8 Expressing Trigeminal Ganglion Neurons in Mice. FRONTIERS IN PAIN RESEARCH 2022; 3:868547. [PMID: 35634452 PMCID: PMC9130462 DOI: 10.3389/fpain.2022.868547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
The chemotherapeutic agent oxaliplatin is commonly used to treat colorectal cancer. Although effective as a chemotherapeutic, it frequently produces painful peripheral neuropathies. These neuropathies can be divided into an acute sensitivity to cool temperatures in the mouth and face, and chronic neuropathic pain in the limbs and possible numbness. The chronic neuropathy also includes sensitivity to cool temperatures. Neurons that detect cool temperatures are reported to utilize Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Therefore, we investigated the effects of oxaliplatin on facial nociception to cool temperatures (18°C) in mice and on TRPM8 expressing trigeminal ganglion (TRG) neurons. Paclitaxel, a chemotherapeutic that is used to treat breast cancer, was included for comparison because it produces neuropathies, but acute cool temperature sensitivity in the oral cavity or face is not typically reported. Behavioral testing of facial sensitivity to 18°C indicated no hypersensitivity either acutely or chronically following either chemotherapeutic agent. However, whole cell voltage clamp experiments in TRPM8 expressing TRG neurons indicated that both oxaliplatin and paclitaxel increased Hyperpolarization-Activated Cyclic Nucleotide-Gated channel (HCN), voltage gated sodium channel (Nav), and menthol evoked TRPM8 currents. Voltage gated potassium channel (Kv) currents were not altered. Histological examination of TRPM8 fibers in the skin of the whisker pads demonstrated that the TRPM8 expressing axons and possible Merkel cell-neurite complexes were damaged by oxaliplatin. These findings indicate that oxaliplatin induces a rapid degeneration of TRG neuron axons that express TRPM8, which prevents evoked activation of the sensitized neurons and likely leads to reduced sensitivity to touch and cool temperatures. The changes in HCN, Nav, and TRPM8 currents suggest that spontaneous firing of action potentials may be increased in the deafferented neurons within the ganglion, possibly producing spontaneously induced cooling or nociceptive sensations.
Collapse
Affiliation(s)
- Robert M. Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, United States
| | - John K. Neubert
- Department of Orthodontics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Role of TRPM8 Channels in Altered Cold Sensitivity of Corneal Primary Sensory Neurons Induced by Axonal Damage. J Neurosci 2019; 39:8177-8192. [PMID: 31471469 DOI: 10.1523/jneurosci.0654-19.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022] Open
Abstract
The cornea is extensively innervated by trigeminal ganglion cold thermoreceptor neurons expressing TRPM8 (transient receptor potential cation channel subfamily M member 8). These neurons respond to cooling, hyperosmolarity and wetness of the corneal surface. Surgical injury of corneal nerve fibers alters tear production and often causes dry eye sensation. The contribution of TRPM8-expressing corneal cold-sensitive neurons (CCSNs) to these symptoms is unclear. Using extracellular recording of CCSNs nerve terminals combined with in vivo confocal tracking of reinnervation, Ca2+ imaging and patch-clamp recordings of fluorescent retrogradely labeled corneal neurons in culture, we analyzed the functional modifications of CCSNs induced by peripheral axonal damage in male mice. After injury, the percentage of CCSNs, the cold- and menthol-evoked intracellular [Ca2+] rises and the TRPM8 current density in CCSNs were larger than in sham animals, with no differences in the brake K+ current I KD Active and passive membrane properties of CCSNs from both groups were alike and corresponded mainly to those of canonical low- and high-threshold cold thermoreceptor neurons. Ongoing firing activity and menthol sensitivity were higher in CCSN terminals of injured mice, an observation accounted for by mathematical modeling. These functional changes developed in parallel with a partial reinnervation of the cornea by TRPM8(+) fibers and with an increase in basal tearing in injured animals compared with sham mice. Our results unveil key TRPM8-dependent functional changes in CCSNs in response to injury, suggesting that increased tearing rate and ocular dryness sensation derived from deep surgical ablation of corneal nerves are due to enhanced functional expression of TRPM8 channels in these injured trigeminal primary sensory neurons.SIGNIFICANCE STATEMENT We unveil a key role of TRPM8 channels in the sensory and autonomic disturbances associated with surgical damage of eye surface nerves. We studied the damage-induced functional alterations of corneal cold-sensitive neurons using confocal tracking of reinnervation, extracellular corneal nerve terminal recordings, tearing measurements in vivo, Ca2+ imaging and patch-clamp recordings of cultured corneal neurons, and mathematical modeling. Corneal nerve ablation upregulates TRPM8 mainly in canonical cold thermoreceptors, enhancing their cold and menthol sensitivity, inducing a rise in the ongoing firing activity of TRPM8(+) nerve endings and an increase in basal tearing. Our results suggest that unpleasant dryness sensations, together with augmented tearing rate after corneal nerve injury, are largely due to upregulation of TRPM8 in cold thermoreceptor neurons.
Collapse
|
4
|
Tetrodotoxin-Sensitive Sodium Channels Mediate Action Potential Firing and Excitability in Menthol-Sensitive Vglut3-Lineage Sensory Neurons. J Neurosci 2019; 39:7086-7101. [PMID: 31300524 DOI: 10.1523/jneurosci.2817-18.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/04/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
Small-diameter vesicular glutamate transporter 3-lineage (Vglut3lineage) dorsal root ganglion (DRG) neurons play an important role in mechanosensation and thermal hypersensitivity; however, little is known about their intrinsic electrical properties. We therefore set out to investigate mechanisms of excitability within this population. Calcium microfluorimetry analysis of male and female mouse DRG neurons demonstrated that the cooling compound menthol selectively activates a subset of Vglut3lineage neurons. Whole-cell recordings showed that small-diameter Vglut3lineage DRG neurons fire menthol-evoked action potentials and exhibited robust, transient receptor potential melastatin 8 (TRPM8)-dependent discharges at room temperature. This heightened excitability was confirmed by current-clamp and action potential phase-plot analyses, which showed menthol-sensitive Vglut3lineage neurons to have more depolarized membrane potentials, lower firing thresholds, and higher evoked firing frequencies compared with menthol-insensitive Vglut3lineage neurons. A biophysical analysis revealed voltage-gated sodium channel (NaV) currents in menthol-sensitive Vglut3lineage neurons were resistant to entry into slow inactivation compared with menthol-insensitive neurons. Multiplex in situ hybridization showed similar distributions of tetrodotoxin (TTX)-sensitive NaV transcripts between TRPM8-positive and -negative Vglut3lineage neurons; however, NaV1.8 transcripts, which encode TTX-resistant channels, were more prevalent in TRPM8-negative neurons. Conversely, pharmacological analyses identified distinct functional contributions of NaV subunits, with NaV1.1 driving firing in menthol-sensitive neurons, whereas other small-diameter Vglut3lineage neurons rely primarily on TTX-resistant NaV channels. Additionally, when NaV1.1 channels were blocked, the remaining NaV current readily entered into slow inactivation in menthol-sensitive Vglut3lineage neurons. Thus, these data demonstrate that TTX-sensitive NaVs drive action potential firing in menthol-sensitive sensory neurons and contribute to their heightened excitability.SIGNIFICANCE STATEMENT Somatosensory neurons encode various sensory modalities including thermoreception, mechanoreception, nociception, and itch. This report identifies a previously unknown requirement for tetrodotoxin-sensitive sodium channels in action potential firing in a discrete subpopulation of small-diameter sensory neurons that are activated by the cooling agent menthol. Together, our results provide a mechanistic understanding of factors that control intrinsic excitability in functionally distinct subsets of peripheral neurons. Furthermore, as menthol has been used for centuries as an analgesic and anti-pruritic, these findings support the viability of NaV1.1 as a therapeutic target for sensory disorders.
Collapse
|
5
|
Bech F, González-González O, Artime E, Serrano J, Alcalde I, Gallar J, Merayo-Lloves J, Belmonte C. Functional and Morphologic Alterations in Mechanical, Polymodal, and Cold Sensory Nerve Fibers of the Cornea Following Photorefractive Keratectomy. Invest Ophthalmol Vis Sci 2019; 59:2281-2292. [PMID: 29847633 DOI: 10.1167/iovs.18-24007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To define the characteristics and time course of the morphologic and functional changes experienced by corneal sensory nerves after photorefractive keratectomy (PRK). Methods Unilateral corneal excimer laser photoablation was performed in 54 anesthetized 3- to 6-month-old mice; 11 naïve animals served as control. Mice were killed 0, 3, 7, 15, and 30 days after PRK. Excised eyes were placed in a recording chamber superfused at 34°C. Electrical nerve impulse activity of single sensory terminals was recorded with a micropipette applied onto the corneal surface. Spontaneous and stimulus-evoked (cold, heat, mechanical, and chemical stimuli) nerve terminal impulse (NTI) activity was analyzed. Corneas were fixed and stained with anti-β-Tubulin III antibody to measure nerve density and number of epithelial nerve penetration points of regenerating subbasal leashes. Results Nerve fibers and NTI activity were absent in the injured area between 0 and 7 days after PRK, when sparse regenerating nerve sprouts appear. On day 15, subbasal nerve density reached half the control value and abnormally responding cold-sensitive terminals were recorded inside the lesion. Thirty days after PRK, nerve density was almost restored, active cold thermoreceptors were abundant, and polymodal nociceptor activity first reappeared. Conclusions Morphologic regeneration of subbasal corneal nerves started shortly after PRK ablation and was substantially completed 30 days later. Functional recovery appears faster in cold terminals than polymodal terminals, possibly reflecting an incomplete damage of the more extensively branched cold-sensitive axon terminals. Evolution of postsurgical discomfort sensations quality may be associated with the variable regeneration pattern of each fiber type.
Collapse
Affiliation(s)
- Federico Bech
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Omar González-González
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Enol Artime
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Joana Serrano
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Carlos Belmonte
- Instituto Universitario Fernández-Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain.,Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| |
Collapse
|
6
|
The Immunosuppressant Macrolide Tacrolimus Activates Cold-Sensing TRPM8 Channels. J Neurosci 2018; 39:949-969. [PMID: 30545944 DOI: 10.1523/jneurosci.1726-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/02/2018] [Accepted: 11/18/2018] [Indexed: 12/30/2022] Open
Abstract
TRPM8 is a polymodal, nonselective cation channel activated by cold temperature and cooling agents that plays a critical role in the detection of environmental cold. We found that TRPM8 is a pharmacological target of tacrolimus (FK506), a macrolide immunosuppressant with several clinical uses, including the treatment of organ rejection following transplants, treatment of atopic dermatitis, and dry eye disease. Tacrolimus is an inhibitor of the phosphatase calcineurin, an action shared with cyclosporine. Tacrolimus activates TRPM8 channels in different species, including humans, and sensitizes their response to cold temperature by inducing a leftward shift in the voltage-dependent activation curve. The effects of tacrolimus on purified TRPM8 in lipid bilayers demonstrates conclusively that it has a direct gating effect. Moreover, the lack of effect of cyclosporine rules out the canonical signaling pathway involving the phosphatase calcineurin. Menthol (TRPM8-Y745H)- and icilin (TRPM8-N799A)-insensitive mutants were also activated by tacrolimus, suggesting a different binding site. In cultured mouse DRG neurons, tacrolimus evokes an increase in intracellular calcium almost exclusively in cold-sensitive neurons, and these responses were drastically blunted in Trpm8 KO mice or after the application of TRPM8 antagonists. Cutaneous and corneal cold thermoreceptor endings are also activated by tacrolimus, and tacrolimus solutions trigger blinking and cold-evoked behaviors. Together, our results identify TRPM8 channels in sensory neurons as molecular targets of the immunosuppressant tacrolimus. The actions of tacrolimus on TRPM8 resemble those of menthol but likely involve interactions with other channel residues.SIGNIFICANCE STATEMENT TRPM8 is a polymodal TRP channel involved in cold temperature sensing, thermoregulation, and cold pain. TRPM8 is also involved in the pathophysiology of dry eye disease, and TRPM8 activation has antiallodynic and antipruritic effects, making it a prime therapeutic target in several cutaneous and neural diseases. We report the direct agonist effect of tacrolimus, a potent natural immunosuppressant with multiple clinical applications, on TRPM8 activity. This interaction represents a novel neuroimmune interface. The identification of a clinically approved drug with agonist activity on TRPM8 channels could be used experimentally to probe the function of TRPM8 in humans. Our findings may explain some of the sensory and anti-inflammatory effects described for this drug in the skin and the eye surface.
Collapse
|
7
|
Orio P, Gatica M, Herzog R, Maidana JP, Castro S, Xu K. Chaos versus noise as drivers of multistability in neural networks. CHAOS (WOODBURY, N.Y.) 2018; 28:106321. [PMID: 30384618 DOI: 10.1063/1.5043447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The multistable behavior of neural networks is actively being studied as a landmark of ongoing cerebral activity, reported in both functional Magnetic Resonance Imaging (fMRI) and electro- or magnetoencephalography recordings. This consists of a continuous jumping between different partially synchronized states in the absence of external stimuli. It is thought to be an important mechanism for dealing with sensory novelty and to allow for efficient coding of information in an ever-changing surrounding environment. Many advances have been made to understand how network topology, connection delays, and noise can contribute to building this dynamic. Little or no attention, however, has been paid to the difference between local chaotic and stochastic influences on the switching between different network states. Using a conductance-based neural model that can have chaotic dynamics, we showed that a network can show multistable dynamics in a certain range of global connectivity strength and under deterministic conditions. In the present work, we characterize the multistable dynamics when the networks are, in addition to chaotic, subject to ion channel stochasticity in the form of multiplicative (channel) or additive (current) noise. We calculate the Functional Connectivity Dynamics matrix by comparing the Functional Connectivity (FC) matrices that describe the pair-wise phase synchronization in a moving window fashion and performing clustering of FCs. Moderate noise can enhance the multistable behavior that is evoked by chaos, resulting in more heterogeneous synchronization patterns, while more intense noise abolishes multistability. In networks composed of nonchaotic nodes, some noise can induce multistability in an otherwise synchronized, nonchaotic network. Finally, we found the same results regardless of the multiplicative or additive nature of noise.
Collapse
Affiliation(s)
- Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Pje Harrington 287, 2360103 Valparaíso, Chile
| | - Marilyn Gatica
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Pje Harrington 287, 2360103 Valparaíso, Chile
| | - Rubén Herzog
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Pje Harrington 287, 2360103 Valparaíso, Chile
| | - Jean Paul Maidana
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Pje Harrington 287, 2360103 Valparaíso, Chile
| | - Samy Castro
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Pje Harrington 287, 2360103 Valparaíso, Chile
| | - Kesheng Xu
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Pje Harrington 287, 2360103 Valparaíso, Chile
| |
Collapse
|
8
|
Tchaptchet A. Activity patterns with silent states in a heterogeneous network of gap-junction coupled Huber-Braun model neurons. CHAOS (WOODBURY, N.Y.) 2018; 28:106327. [PMID: 30384629 DOI: 10.1063/1.5040266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
A mathematical model of a network of nearest neighbor gap-junction coupled neurons has been used to examine the impact of neuronal heterogeneity on the networks' activity during increasing coupling strength. Heterogeneity has been introduced by Huber-Braun model neurons with randomization of the temperature as a scaling factor. This leads to neurons of an enormous diversity of impulse pattern, including burst discharges, chaotic activity, and two different types of tonic firing-all of them experimentally observed in the peripheral as well as central nervous system. When the network is composed of all these types of neurons, randomly selected, a particular phenomenon can be observed. At a certain coupling strength, the network goes into a completely silent state. Examination of voltage traces and inter-spike intervals of individual neurons suggests that all neurons, irrespective of their original pattern, go through a well-known bifurcation scenario, resembling those of single neurons especially on external current injection. All the originally spontaneously firing neurons can achieve constant membrane potentials at which all intrinsic and gap-junction currents are balanced. With limited diversity, i.e., taking out neurons of specific patterns from the lower and upper temperature range, spontaneous firing can be reinstalled with further increasing coupling strength, especially when the tonic firing regimes are missing. Reinstalled firing develops from slowly increasing subthreshold oscillations leading to tonic firing activity with already fairly well synchronized action potentials, while the subthreshold potentials can still be significantly different. Full in phase synchronization is not achieved. Additional studies are needed elucidating the underlying mechanisms and the conditions under which such particular transitions can appear.
Collapse
Affiliation(s)
- Aubin Tchaptchet
- Institute of Physiology, Faculty of Medicine, Philipps University of Marburg, 35037 Marburg, Germany
| |
Collapse
|
9
|
Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators. Sci Rep 2018; 8:8370. [PMID: 29849108 PMCID: PMC5976724 DOI: 10.1038/s41598-018-26730-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that – when isolated – can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.
Collapse
|
10
|
Bernal L, Roza C. Hyperpolarization-activated channels shape temporal patterns of ectopic spontaneous discharge in C-nociceptors after peripheral nerve injury. Eur J Pain 2018; 22:1377-1387. [PMID: 29635758 DOI: 10.1002/ejp.1226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Neuropathic pain is thought to be mediated by aberrant impulses from sensitized primary afferents, and the temporal summation of the discharges might also influence nociceptive processing. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (Ih current) generate rhythmic activity in neurons within the central nervous system and contribute to nociceptors excitability in neuropathic pain. METHODS We searched for single fibres with ectopic spontaneous discharges from an in vitro preparation in mice containing a neuroma formed in a peripheral branch of the saphenous nerve together with the undamaged branches. RESULTS Both damaged (axotomized) and undamaged fibres (putative intact) developed ectopic spontaneous activity with different temporal spike trains: Clock-like, Irregular or Bursts. The Ih current blocker, ZD7288, significantly suppressed ectopic spontaneous discharges in nociceptive fibres (3/5 Aδ- and 24/31 C-units and 1 nonclassified) by 64%. Additionally, ZD7288 changed the spike patterns of 5/7 Clock-like and 3/4 Burst units to Irregular. Exogenous cAMP produced a significant ~65% increase in the ectopic firing in 5 Irregular fibres, which was restored by ZD7288. In six additional fibres (three Clock-like and three Irregular), exogenous cAMP had no further effect, but co-application with ZD7288 decreased their discharge by half. These units showed significant higher levels of discharges than the cAMP-sensitive ones. CONCLUSIONS Our data suggest that HCN channels modulate ectopic spontaneous firing in C-nociceptors and shape their temporal patterns of discharge which will, ultimately, modify the nociceptive message received and processed by second-order neurons. SIGNIFICANCE We show an involvement of HCN channels in the modulation of ectopic spontaneous discharges from C-nociceptors. This finding exposes a mechanism of nociceptive transmission enhancement and highlights the clinical relevance of peripheral HCN blockade for spontaneous pain relief during neuropathy.
Collapse
Affiliation(s)
- L Bernal
- Department of Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - C Roza
- Department of Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
11
|
Abstract
Pain associated with mechanical, chemical, and thermal heat stimulation of the ocular surface is mediated by trigeminal ganglion neurons, while cold thermoreceptors detect wetness and reflexly maintain basal tear production and blinking rate. These neurons project into two regions of the trigeminal brain stem nuclear complex: ViVc, activated by changes in the moisture of the ocular surface and VcC1, mediating sensory-discriminative aspects of ocular pain and reflex blinking. ViVc ocular neurons project to brain regions that control lacrimation and spontaneous blinking and to the sensory thalamus. Secretion of the main lacrimal gland is regulated dominantly by autonomic parasympathetic nerves, reflexly activated by eye surface sensory nerves. These also evoke goblet cell secretion through unidentified efferent fibers. Neural pathways involved in the regulation of meibomian gland secretion or mucin release have not been identified. In dry eye disease, reduced tear secretion leads to inflammation and peripheral nerve damage. Inflammation causes sensitization of polymodal and mechano-nociceptor nerve endings and an abnormal increase in cold thermoreceptor activity, altogether evoking dryness sensations and pain. Long-term inflammation and nerve injury alter gene expression of ion channels and receptors at terminals and cell bodies of trigeminal ganglion and brainstem neurons, changing their excitability, connectivity and impulse firing. Perpetuation of molecular, structural and functional disturbances in ocular sensory pathways ultimately leads to dysestesias and neuropathic pain referred to the eye surface. Pain can be assessed with a variety of questionaires while the status of corneal nerves is evaluated with esthesiometry and with in vivo confocal microscopy.
Collapse
|
12
|
Sex differences in mouse Transient Receptor Potential Cation Channel, Subfamily M, Member 8 expressing trigeminal ganglion neurons. PLoS One 2017; 12:e0176753. [PMID: 28472061 PMCID: PMC5417611 DOI: 10.1371/journal.pone.0176753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/17/2017] [Indexed: 01/04/2023] Open
Abstract
The detection of cool temperatures is thought to be mediated by primary afferent neurons that express the cool temperature sensing protein Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Using mice, this study tested the hypothesis that sex differences in sensitivity to cool temperatures were mediated by differences in neurons that express TRPM8. Ion currents from TRPM8 expressing trigeminal ganglion (TRG) neurons in females demonstrated larger hyperpolarization-activated cyclic nucleotide-gated currents (Ih) than male neurons at both 30° and 18°C. Additionally, female neurons' voltage gated potassium currents (Ik) were suppressed by cooling, whereas male Ik was not significantly affected. At the holding potential tested (-60mV) TRPM8 currents were not visibly activated in either sex by cooling. Modeling the effect of Ih and Ik on membrane potentials demonstrated that at 30° the membrane potential in both sexes is unstable. At 18°, female TRPM8 TRG neurons develop a large oscillating pattern in their membrane potential, whereas male neurons become highly stable. These findings suggest that the differences in Ih and Ik in the TRPM8 TRG neurons of male and female mice likely leads to greater sensitivity of female mice to the cool temperature. This hypothesis was confirmed in an operant reward/conflict assay. Female mice contacted an 18°C surface for approximately half the time that males contacted the cool surface. At 33° and 10°C male and female mice contacted the stimulus for similar amounts of time. These data suggest that sex differences in the functioning of Ih and Ik in TRPM8 expressing primary afferent neurons leads to differences in cool temperature sensitivity.
Collapse
|
13
|
Xu K, Maidana JP, Caviedes M, Quero D, Aguirre P, Orio P. Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model. Front Comput Neurosci 2017; 11:12. [PMID: 28344550 PMCID: PMC5344906 DOI: 10.3389/fncom.2017.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/24/2017] [Indexed: 11/13/2022] Open
Abstract
In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activated Potassium current and a hyperpolarization-activated current (Ih) that drive a slow subthreshold oscillation. Driven by this oscillation, a fast subsystem (fast Sodium and Potassium currents) fires action potentials in a periodic fashion. Depending on the parameters, this model can generate a variety of firing patterns that includes bursting, regular tonic and polymodal firing. Here we show that the transitions between different firing patterns are often accompanied by a range of chaotic firing, as suggested by an irregular, non-periodic firing pattern. To confirm this, we measure the maximum Lyapunov exponent of the voltage trajectories, and the Lyapunov exponent and Lempel-Ziv's complexity of the ISI time series. The four-variable slow system (without spiking) also generates chaotic behavior, and bifurcation analysis shows that this is often originated by period doubling cascades. Either with or without spikes, chaos is no longer generated when the Ih is removed from the system. As the model is biologically plausible with biophysically meaningful parameters, we propose it as a useful tool to understand chaotic dynamics in neurons.
Collapse
Affiliation(s)
- Kesheng Xu
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Jean P Maidana
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Mauricio Caviedes
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Daniel Quero
- Departamento de Matemática, Universidad Técnica Federico Santa María Valparaíso, Chile
| | - Pablo Aguirre
- Departamento de Matemática, Universidad Técnica Federico Santa María Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de ValparaísoValparaíso, Chile; Facultad de Ciencias, Instituto de Neurociencia, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
14
|
Role of the Excitability Brake Potassium Current I KD in Cold Allodynia Induced by Chronic Peripheral Nerve Injury. J Neurosci 2017; 37:3109-3126. [PMID: 28179555 DOI: 10.1523/jneurosci.3553-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 11/21/2022] Open
Abstract
Cold allodynia is a common symptom of neuropathic and inflammatory pain following peripheral nerve injury. The mechanisms underlying this disabling sensory alteration are not entirely understood. In primary somatosensory neurons, cold sensitivity is mainly determined by a functional counterbalance between cold-activated TRPM8 channels and Shaker-like Kv1.1-1.2 channels underlying the excitability brake current IKD Here we studied the role of IKD in damage-triggered painful hypersensitivity to innocuous cold. We found that cold allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in mice, was related to both an increase in the proportion of cold-sensitive neurons (CSNs) in DRGs contributing to the sciatic nerve, and a decrease in their cold temperature threshold. IKD density was reduced in high-threshold CSNs from CCI mice compared with sham animals, with no differences in cold-induced TRPM8-dependent current density. The electrophysiological properties and neurochemical profile of CSNs revealed an increase of nociceptive-like phenotype among neurons from CCI animals compared with sham mice. These results were validated using a mathematical model of CSNs, including IKD and TRPM8, showing that a reduction in IKD current density shifts the thermal threshold to higher temperatures and that the reduction of this current induces cold sensitivity in former cold-insensitive neurons expressing low levels of TRPM8-like current. Together, our results suggest that cold allodynia is largely due to a functional downregulation of IKD in both high-threshold CSNs and in a subpopulation of polymodal nociceptors expressing TRPM8, providing a general molecular and neural mechanism for this sensory alteration.SIGNIFICANCE STATEMENT This paper unveils the critical role of the brake potassium current IKD in damage-triggered cold allodynia. Using a well-known form of nerve injury and combining behavioral analysis, calcium imaging, patch clamping, and pharmacological tools, validated by mathematical modeling, we determined that the functional expression of IKD is reduced in sensory neurons in response to peripheral nerve damage. This downregulation not only enhances cold sensitivity of high-threshold cold thermoreceptors signaling cold discomfort, but it also transforms a subpopulation of polymodal nociceptors signaling pain into neurons activated by mild temperature drops. Our results suggest that cold allodynia is linked to a reduction of IKD in both high-threshold cold thermoreceptors and nociceptors expressing TRPM8, providing a general model for this form of cold-induced pain.
Collapse
|
15
|
Encoding noxious heat by spike bursts of antennal bimodal hygroreceptor (dry) neurons in the carabid Pterostichus oblongopunctatus. Cell Tissue Res 2016; 368:29-46. [DOI: 10.1007/s00441-016-2547-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
16
|
Janssens A, Gees M, Toth BI, Ghosh D, Mulier M, Vennekens R, Vriens J, Talavera K, Voets T. Definition of two agonist types at the mammalian cold-activated channel TRPM8. eLife 2016; 5. [PMID: 27449282 PMCID: PMC4985286 DOI: 10.7554/elife.17240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/22/2016] [Indexed: 11/13/2022] Open
Abstract
Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology. DOI:http://dx.doi.org/10.7554/eLife.17240.001 Sensory neurons in our skin detect cues from the environment – such as temperature and touch – and pass the information onto other cells in the nervous system. A protein called TRPM8 in sensory neurons is responsible for our ability to detect cool temperatures. TRPM8 sits in the membrane that surrounds the cell and forms a channel that can allow sodium and calcium ions to enter the cell. Cold temperatures activate TRPM8, which opens the channel and triggers electrical activity in the sensory neurons. Chemicals that cause a cold sensation – such as menthol, the refreshing substance found in mint plants – can also open the TRPM8 channel. Janssens, Gees, Toth et al. investigated how menthol, and another natural compound called mustard oil, influence the opening of TRPM8. The experiments show that menthol and mustard oil both stimulate sensory neurons by opening the TRPM8 ion channel, but using different mechanisms. Mustard oil forces the channel to open faster than it normally would, whereas menthol prevents the channel from closing. Further experiments show that these mechanisms explain why some compounds stimulate sensory neurons more strongly than others. The findings of Janssens, Gees, Toth et al. will help to understand how chemicals act on this class of ion channels, and how this affects the roles of the ion channels in cells. Altering the activity of TRPM8 and related ion channels may help to reduce pain in humans so a future challenge is to use these new insights to develop drugs that target these channels more efficiently. DOI:http://dx.doi.org/10.7554/eLife.17240.002
Collapse
Affiliation(s)
- Annelies Janssens
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Maarten Gees
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Balazs Istvan Toth
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Debapriya Ghosh
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Marie Mulier
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium.,Laboratory of Experimental Gynaecology, University of Leuven, Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP channel Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Olivares E, Salgado S, Maidana JP, Herrera G, Campos M, Madrid R, Orio P. TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor. PLoS One 2015; 10:e0139314. [PMID: 26426259 PMCID: PMC4591370 DOI: 10.1371/journal.pone.0139314] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/11/2015] [Indexed: 11/30/2022] Open
Abstract
Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization.
Collapse
Affiliation(s)
- Erick Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Simón Salgado
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Jean Paul Maidana
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Gaspar Herrera
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Matías Campos
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodolfo Madrid
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- * E-mail:
| |
Collapse
|
18
|
McAlvin JB, Zhan C, Dohlman JC, Kolovou PE, Salvador-Culla B, Kohane DS. Corneal Anesthesia With Site 1 Sodium Channel Blockers and Dexmedetomidine. Invest Ophthalmol Vis Sci 2015; 56:3820-6. [PMID: 26066750 DOI: 10.1167/iovs.15-16591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Amino-amide or amino-ester local anesthetics, which are currently used for topical ocular anesthesia, are short acting and may delay corneal healing with long-term use. In contrast, site 1 sodium channel blockers (S1SCBs) are potent local anesthetics with minimal adverse tissue reaction. In this study, we examined topical local anesthesia with two S1SCBs, tetrodotoxin (TTX) or saxitoxin (STX) individually or in combination with α2-adrenergic receptor agonists (dexmedetomidine or clonidine), and compared them with the amino-ester ocular anesthetic proparacaine. The effect of test solutions on corneal healing was also studied. METHODS Solutions of TTX ± dexmedetomidine, TTX ± clonidine, STX ± dexmedetomidine, dexmedetomidine, or proparacaine were applied to the rat cornea. Tactile sensitivity was measured by recording the blink response to probing of the cornea with a Cochet-Bonnet esthesiometer. The duration of corneal anesthesia was calculated. Cytotoxicity from anesthetic solutions was measured in vitro. The effect on corneal healing was measured in vivo after corneal debridement followed by repeated drug administration. RESULTS Addition of dexmedetomidine to TTX or STX significantly prolonged corneal anesthesia beyond that of either drug alone, whereas clonidine did not. Tetrodotoxin or STX coadministered with dexmedetomidine resulted in two to three times longer corneal anesthesia than did proparacaine. S1SCB-dexmedetomidine formulations were not cytotoxic. Corneal healing was not delayed significantly by any of the test solutions. CONCLUSIONS Coadministration of S1SCBs with dexmedetomidine provided prolonged corneal anesthesia without delaying corneal wound healing. Such formulations may be useful for the management of acute surgical and nonsurgical corneal pain.
Collapse
Affiliation(s)
- James Brian McAlvin
- Department of Medicine Division of Medicine Critical Care, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, United States 2Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Med
| | - Changyou Zhan
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Jenny C Dohlman
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Paraskevi E Kolovou
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Borja Salvador-Culla
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, United States 3Department of Ophthalmology, Schepens Eye Research I
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, United States
| |
Collapse
|
19
|
Santin JM, Hartzler LK. Activation state of the hyperpolarization-activated current modulates temperature-sensitivity of firing in locus coeruleus neurons from bullfrogs. Am J Physiol Regul Integr Comp Physiol 2015; 308:R1045-61. [PMID: 25833936 DOI: 10.1152/ajpregu.00036.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/30/2015] [Indexed: 12/18/2022]
Abstract
Locus coeruleus neurons of anuran amphibians contribute to breathing control and have spontaneous firing frequencies that, paradoxically, increase with cooling. We previously showed that cooling inhibits a depolarizing membrane current, the hyperpolarization-activated current (I h) in locus coeruleus neurons from bullfrogs, Lithobates catesbeianus (Santin JM, Watters KC, Putnam RW, Hartzler LK. Am J Physiol Regul Integr Comp Physiol 305: R1451-R1464, 2013). This suggests an unlikely role for I h in generating cold activation, but led us to hypothesize that inhibition of I h by cooling functions as a physiological brake to limit the cold-activated response. Using whole cell electrophysiology in brain slices, we employed 2 mM Cs(+) (an I h antagonist) to isolate the role of I h in spontaneous firing and cold activation in neurons recorded with either control or I h agonist (cyclic AMP)-containing artificial intracellular fluid. I h did not contribute to the membrane potential (V m) and spontaneous firing at 20°C. Although voltage-clamp analysis confirmed that cooling inhibits I h, its lack of involvement in setting baseline firing and V m precluded its ability to regulate cold activation as hypothesized. In contrast, neurons dialyzed with cAMP exhibited greater baseline firing frequencies at 20°C due to I h activation. Our hypothesis was supported when the starting level of I h was enhanced by elevating cAMP because cold activation was converted to more ordinary cold inhibition. These findings indicate that situations leading to enhancement of I h facilitate firing at 20°C, yet the hyperpolarization associated with inhibiting a depolarizing cation current by cooling blunts the net V m response to cooling to oppose normal cold-depolarizing factors. This suggests that the influence of I h activation state on neuronal firing varies in the poikilothermic neuronal environment.
Collapse
Affiliation(s)
- Joseph M Santin
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - Lynn K Hartzler
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| |
Collapse
|
20
|
Morenilla-Palao C, Luis E, Fernández-Peña C, Quintero E, Weaver JL, Bayliss DA, Viana F. Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation. Cell Rep 2014; 8:1571-82. [PMID: 25199828 DOI: 10.1016/j.celrep.2014.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/09/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022] Open
Abstract
Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold-sensitive neurons, combining bacterial artificial chromosome (BAC) transgenesis with a molecular-profiling approach in fluorescence-activated cell sorting (FACS)-purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3, and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity.
Collapse
Affiliation(s)
- Cruz Morenilla-Palao
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain.
| | - Enoch Luis
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | - Carlos Fernández-Peña
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | - Eva Quintero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | - Janelle L Weaver
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Félix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
21
|
Madrid R, Pertusa M. Intimacies and physiological role of the polymodal cold-sensitive ion channel TRPM8. CURRENT TOPICS IN MEMBRANES 2014; 74:293-324. [PMID: 25366241 DOI: 10.1016/b978-0-12-800181-3.00011-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The detection of environmental temperature is critical for the survival of the most diverse organisms. Thermosensitive transient receptor potential (thermoTRP) channels have evolved as a class of ion channels activated by a wide range of temperatures. These molecular thermal sensors are spread through the different TRP channel subfamilies. Among the Melastatin subfamily of TRP channels, the eighth member, TRPM8, is a calcium-permeable cationic ion channel activated by cold, by substances that evoke cold sensation such as menthol, and by voltage. This channel is considered the main molecular entity responsible for the sensitivity to cold of primary sensory neurons of the somatosensory system. Here we present to the readers a summary of some the most relevant biophysical properties, physiological role, and molecular intimacies of this polymodal thermoTRP channel.
Collapse
Affiliation(s)
- Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
22
|
Nilius B, Flockerzi V. What do we really know and what do we need to know: some controversies, perspectives, and surprises. Handb Exp Pharmacol 2014; 223:1239-80. [PMID: 24961986 DOI: 10.1007/978-3-319-05161-1_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TRP channels comprise one of the most rapid growing research topics in ion channel research, in fields related to ion channels including channelopathies and translational medicine. We provide here a critical survey on our current knowledge of TRP channels and highlight some of the still open or controversial questions. This comprises questions related to evolution of TRP channels; biophysics, i.e., permeation; pore properties and gating; modulation; the still-elusive 3D structure; and channel subunits but also their role as general sensory channels and in human diseases. We will conclude that our knowledge on TRP channels is still at the very beginning of an exciting research journey.
Collapse
Affiliation(s)
- Bernd Nilius
- Department Cell Mol Medicine, Laboratory Ion Channel Research, KU Leuven, Campus Gasthuisberg, O&N 1, Herestraat 49-Bus 802, 3000, Leuven, Belgium,
| | | |
Collapse
|
23
|
Tchaptchet A, Postnova S, Finke C, Schneider H, Huber MT, Braun HA. Modeling neuronal activity in relation to experimental voltage-/patch-clamp recordings. Brain Res 2013; 1536:159-67. [PMID: 23911648 DOI: 10.1016/j.brainres.2013.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/22/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022]
Abstract
A mechanism-based, Hodgkin-Huxley-type modeling approach is proposed that allows connecting the key parameters of experimental voltage-/patch-clamp data directly to the major control values of the model. The objective of this paper is to facilitate the use of mathematical modeling in supplement to electrophysiological recordings. Typical recordings from current-clamp, whole-cell voltage-clamp, and single-channel patch-clamp experiments are illustrated by means of a simplified computer model designed for life science education. These examples demonstrate that the "rate constants", on which the original Hodgkin-Huxley equations are built up, are difficult, in most experiments even impossible, to extract from experimental data. As the combination of the two exponential rate constants leads to sigmoid activation curves, they can be replaced by sigmoid voltage dependencies, mostly presented in form of Boltzmann functions. Conversely, connecting whole-cell and single-channel patch-clamp simulations, the Boltzmann functions, can be related to exponentially voltage dependent probability factors of ion channel transition rates. The thereby introduced small variability of the activation values suggests that the power functions of the activation variables in the current equations can be neglected. Eliminating the rate constants and the power functions can be physiologically justified and makes the model easier to handle, especially in context with experimental data. Further possibilities of dimension reduction as well as model extensions are discussed. This article is part of a Special Issue entitled Neural Coding 2012.
Collapse
Affiliation(s)
- Aubin Tchaptchet
- Neurodynamics Group, Institute of Physiology, University of Marburg, Deutschhausstr. 2, D-35037 Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Gittelman JX, Perkel DJ, Portfors CV. Dopamine modulates auditory responses in the inferior colliculus in a heterogeneous manner. J Assoc Res Otolaryngol 2013; 14:719-29. [PMID: 23835945 DOI: 10.1007/s10162-013-0405-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/21/2013] [Indexed: 02/02/2023] Open
Abstract
Perception of complex sounds such as speech is affected by a variety of factors, including attention, expectation of reward, physiological state, and/or disorders, yet the mechanisms underlying this modulation are not well understood. Although dopamine is commonly studied for its role in reward-based learning and in disorders, multiple lines of evidence suggest that dopamine is also involved in modulating auditory processing. In this study, we examined the effects of dopamine application on neuronal response properties in the inferior colliculus (IC) of awake mice. Because the IC contains dopamine receptors and nerve terminals immunoreactive for tyrosine hydroxylase, we predicted that dopamine would modulate auditory responses in the IC. We recorded single-unit responses before, during, and after the iontophoretic application of dopamine using piggyback electrodes. We examined the effects of dopamine on firing rate, timing, and probability of bursting. We found that application of dopamine affected neural responses in a heterogeneous manner. In more than 80 % of the neurons, dopamine either increased (32 %) or decreased (50 %) firing rate, and the effects were similar on spontaneous and sound-evoked activity. Dopamine also either increased or decreased first spike latency and jitter in almost half of the neurons. In 3/28 neurons (11 %), dopamine significantly altered the probability of bursting. The heterogeneous effects of dopamine observed in the IC of awake mice were similar to effects observed in other brain areas. Our findings indicate that dopamine differentially modulates neural activity in the IC and thus may play an important role in auditory processing.
Collapse
Affiliation(s)
- Joshua X Gittelman
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave., Vancouver, WA, USA
| | | | | |
Collapse
|
25
|
Mazo I, Rivera-Arconada I, Roza C. Axotomy-induced changes in activity-dependent slowing in peripheral nerve fibres: Role of hyperpolarization-activated/HCN channel current. Eur J Pain 2013; 17:1281-90. [DOI: 10.1002/j.1532-2149.2013.00302.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 11/07/2022]
Affiliation(s)
- I. Mazo
- Dpto. Fisiología; Edificio de Medicina Universidad de Alcalá; Madrid; Spain
| | - I. Rivera-Arconada
- Dpto. Fisiología; Edificio de Medicina Universidad de Alcalá; Madrid; Spain
| | - C. Roza
- Dpto. Fisiología; Edificio de Medicina Universidad de Alcalá; Madrid; Spain
| |
Collapse
|