1
|
Le DT, Tsuyuhara M, Kuwamura H, Kitano K, Nguyen TD, Duc Nguyen T, Fujita N, Watanabe T, Nishijo H, Mihara M, Urakawa S. Regional activity and effective connectivity within the frontoparietal network during precision walking with visual cueing: an fNIRS study. Cereb Cortex 2023; 33:11157-11169. [PMID: 37757479 DOI: 10.1093/cercor/bhad354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Precision walking (PW) incorporates precise step adjustments into regular walking patterns to navigate challenging surroundings. However, the brain processes involved in PW control, which encompass cortical regions and interregional interactions, are not fully understood. This study aimed to investigate the changes in regional activity and effective connectivity within the frontoparietal network associated with PW. Functional near-infrared spectroscopy data were recorded from adult subjects during treadmill walking tasks, including normal walking (NOR) and PW with visual cues, wherein the intercue distance was either fixed (FIX) or randomly varied (VAR) across steps. The superior parietal lobule (SPL), dorsal premotor area (PMd), supplementary motor area (SMA), and dorsolateral prefrontal cortex (dlPFC) were specifically targeted. The results revealed higher activities in SMA and left PMd, as well as left-to-right SPL connectivity, in VAR than in FIX. Activities in SMA and right dlPFC, along with dlPFC-to-SPL connectivity, were higher in VAR than in NOR. Overall, these findings provide insights into the roles of different brain regions and connectivity patterns within the frontoparietal network in facilitating gait control during PW, providing a useful baseline for further investigations into brain networks involved in locomotion.
Collapse
Affiliation(s)
- Duc Trung Le
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
- Department of Neurology, Vietnam Military Medical University, No. 261 Phung Hung Street, Ha Dong District, Hanoi 12108, Vietnam
| | - Masato Tsuyuhara
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hiroki Kuwamura
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Kento Kitano
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Thu Dang Nguyen
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Thuan Duc Nguyen
- Department of Neurology, Vietnam Military Medical University, No. 261 Phung Hung Street, Ha Dong District, Hanoi 12108, Vietnam
| | - Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Tatsunori Watanabe
- Faculty of Health Sciences, Aomori University of Health and Welfare, 58-1 Mase, Hamadate, Aomori-city, Aomori 030-8505, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
- Faculty of Human Sciences, University of East Asia, 2-12-1 Ichinomiya Gakuen-cho, Shimonoseki City, Yamaguchi 751-8503, Japan
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| |
Collapse
|
2
|
Doganci N, Iannotti GR, Coll SY, Ptak R. How embodied is cognition? fMRI and behavioral evidence for common neural resources underlying motor planning and mental rotation of bodily stimuli. Cereb Cortex 2023; 33:11146-11156. [PMID: 37804243 PMCID: PMC10687356 DOI: 10.1093/cercor/bhad352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/09/2023] Open
Abstract
Functional neuroimaging shows that dorsal frontoparietal regions exhibit conjoint activity during various motor and cognitive tasks. However, it is unclear whether these regions serve several, computationally independent functions, or underlie a motor "core process" that is reused to serve higher-order functions. We hypothesized that mental rotation capacity relies on a phylogenetically older motor process that is rooted within these areas. This hypothesis entails that neural and cognitive resources recruited during motor planning predict performance in seemingly unrelated mental rotation tasks. To test this hypothesis, we first identified brain regions associated with motor planning by measuring functional activations to internally-triggered vs externally-triggered finger presses in 30 healthy participants. Internally-triggered finger presses yielded significant activations in parietal, premotor, and occipitotemporal regions. We then asked participants to perform two mental rotation tasks outside the scanner, consisting of hands or letters as stimuli. Parietal and premotor activations were significant predictors of individual reaction times when mental rotation involved hands. We found no association between motor planning and performance in mental rotation of letters. Our results indicate that neural resources in parietal and premotor cortex recruited during motor planning also contribute to mental rotation of bodily stimuli, suggesting a common core component underlying both capacities.
Collapse
Affiliation(s)
- Naz Doganci
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Giannina Rita Iannotti
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Radiology and Medical Informatics, University Hospitals of Geneva, 1206 Geneva, Switzerland
- Department of Neurosurgery, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Sélim Yahia Coll
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Neurosurgery, University Hospitals of Geneva, 1206 Geneva, Switzerland
- Division of Neurorehabilitation, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Radek Ptak
- Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Division of Neurorehabilitation, University Hospitals of Geneva, 1206 Geneva, Switzerland
| |
Collapse
|
3
|
Klautke J, Foster C, Medendorp WP, Heed T. Dynamic spatial coding in parietal cortex mediates tactile-motor transformation. Nat Commun 2023; 14:4532. [PMID: 37500625 PMCID: PMC10374589 DOI: 10.1038/s41467-023-39959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Movements towards touch on the body require integrating tactile location and body posture information. Tactile processing and movement planning both rely on posterior parietal cortex (PPC) but their interplay is not understood. Here, human participants received tactile stimuli on their crossed and uncrossed feet, dissociating stimulus location relative to anatomy versus external space. Participants pointed to the touch or the equivalent location on the other foot, which dissociates sensory and motor locations. Multi-voxel pattern analysis of concurrently recorded fMRI signals revealed that tactile location was coded anatomically in anterior PPC but spatially in posterior PPC during sensory processing. After movement instructions were specified, PPC exclusively represented the movement goal in space, in regions associated with visuo-motor planning and with regional overlap for sensory, rule-related, and movement coding. Thus, PPC flexibly updates its spatial codes to accommodate rule-based transformation of sensory input to generate movement to environment and own body alike.
Collapse
Affiliation(s)
- Janina Klautke
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Celia Foster
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - W Pieter Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany.
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany.
- Cognitive Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria.
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
4
|
Le DT, Ogawa H, Tsuyuhara M, Watanabe K, Watanabe T, Ochi R, Nishijo H, Mihara M, Fujita N, Urakawa S. Coupled versus decoupled visuomotor feedback: Differential frontoparietal activity during curved reach planning on simultaneous functional near-infrared spectroscopy and electroencephalography. Brain Behav 2022; 12:e2681. [PMID: 35701382 PMCID: PMC9304848 DOI: 10.1002/brb3.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Interacting with the environment requires the planning and execution of reach-to-target movements along given reach trajectory paths. Human neural mechanisms for the motor planning of linear, or point-to-point, reaching movements are relatively well studied. However, the corresponding representations for curved and more complex reaching movements require further investigation. Additionally, the visual and proprioceptive feedback of hand positioning can be spatially and sequentially coupled in alignment (e.g., directly reaching for an object), termed coupled visuomotor feedback, or spatially decoupled (e.g., dragging the computer mouse forward to move the cursor upward), termed decoupled visuomotor feedback. During reach planning, visuomotor processing routes may differ across feedback types. METHODS We investigated the involvement of the frontoparietal regions, including the superior parietal lobule (SPL), dorsal premotor cortex (PMd), and dorsolateral prefrontal cortex (dlPFC), in curved reach planning under different feedback conditions. Participants engaged in two delayed-response reaching tasks with identical starting and target position sets but different reach trajectory paths (linear or curved) under two feedback conditions (coupled or decoupled). Neural responses in frontoparietal regions were analyzed using a combination of functional near-infrared spectroscopy and electroencephalography. RESULTS The results revealed that, regarding the cue period, curved reach planning had a higher hemodynamic response in the left SPL and bilateral PMd and a smaller high-beta power in the left parietal regions than linear reach planning. Regarding the delay period, higher hemodynamic responses during curved reach planning were observed in the right dlPFC for decoupled feedback than those for coupled feedback. CONCLUSION These findings suggest the crucial involvement of both SPL and PMd activities in trajectory-path processing for curved reach planning. Moreover, the dlPFC may be especially involved in the planning of curved reaching movements under decoupled feedback conditions. Thus, this study provides insight into the neural mechanisms underlying reaching function via different feedback conditions.
Collapse
Affiliation(s)
- Duc Trung Le
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroki Ogawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masato Tsuyuhara
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuki Watanabe
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Ochi
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, Okayama, Japan
| | - Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Clarke S, Farron N, Crottaz-Herbette S. Choosing Sides: Impact of Prismatic Adaptation on the Lateralization of the Attentional System. Front Psychol 2022; 13:909686. [PMID: 35814089 PMCID: PMC9260393 DOI: 10.3389/fpsyg.2022.909686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Seminal studies revealed differences between the effect of adaptation to left- vs. right-deviating prisms (L-PA, R-PA) in normal subjects. Whereas L-PA leads to neglect-like shift in attention, demonstrated in numerous visuo-spatial and cognitive tasks, R-PA has only minor effects in specific aspects of a few tasks. The paucity of R-PA effects in normal subjects contrasts with the striking alleviation of neglect symptoms in patients with right hemispheric lesions. Current evidence from activation studies in normal subjects highlights the contribution of regions involved in visuo-motor control during prism exposure and a reorganization of spatial representations within the ventral attentional network (VAN) after the adaptation. The latter depends on the orientation of prisms used. R-PA leads to enhancement of the ipsilateral visual and auditory space within the left inferior parietal lobule (IPL), switching thus the dominance of VAN from the right to the left hemisphere. L-PA leads to enhancement of the ipsilateral space in right IPL, emphasizing thus the right hemispheric dominance of VAN. Similar reshaping has been demonstrated in patients. We propose here a model, which offers a parsimonious explanation of the effect of L-PA and R-PA both in normal subjects and in patients with hemispheric lesions. The model posits that prismatic adaptation induces instability in the synaptic organization of the visuo-motor system, which spreads to the VAN. The effect is lateralized, depending on the side of prism deviation. Successful pointing with prisms implies reaching into the space contralateral, and not ipsilateral, to the direction of prism deviation. Thus, in the hemisphere contralateral to prism deviation, reach-related neural activity decreases, leading to instability of the synaptic organization, which induces a reshuffling of spatial representations in IPL. Although reshuffled spatial representations in IPL may be functionally relevant, they are most likely less efficient than regular representations and may thus cause partial dysfunction. The former explains, e.g., the alleviation of neglect symptoms after R-PA in patients with right hemispheric lesions, the latter the occurrence of neglect-like symptoms in normal subjects after L-PA. Thus, opting for R- vs. L-PA means choosing the side of major IPL reshuffling, which leads to its partial dysfunction in normal subjects and to recruitment of alternative or enhanced spatial representations in patients with hemispheric lesions.
Collapse
Affiliation(s)
- Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
6
|
Bernard-Espina J, Dal Canto D, Beraneck M, McIntyre J, Tagliabue M. How Tilting the Head Interferes With Eye-Hand Coordination: The Role of Gravity in Visuo-Proprioceptive, Cross-Modal Sensory Transformations. Front Integr Neurosci 2022; 16:788905. [PMID: 35359704 PMCID: PMC8961421 DOI: 10.3389/fnint.2022.788905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
To correctly position the hand with respect to the spatial location and orientation of an object to be reached/grasped, visual information about the target and proprioceptive information from the hand must be compared. Since visual and proprioceptive sensory modalities are inherently encoded in a retinal and musculo-skeletal reference frame, respectively, this comparison requires cross-modal sensory transformations. Previous studies have shown that lateral tilts of the head interfere with the visuo-proprioceptive transformations. It is unclear, however, whether this phenomenon is related to the neck flexion or to the head-gravity misalignment. To answer to this question, we performed three virtual reality experiments in which we compared a grasping-like movement with lateral neck flexions executed in an upright seated position and while lying supine. In the main experiment, the task requires cross-modal transformations, because the target information is visually acquired, and the hand is sensed through proprioception only. In the other two control experiments, the task is unimodal, because both target and hand are sensed through one, and the same, sensory channel (vision and proprioception, respectively), and, hence, cross-modal processing is unnecessary. The results show that lateral neck flexions have considerably different effects in the seated and supine posture, but only for the cross-modal task. More precisely, the subjects’ response variability and the importance associated to the visual encoding of the information significantly increased when supine. We show that these findings are consistent with the idea that head-gravity misalignment interferes with the visuo-proprioceptive cross-modal processing. Indeed, the principle of statistical optimality in multisensory integration predicts the observed results if the noise associated to the visuo-proprioceptive transformations is assumed to be affected by gravitational signals, and not by neck proprioceptive signals per se. This finding is also consistent with the observation of otolithic projections in the posterior parietal cortex, which is involved in the visuo-proprioceptive processing. Altogether these findings represent a clear evidence of the theorized central role of gravity in spatial perception. More precisely, otolithic signals would contribute to reciprocally align the reference frames in which the available sensory information can be encoded.
Collapse
Affiliation(s)
- Jules Bernard-Espina
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Daniele Dal Canto
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Mathieu Beraneck
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joseph McIntyre
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- Ikerbasque Science Foundation, Bilbao, Spain
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Michele Tagliabue
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- *Correspondence: Michele Tagliabue,
| |
Collapse
|
7
|
Abstract
This chapter starts by reviewing the various interpretations of Bálint syndrome over time. We then develop a novel integrative view in which we propose that the various symptoms, historically reported and labeled by various authors, result from a core mislocalization deficit. This idea is in accordance with our previous proposal that the core deficit of Bálint syndrome is attentional (Pisella et al., 2009, 2013, 2017) since covert attention improves spatial resolution in visual periphery (Yeshurun and Carrasco, 1998); a deficit of covert attention would thus increase spatial uncertainty and thereby impair both visual object identification and visuomotor accuracy. In peripheral vision, we perceive the intrinsic characteristics of the perceptual elements surrounding us, but not their precise localization (Rosenholtz et al., 2012a,b), such that without covert attention we cannot organize them to their respective and recognizable objects; this explains why perceptual symptoms (simultanagnosia, neglect) could result from visual mislocalization. The visuomotor symptoms (optic ataxia) can be accounted for by both visual and proprioceptive mislocalizations in an oculocentric reference frame, leading to field and hand effects, respectively. This new pathophysiological account is presented along with a model of posterior parietal cortex organization in which the superior part is devoted to covert attention, while the right inferior part is involved in visual remapping. When the right inferior parietal cortex is damaged, additional representational mislocalizations across saccades worsen the clinical picture of peripheral mislocalizations due to an impairment of covert attention.
Collapse
|
8
|
Moraresku S, Vlcek K. The use of egocentric and allocentric reference frames in static and dynamic conditions in humans. Physiol Res 2020; 69:787-801. [PMID: 32901499 DOI: 10.33549/physiolres.934528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The dissociation between egocentric and allocentric reference frames is well established. Spatial coding relative to oneself has been associated with a brain network distinct from spatial coding using a cognitive map independently of the actual position. These differences were, however, revealed by a variety of tasks from both static conditions, using a series of images, and dynamic conditions, using movements through space. We aimed to clarify how these paradigms correspond to each other concerning the neural correlates of the use of egocentric and allocentric reference frames. We review here studies of allocentric and egocentric judgments used in static two- and three-dimensional tasks and compare their results with the findings from spatial navigation studies. We argue that neural correlates of allocentric coding in static conditions but using complex three-dimensional scenes and involving spatial memory of participants resemble those in spatial navigation studies, while allocentric representations in two-dimensional tasks are connected with other perceptual and attentional processes. In contrast, the brain networks associated with the egocentric reference frame in static two-dimensional and three-dimensional tasks and spatial navigation tasks are, with some limitations, more similar. Our review demonstrates the heterogeneity of experimental designs focused on spatial reference frames. At the same time, it indicates similarities in brain activation during reference frame use despite this heterogeneity.
Collapse
Affiliation(s)
- S Moraresku
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. ,
| | | |
Collapse
|
9
|
Gaze direction influences grasping actions towards unseen, haptically explored, objects. Sci Rep 2020; 10:15774. [PMID: 32978418 PMCID: PMC7519081 DOI: 10.1038/s41598-020-72554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022] Open
Abstract
Haptic exploration produces mental object representations that can be memorized for subsequent object-directed behaviour. Storage of haptically-acquired object images (HOIs), engages, besides canonical somatosensory areas, the early visual cortex (EVC). Clear evidence for a causal contribution of EVC to HOI representation is still lacking. The use of visual information by the grasping system undergoes necessarily a frame of reference shift by integrating eye-position. We hypothesize that if the motor system uses HOIs stored in a retinotopic coding in the visual cortex, then its use is likely to depend at least in part on eye position. We measured the kinematics of 4 fingers in the right hand of 15 healthy participants during the task of grasping different unseen objects behind an opaque panel, that had been previously explored haptically. The participants never saw the object and operated exclusively based on haptic information. The position of the object was fixed, in front of the participant, but the subject’s gaze varied from trial to trial between 3 possible positions, towards the unseen object or away from it, on either side. Results showed that the middle and little fingers’ kinematics during reaching for the unseen object changed significantly according to gaze position. In a control experiment we showed that intransitive hand movements were not modulated by gaze direction. Manipulating eye-position produces small but significant configuration errors, (behavioural errors due to shifts in frame of reference) possibly related to an eye-centered frame of reference, despite the absence of visual information, indicating sharing of resources between the haptic and the visual/oculomotor system to delayed haptic grasping.
Collapse
|
10
|
Pilacinski A, Höller-Wallscheid MS, Lindner A. Remember how to use it: Effector-dependent modulation of spatial working memory activity in posterior parietal cortex. PLoS One 2020; 15:e0238022. [PMID: 32845918 PMCID: PMC7449404 DOI: 10.1371/journal.pone.0238022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/12/2020] [Indexed: 11/19/2022] Open
Abstract
Working memory (WM) is the key process linking perception to action. Several lines of research have, accordingly, highlighted WM’s engagement in sensori-motor associations between retrospective stimuli and future behavior. Using human fMRI we investigated whether prior information about the effector used to respond in a WM task would have an impact on the way the same sensory stimulus is maintained in memory despite a behavioral response could not be readily planned. We focused on WM-related activity in posterior parietal cortex during the maintenance of spatial items for a subsequent match-to-sample comparison, which was reported either with a verbal or with a manual response. We expected WM activity to be higher for manual response trials, because of posterior parietal cortex’s engagement in both spatial WM and hand movement preparation. Increased fMRI activity for manual response trials in bilateral anterior intraparietal sulcus confirmed our expectations. These results imply that the maintenance of sensory material in WM is optimized for motor context, i.e. for the effector that will be relevant in the upcoming behavioral responses.
Collapse
Affiliation(s)
- Artur Pilacinski
- Department of Cognitive Neurology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail: (AP); (AL)
| | | | - Axel Lindner
- Department of Cognitive Neurology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
- Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- * E-mail: (AP); (AL)
| |
Collapse
|
11
|
Wu T, Chen C, Spagna A, Wu X, Mackie M, Russell‐Giller S, Xu P, Luo Y, Liu X, Hof PR, Fan J. The functional anatomy of cognitive control: A domain‐general brain network for uncertainty processing. J Comp Neurol 2020; 528:1265-1292. [DOI: 10.1002/cne.24804] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Wu
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| | - Caiqi Chen
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of PsychologySouth China Normal University Guangzhou China
| | - Alfredo Spagna
- Department of PsychologyColumbia University in the City of New York New York New York
| | - Xia Wu
- Faculty of PsychologyTianjin Normal University Tianjin China
| | - Melissa‐Ann Mackie
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of Medicine Chicago Illinois
| | - Shira Russell‐Giller
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive NeuroscienceShenzhen University Shenzhen China
| | - Yue‐jia Luo
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive NeuroscienceShenzhen University Shenzhen China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyUniversity of Chinese Academy of Sciences Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount Sinai New York New York
| | - Jin Fan
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| |
Collapse
|
12
|
Medendorp WP, Heed T. State estimation in posterior parietal cortex: Distinct poles of environmental and bodily states. Prog Neurobiol 2019; 183:101691. [DOI: 10.1016/j.pneurobio.2019.101691] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023]
|
13
|
Chen Y, Crawford JD. Allocentric representations for target memory and reaching in human cortex. Ann N Y Acad Sci 2019; 1464:142-155. [PMID: 31621922 DOI: 10.1111/nyas.14261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 01/18/2023]
Abstract
The use of allocentric cues for movement guidance is complex because it involves the integration of visual targets and independent landmarks and the conversion of this information into egocentric commands for action. Here, we focus on the mechanisms for encoding reach targets relative to visual landmarks in humans. First, we consider the behavioral results suggesting that both of these cues influence target memory, but are then transformed-at the first opportunity-into egocentric commands for action. We then consider the cortical mechanisms for these behaviors. We discuss different allocentric versus egocentric mechanisms for coding of target directional selectivity in memory (inferior temporal gyrus versus superior occipital gyrus) and distinguish these mechanisms from parieto-frontal activation for planning egocentric direction of actual reach movements. Then, we consider where and how the former allocentric representations of remembered reach targets are converted into the latter egocentric plans. In particular, our recent neuroimaging study suggests that four areas in the parietal and frontal cortex (right precuneus, bilateral dorsal premotor cortex, and right presupplementary area) participate in this allo-to-ego conversion. Finally, we provide a functional overview describing how and why egocentric and landmark-centered representations are segregated early in the visual system, but then reintegrated in the parieto-frontal cortex for action.
Collapse
Affiliation(s)
- Ying Chen
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Canadian Action and Perception Network (CAPnet), Toronto, Ontario, Canada
| | - J Douglas Crawford
- Canadian Action and Perception Network (CAPnet), Toronto, Ontario, Canada.,Center for Vision Research, Vision: Science to Applications (VISTA) Program, and Departments of Psychology, Biology, and Kinesiology & Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Blohm G, Alikhanian H, Gaetz W, Goltz H, DeSouza J, Cheyne D, Crawford J. Neuromagnetic signatures of the spatiotemporal transformation for manual pointing. Neuroimage 2019; 197:306-319. [DOI: 10.1016/j.neuroimage.2019.04.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/28/2019] [Accepted: 04/27/2019] [Indexed: 11/29/2022] Open
|
15
|
Distinct contributions of human posterior parietal and dorsal premotor cortex to reach trajectory planning. Sci Rep 2019; 9:1962. [PMID: 30760821 PMCID: PMC6374387 DOI: 10.1038/s41598-019-39188-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/17/2019] [Indexed: 11/22/2022] Open
Abstract
Goal-directed hand movements are usually directed straight at the target, e.g. when swatting a fly. Their paths can also become quite complex, when drawing or avoiding obstacles. Studies on movement planning have largely neglected the latter movement type and the question of whether it is the same neural machinery that is planning such complex hand trajectories as well as straight, vector-like movements. Using time-resolved fMRI during delayed response tasks we examined planning activity in human superior parietal lobule (SPL) and dorsal premotor cortex (PMd). We show that the recruitment of both areas in trajectory planning differs significantly: PMd represented both straight and complex hand trajectories while SPL only those that led straight to the target. This suggests that while posterior parietal cortex only provides representations for simple, straight reaches, the complex and computationally demanding reach planning necessarily involves dorsal premotor cortex. Our findings yield new insights into the organization of cerebro-cortical strategies of forming reach trajectory plans.
Collapse
|
16
|
A hypothetical neural network model for generation of human precision grip. Neural Netw 2019; 110:213-224. [PMID: 30597446 DOI: 10.1016/j.neunet.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/05/2018] [Accepted: 12/03/2018] [Indexed: 11/20/2022]
Abstract
Humans can stably hold and skillfully manipulate an object by coordinated control of a complex, redundant musculoskeletal system. However, how the human central nervous system actually accomplishes precision grip tasks by coordinated control of fingertip forces remains unclear. In the present study, we aimed to construct a hypothetical neural network model that can spontaneously generate humanlike precision grip. The nervous system was modeled as a recurrent neural network model prescribing kinematic and kinetic constraints that must be satisfied in precision grip tasks in the form of energy functions. The recurrent neural network autonomously behaves so as to decrease the energy functions; therefore, given the estimated mass and center-of-mass location of the target object, the nervous system model can spontaneously generate muscle activation signals that achieve stable precision grips due to dynamic relaxation of the energy functions embedded in the nervous system. Fingertip forces are modulated by sensory information about slip between the object and fingertips. A two-dimensional musculoskeletal model of the human hand with a thumb and an index finger was constructed. Forward dynamic simulation of the precision grip was performed using the proposed neural network model. Our results demonstrated that the proposed neural network model could stably pinch and successfully hold up the object in various conditions, including changes in friction, object shape, object mass, and center-of-mass location. The proposed hypothetical neuro-computational model may possibly explain some aspects of the control strategy humans use for precision grip.
Collapse
|
17
|
Pilacinski A, Wallscheid M, Lindner A. Human posterior parietal and dorsal premotor cortex encode the visual properties of an upcoming action. PLoS One 2018; 13:e0198051. [PMID: 30300356 PMCID: PMC6177124 DOI: 10.1371/journal.pone.0198051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/15/2018] [Indexed: 11/18/2022] Open
Abstract
Behavioral studies show that motor actions are planned by adapting motor programs to produce desired visual consequences. Does this mean that the brain plans these visual consequences independent of the motor actions required to obtain them? Here we addressed this question by investigating planning-related fMRI activity in human posterior parietal (PPC) and dorsal premotor (PMd) cortex. By manipulating visual movement of a virtual end-effector controlled via button presses we could dissociate motor actions from their sensory outcome. A clear representation of the visual consequences was visible in both PPC and PMd activity during early planning stages. Our findings suggest that in both PPC and PMd action plans are initially represented on the basis of the desired sensory outcomes while later activity shifts towards representing motor programs.
Collapse
Affiliation(s)
- Artur Pilacinski
- Hertie-Institute for Clinical Brain Research, Department of Cognitive Neurology, Tuebingen, Germany
- * E-mail:
| | - Melanie Wallscheid
- Hertie-Institute for Clinical Brain Research, Department of Cognitive Neurology, Tuebingen, Germany
| | - Axel Lindner
- Hertie-Institute for Clinical Brain Research, Department of Cognitive Neurology, Tuebingen, Germany
| |
Collapse
|
18
|
Tsuzuki Y, Ogihara N. A recurrent neural network model for generation of humanlike reaching movements. Adv Robot 2018. [DOI: 10.1080/01691864.2018.1496031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yuta Tsuzuki
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Naomichi Ogihara
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
19
|
Bakker RS, Selen LPJ, Medendorp WP. Reference frames in the decisions of hand choice. J Neurophysiol 2018; 119:1809-1817. [DOI: 10.1152/jn.00738.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For the brain to decide on a reaching movement, it needs to select which hand to use. A number of body-centered factors affect this decision, such as the anticipated movement costs of each arm, recent choice success, handedness, and task demands. While the position of each hand relative to the target is also known to be an important spatial factor, it is unclear which reference frames coordinate the spatial aspects in the decisions of hand choice. Here we tested the role of gaze- and head-centered reference frames in a hand selection task. With their head and gaze oriented in different directions, we measured hand choice of 19 right-handed subjects instructed to make unimanual reaching movements to targets at various directions relative to their body. Using an adaptive procedure, we determined the target angle that led to equiprobable right/left hand choices. When gaze remained fixed relative to the body this balanced target angle shifted systematically with head orientation, and when head orientation remained fixed this choice measure shifted with gaze. These results suggest that a mixture of head- and gaze-centered reference frames is involved in the spatially guided decisions of hand choice, perhaps to flexibly bind this process to the mechanisms of target selection. NEW & NOTEWORTHY Decisions of target and hand choice are fundamental aspects of human reaching movements. While the reference frames involved in target choice have been identified, it is unclear which reference frames are involved in hand selection. We tested the role of gaze- and head-centered reference frames in a hand selection task. Findings emphasize the role of both spatial reference frames in the decisions of hand choice, in addition to known body-centered computations such anticipated movement costs and handedness.
Collapse
Affiliation(s)
- Romy S. Bakker
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Luc P. J. Selen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - W. Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Chen Y, Monaco S, Crawford JD. Neural substrates for allocentric-to-egocentric conversion of remembered reach targets in humans. Eur J Neurosci 2018. [PMID: 29512943 DOI: 10.1111/ejn.13885] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Targets for goal-directed action can be encoded in allocentric coordinates (relative to another visual landmark), but it is not known how these are converted into egocentric commands for action. Here, we investigated this using a slow event-related fMRI paradigm, based on our previous behavioural finding that the allocentric-to-egocentric (Allo-Ego) conversion for reach is performed at the first possible opportunity. Participants were asked to remember (and eventually reach towards) the location of a briefly presented target relative to another visual landmark. After a first memory delay, participants were forewarned by a verbal instruction if the landmark would reappear at the same location (potentially allowing them to plan a reach following the auditory cue before the second delay), or at a different location where they had to wait for the final landmark to be presented before response, and then reach towards the remembered target location. As predicted, participants showed landmark-centred directional selectivity in occipital-temporal cortex during the first memory delay, and only developed egocentric directional selectivity in occipital-parietal cortex during the second delay for the 'Same cue' task, and during response for the 'Different cue' task. We then compared cortical activation between these two tasks at the times when the Allo-Ego conversion occurred, and found common activation in right precuneus, right presupplementary area and bilateral dorsal premotor cortex. These results confirm that the brain converts allocentric codes to egocentric plans at the first possible opportunity, and identify the four most likely candidate sites specific to the Allo-Ego transformation for reaches.
Collapse
Affiliation(s)
- Ying Chen
- Center for Vision Research, Room 0009, Lassonde Building, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, ON, Canada.,Canadian Action and Perception Network (CAPnet), Toronto, ON, Canada
| | - Simona Monaco
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - J Douglas Crawford
- Center for Vision Research, Room 0009, Lassonde Building, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, ON, Canada.,Canadian Action and Perception Network (CAPnet), Toronto, ON, Canada.,Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| |
Collapse
|
21
|
Jackson SR, Condon LA, Newport RW, Pears S, Husain M, Bajaj N, O'Donoghue M. Optic ataxia and the dorsal visual steam re-visited: Impairment in bimanual haptic matching performed without vision. Cortex 2018; 98:60-72. [DOI: 10.1016/j.cortex.2017.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 11/30/2022]
|
22
|
Abstract
This chapter reviews clinical and scientific approaches to optic ataxia. This double historic track allows us to address important issues such as the link between Bálint syndrome and optic ataxia, the alleged double dissociation between optic ataxia and visual agnosia, and the use of optic ataxia to argue for a specific vision-for-action occipitoposterior parietal stream. Clinical cases are described and reveal that perceptual deficits have been long shown to accompany ataxia. Importantly, the term ataxia appears to be misleading as patients exhibit a combination of visual and nonvisual perceptual, attentional, and visuomotor guidance deficits, which are confirmed by experimental approaches. Three major features of optic ataxia are described. The first is a spatial feature whereby the deficits exhibited by patients appear to be specific to peripheral vision, akin to the field effect. Visuomotor field examination allows us to quantify this deficit and reveals that it consists of a highly reliable retinocentric hypometria. The third is a temporal feature whereby these deficits are exacerbated under temporal constraints, i.e., when attending to dynamic stimuli. These two aspects combine in a situation where patients have to quickly respond to a target presented in peripheral vision that is experimentally displaced upon movement onset. In addition to the field effect, a hand effect can be described in conditions where the hand is not visible. Spatial and temporal aspects as well as field and hand effects may rely on several posterior parietal modules that remain to be precisely identified both anatomically and functionally. It is concluded that optic ataxia is not a visuomotor deficit and there is no dissociation between perception and action capacities in optic ataxia, hence a fortiori no double dissociation between optic ataxia and visual agnosia. Future directions for understanding the basic pathophysiology of optic ataxia are proposed.
Collapse
Affiliation(s)
- Yves Rossetti
- Integrative Multisensory Perception Action Cognition Team, Lyon Neuroscience Research Centre, Lyon, France.
| | - Laure Pisella
- Integrative Multisensory Perception Action Cognition Team, Lyon Neuroscience Research Centre, Lyon, France
| |
Collapse
|
23
|
Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark. J Neurosci 2017; 37:11572-11591. [PMID: 29066555 DOI: 10.1523/jneurosci.2428-16.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/05/2017] [Indexed: 12/23/2022] Open
Abstract
The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay.SIGNIFICANCE STATEMENT Visual presentation of an object activates shape-processing areas and retinotopic locations in early visual areas. Moreover, if the object is grasped in the dark after a delay, these areas show "reactivation." Here, we show that these areas are also activated and reactivated for haptic object exploration and haptically guided grasping. Touch-related activity occurs not only in the retinotopic location of the visual stimulus, but also at the occipital pole (OP), corresponding to the foveal representation, even though the stimulus was unseen and located peripherally. That is, the same "visual" regions are implicated in both visual and haptic exploration; however, touch also recruits high-acuity central representation within early visual areas during both haptic exploration of objects and subsequent actions toward them. Functional connectivity analysis shows that the OP is more strongly connected with ventral and dorsal stream areas when participants explore an object in the dark than when they view it.
Collapse
|
24
|
Bosco A, Piserchia V, Fattori P. Multiple Coordinate Systems and Motor Strategies for Reaching Movements When Eye and Hand Are Dissociated in Depth and Direction. Front Hum Neurosci 2017; 11:323. [PMID: 28690504 PMCID: PMC5481402 DOI: 10.3389/fnhum.2017.00323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Reaching behavior represents one of the basic aspects of human cognitive abilities important for the interaction with the environment. Reaching movements towards visual objects are controlled by mechanisms based on coordinate systems that transform the spatial information of target location into appropriate motor response. Although recent works have extensively studied the encoding of target position for reaching in three-dimensional space at behavioral level, the combined analysis of reach errors and movement variability has so far been investigated by few studies. Here we did so by testing 12 healthy participants in an experiment where reaching targets were presented at different depths and directions in foveal and peripheral viewing conditions. Each participant executed a memory-guided task in which he/she had to reach the memorized position of the target. A combination of vector and gradient analysis, novel for behavioral data, was applied to analyze patterns of reach errors for different combinations of eye/target positions. The results showed reach error patterns based on both eye- and space-centered coordinate systems: in depth more biased towards a space-centered representation and in direction mixed between space- and eye-centered representation. We calculated movement variability to describe different trajectory strategies adopted by participants while reaching to the different eye/target configurations tested. In direction, the distribution of variability between configurations that shared the same eye/target relative configuration was different, whereas in configurations that shared the same spatial position of targets, it was similar. In depth, the variability showed more similar distributions in both pairs of eye/target configurations tested. These results suggest that reaching movements executed in geometries that require hand and eye dissociations in direction and depth showed multiple coordinate systems and different trajectory strategies according to eye/target configurations and the two dimensions of space.
Collapse
Affiliation(s)
- Annalisa Bosco
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Valentina Piserchia
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| |
Collapse
|
25
|
Piserchia V, Breveglieri R, Hadjidimitrakis K, Bertozzi F, Galletti C, Fattori P. Mixed Body/Hand Reference Frame for Reaching in 3D Space in Macaque Parietal Area PEc. Cereb Cortex 2017; 27:1976-1990. [PMID: 26941385 DOI: 10.1093/cercor/bhw039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neural correlates of coordinate transformations from vision to action are expressed in the activity of posterior parietal cortex (PPC). It has been demonstrated that among the medial-most areas of the PPC, reaching targets are represented mainly in hand-centered coordinates in area PE, and in eye-centered, body-centered, and mixed body/hand-centered coordinates in area V6A. Here, we assessed whether neurons of area PEc, located between V6A and PE in the medial PPC, encode targets in body-centered, hand-centered, or mixed frame of reference during planning and execution of reaching. We studied 104 PEc cells in 3 Macaca fascicularis. The animals performed a reaching task toward foveated targets located at different depths and directions in darkness, starting with the hand from 2 positions located at different depths, one next to the trunk and the other far from it. We show that most PEc neurons encoded targets in a mixed body/hand-centered frame of reference. Although the effect of hand position was often rather strong, it was not as strong as reported previously in area PE. Our results suggest that area PEc represents an intermediate node in the gradual transformation from vision to action that takes place in the reaching network of the dorsomedial PPC.
Collapse
Affiliation(s)
- Valentina Piserchia
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Breveglieri
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Kostas Hadjidimitrakis
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy.,Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Federica Bertozzi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
26
|
Sayegh PF, Gorbet DJ, Hawkins KM, Hoffman KL, Sergio LE. The Contribution of Different Cortical Regions to the Control of Spatially Decoupled Eye-Hand Coordination. J Cogn Neurosci 2017; 29:1194-1211. [PMID: 28253075 DOI: 10.1162/jocn_a_01111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our brain's ability to flexibly control the communication between the eyes and the hand allows for our successful interaction with the objects located within our environment. This flexibility has been observed in the pattern of neural responses within key regions of the frontoparietal reach network. More specifically, our group has shown how single-unit and oscillatory activity within the dorsal premotor cortex (PMd) and the superior parietal lobule (SPL) change contingent on the level of visuomotor compatibility between the eyes and hand. Reaches that involve a coupling between the eyes and hand toward a common spatial target display a pattern of neural responses that differ from reaches that require eye-hand decoupling. Although previous work examined the altered spiking and oscillatory activity that occurs during different types of eye-hand compatibilities, they did not address how each of these measures of neurological activity interacts with one another. Thus, in an effort to fully characterize the relationship between oscillatory and single-unit activity during different types of eye-hand coordination, we measured the spike-field coherence (SFC) within regions of macaque SPL and PMd. We observed stronger SFC within PMdr and superficial regions of SPL (areas 5/PEc) during decoupled reaches, whereas PMdc and regions within SPL surrounding medial intrapareital sulcus had stronger SFC during coupled reaches. These results were supported by meta-analysis on human fMRI data. Our results support the proposal of altered cortical control during complex eye-hand coordination and highlight the necessity to account for the different eye-hand compatibilities in motor control research.
Collapse
Affiliation(s)
| | - Diana J Gorbet
- 1 York University, Toronto, Ontario, Canada.,2 Canadian Action and Perception Network, Toronto, Ontario, Canada
| | | | - Kari L Hoffman
- 1 York University, Toronto, Ontario, Canada.,2 Canadian Action and Perception Network, Toronto, Ontario, Canada
| | - Lauren E Sergio
- 1 York University, Toronto, Ontario, Canada.,2 Canadian Action and Perception Network, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Cappadocia DC, Monaco S, Chen Y, Blohm G, Crawford JD. Temporal Evolution of Target Representation, Movement Direction Planning, and Reach Execution in Occipital–Parietal–Frontal Cortex: An fMRI Study. Cereb Cortex 2016; 27:5242-5260. [DOI: 10.1093/cercor/bhw304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/08/2016] [Indexed: 11/14/2022] Open
|
28
|
Battaglia-Mayer A, Babicola L, Satta E. Parieto-frontal gradients and domains underlying eye and hand operations in the action space. Neuroscience 2016; 334:76-92. [DOI: 10.1016/j.neuroscience.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 12/16/2022]
|
29
|
Freud E, Plaut DC, Behrmann M. 'What' Is Happening in the Dorsal Visual Pathway. Trends Cogn Sci 2016; 20:773-784. [PMID: 27615805 DOI: 10.1016/j.tics.2016.08.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
The cortical visual system is almost universally thought to be segregated into two anatomically and functionally distinct pathways: a ventral occipitotemporal pathway that subserves object perception, and a dorsal occipitoparietal pathway that subserves object localization and visually guided action. Accumulating evidence from both human and non-human primate studies, however, challenges this binary distinction and suggests that regions in the dorsal pathway contain object representations that are independent of those in ventral cortex and that play a functional role in object perception. We review here the evidence implicating dorsal object representations, and we propose an account of the anatomical organization, functional contributions, and origins of these representations in the service of perception.
Collapse
Affiliation(s)
- Erez Freud
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, PA, USA.
| | - David C Plaut
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Reference frames for reaching when decoupling eye and target position in depth and direction. Sci Rep 2016; 6:21646. [PMID: 26876496 PMCID: PMC4753502 DOI: 10.1038/srep21646] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/28/2016] [Indexed: 11/23/2022] Open
Abstract
Spatial representations in cortical areas involved in reaching movements were traditionally studied in a frontoparallel plane where the two-dimensional target location and the movement direction were the only variables to consider in neural computations. No studies so far have characterized the reference frames for reaching considering both depth and directional signals. Here we recorded from single neurons of the medial posterior parietal area V6A during a reaching task where fixation point and reaching targets were decoupled in direction and depth. We found a prevalent mixed encoding of target position, with eye-centered and spatiotopic representations differently balanced in the same neuron. Depth was stronger in defining the reference frame of eye-centered cells, while direction was stronger in defining that of spatiotopic cells. The predominant presence of various typologies of mixed encoding suggests that depth and direction signals are processed on the basis of flexible coordinate systems to ensure optimal motor response.
Collapse
|
31
|
Zlatkina V, Petrides M. Morphological patterns of the intraparietal sulcus and the anterior intermediate parietal sulcus of Jensen in the human brain. Proc Biol Sci 2015; 281:rspb.2014.1493. [PMID: 25377465 DOI: 10.1098/rspb.2014.1493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Distinct parts of the intraparietal sulcal cortex contribute to sensorimotor integration and visual spatial attentional processing. A detailed examination of the morphological relations of the different segments of the complex intraparietal sulcal region in the human brain in standard stereotaxic space, which is a prerequisite for detailed structure-to-function studies, is not available. This study examined the intraparietal sulcus (IPS) and the related sulcus of Jensen in magnetic resonance imaging brain volumes registered in the Montreal Neurological Institute stereotaxic space. It was demonstrated that the IPS is divided into two branches: the anterior ramus and the posterior ramus of the IPS, often separated by a submerged gyral passage. The sulcus of Jensen emerges between the anterior and posterior rami of the IPS, and its ventral end is positioned between the first and second caudal branches of the superior temporal sulcus. In a small number of brains, the sulcus of Jensen may merge superficially with the first caudal branch of the superior temporal sulcus. The above morphological findings are discussed in relation to previously reported functional neuroimaging findings and provide the basis for future exploration of structure-to-function relations in the posterior parietal region of individual subjects.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Michael Petrides
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
32
|
Flexible Reference Frames for Grasp Planning in Human Parietofrontal Cortex. eNeuro 2015; 2:eN-NWR-0008-15. [PMID: 26464989 PMCID: PMC4586935 DOI: 10.1523/eneuro.0008-15.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 11/21/2022] Open
Abstract
Reaching to a location in space is supported by a cortical network that operates in a variety of reference frames. Computational models and recent fMRI evidence suggest that this diversity originates from neuronal populations dynamically shifting between reference frames as a function of task demands and sensory modality. In this human fMRI study, we extend this framework to nonmanipulative grasping movements, an action that depends on multiple properties of a target, not only its spatial location. By presenting targets visually or somaesthetically, and by manipulating gaze direction, we investigate how information about a target is encoded in gaze- and body-centered reference frames in dorsomedial and dorsolateral grasping-related circuits. Data were analyzed using a novel multivariate approach that combines classification and cross-classification measures to explicitly aggregate evidence in favor of and against the presence of gaze- and body-centered reference frames. We used this approach to determine whether reference frames are differentially recruited depending on the availability of sensory information, and where in the cortical networks there is common coding across modalities. Only in the left anterior intraparietal sulcus (aIPS) was coding of the grasping target modality dependent: predominantly gaze-centered for visual targets and body-centered for somaesthetic targets. Left superior parieto-occipital cortex consistently coded targets for grasping in a gaze-centered reference frame. Left anterior precuneus and premotor areas operated in a modality-independent, body-centered frame. These findings reveal how dorsolateral grasping area aIPS could play a role in the transition between modality-independent gaze-centered spatial maps and body-centered motor areas.
Collapse
|
33
|
Revisiting the cortical system for peripheral reaching at the parieto-occipital junction. Cortex 2015; 64:363-79. [DOI: 10.1016/j.cortex.2014.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 07/03/2014] [Accepted: 11/18/2014] [Indexed: 11/23/2022]
|
34
|
No effect of delay on the spatial representation of serial reach targets. Exp Brain Res 2015; 233:1225-35. [PMID: 25600817 PMCID: PMC4355444 DOI: 10.1007/s00221-015-4197-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/05/2015] [Indexed: 11/19/2022]
Abstract
When reaching for remembered target locations, it has been argued that the brain primarily relies on egocentric metrics and especially target position relative to gaze when reaches are immediate, but that the visuo-motor system relies stronger on allocentric (i.e., object-centered) metrics when a reach is delayed. However, previous reports from our group have shown that reaches to single remembered targets are represented relative to gaze, even when static visual landmarks are available and reaches are delayed by up to 12 s. Based on previous findings which showed a stronger contribution of allocentric coding in serial reach planning, the present study aimed to determine whether delay influences the use of a gaze-dependent reference frame when reaching to two remembered targets in a sequence after a delay of 0, 5 or 12 s. Gaze was varied relative to the first and second target and shifted away from the target before each reach. We found that participants used egocentric and allocentric reference frames in combination with a stronger reliance on allocentric information regardless of whether reaches were executed immediately or after a delay. Our results suggest that the relative contributions of egocentric and allocentric reference frames for spatial coding and updating of sequential reach targets do not change with a memory delay between target presentation and reaching.
Collapse
|
35
|
Gallivan JP, Johnsrude IS, Flanagan JR. Planning Ahead: Object-Directed Sequential Actions Decoded from Human Frontoparietal and Occipitotemporal Networks. Cereb Cortex 2015; 26:708-30. [PMID: 25576538 DOI: 10.1093/cercor/bhu302] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Object-manipulation tasks (e.g., drinking from a cup) typically involve sequencing together a series of distinct motor acts (e.g., reaching toward, grasping, lifting, and transporting the cup) in order to accomplish some overarching goal (e.g., quenching thirst). Although several studies in humans have investigated the neural mechanisms supporting the planning of visually guided movements directed toward objects (such as reaching or pointing), only a handful have examined how manipulatory sequences of actions-those that occur after an object has been grasped-are planned and represented in the brain. Here, using event-related functional MRI and pattern decoding methods, we investigated the neural basis of real-object manipulation using a delayed-movement task in which participants first prepared and then executed different object-directed action sequences that varied either in their complexity or final spatial goals. Consistent with previous reports of preparatory brain activity in non-human primates, we found that activity patterns in several frontoparietal areas reliably predicted entire action sequences in advance of movement. Notably, we found that similar sequence-related information could also be decoded from pre-movement signals in object- and body-selective occipitotemporal cortex (OTC). These findings suggest that both frontoparietal and occipitotemporal circuits are engaged in transforming object-related information into complex, goal-directed movements.
Collapse
Affiliation(s)
- Jason P Gallivan
- Centre for Neuroscience Studies Department of Psychology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Ingrid S Johnsrude
- Brain and Mind Institute School of Communication Sciences and Disorders, University of Western Ontario, London, ON, Canada N6A 5B7
| | - J Randall Flanagan
- Centre for Neuroscience Studies Department of Psychology, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
36
|
Abstract
The location of a remembered reach target can be encoded in egocentric and/or allocentric reference frames. Cortical mechanisms for egocentric reach are relatively well described, but the corresponding allocentric representations are essentially unknown. Here, we used an event-related fMRI design to distinguish human brain areas involved in these two types of representation. Our paradigm consisted of three tasks with identical stimulus display but different instructions: egocentric reach (remember absolute target location), allocentric reach (remember target location relative to a visual landmark), and a nonspatial control, color report (report color of target). During the delay phase (when only target location was specified), the egocentric and allocentric tasks elicited widely overlapping regions of cortical activity (relative to the control), but with higher activation in parietofrontal cortex for egocentric task and higher activation in early visual cortex for allocentric tasks. In addition, egocentric directional selectivity (target relative to gaze) was observed in the superior occipital gyrus and the inferior occipital gyrus, whereas allocentric directional selectivity (target relative to a visual landmark) was observed in the inferior temporal gyrus and inferior occipital gyrus. During the response phase (after movement direction had been specified either by reappearance of the visual landmark or a pro-/anti-reach instruction), the parietofrontal network resumed egocentric directional selectivity, showing higher activation for contralateral than ipsilateral reaches. These results show that allocentric and egocentric reach mechanisms use partially overlapping but different cortical substrates and that directional specification is different for target memory versus reach response.
Collapse
|
37
|
Ferrari-Toniolo S, Papazachariadis O, Visco-Comandini F, Salvati M, D’Elia A, Di Berardino F, Caminiti R, Battaglia-Mayer A. A visuomotor disorder in the absence of movement: Does Optic Ataxia generalize to learned isometric hand action? Neuropsychologia 2014; 63:59-71. [DOI: 10.1016/j.neuropsychologia.2014.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022]
|
38
|
Feature interactions enable decoding of sensorimotor transformations for goal-directed movement. J Neurosci 2014; 34:6860-73. [PMID: 24828640 DOI: 10.1523/jneurosci.5173-13.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurophysiology and neuroimaging evidence shows that the brain represents multiple environmental and body-related features to compute transformations from sensory input to motor output. However, it is unclear how these features interact during goal-directed movement. To investigate this issue, we examined the representations of sensory and motor features of human hand movements within the left-hemisphere motor network. In a rapid event-related fMRI design, we measured cortical activity as participants performed right-handed movements at the wrist, with either of two postures and two amplitudes, to move a cursor to targets at different locations. Using a multivoxel analysis technique with rigorous generalization tests, we reliably distinguished representations of task-related features (primarily target location, movement direction, and posture) in multiple regions. In particular, we identified an interaction between target location and movement direction in the superior parietal lobule, which may underlie a transformation from the location of the target in space to a movement vector. In addition, we found an influence of posture on primary motor, premotor, and parietal regions. Together, these results reveal the complex interactions between different sensory and motor features that drive the computation of sensorimotor transformations.
Collapse
|
39
|
Tagliabue M, McIntyre J. A modular theory of multisensory integration for motor control. Front Comput Neurosci 2014; 8:1. [PMID: 24550816 PMCID: PMC3908447 DOI: 10.3389/fncom.2014.00001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/06/2014] [Indexed: 11/13/2022] Open
Abstract
To control targeted movements, such as reaching to grasp an object or hammering a nail, the brain can use divers sources of sensory information, such as vision and proprioception. Although a variety of studies have shown that sensory signals are optimally combined according to principles of maximum likelihood, increasing evidence indicates that the CNS does not compute a single, optimal estimation of the target's position to be compared with a single optimal estimation of the hand. Rather, it employs a more modular approach in which the overall behavior is built by computing multiple concurrent comparisons carried out simultaneously in a number of different reference frames. The results of these individual comparisons are then optimally combined in order to drive the hand. In this article we examine at a computational level two formulations of concurrent models for sensory integration and compare this to the more conventional model of converging multi-sensory signals. Through a review of published studies, both our own and those performed by others, we produce evidence favoring the concurrent formulations. We then examine in detail the effects of additive signal noise as information flows through the sensorimotor system. By taking into account the noise added by sensorimotor transformations, one can explain why the CNS may shift its reliance on one sensory modality toward a greater reliance on another and investigate under what conditions those sensory transformations occur. Careful consideration of how transformed signals will co-vary with the original source also provides insight into how the CNS chooses one sensory modality over another. These concepts can be used to explain why the CNS might, for instance, create a visual representation of a task that is otherwise limited to the kinesthetic domain (e.g., pointing with one hand to a finger on the other) and why the CNS might choose to recode sensory information in an external reference frame.
Collapse
Affiliation(s)
- Michele Tagliabue
- Centre d'Étude de la Sensorimotricité, (CNRS UMR 8194), Institut des Neurosciences et de la Cognition, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - Joseph McIntyre
- Centre d'Étude de la Sensorimotricité, (CNRS UMR 8194), Institut des Neurosciences et de la Cognition, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| |
Collapse
|
40
|
Bosco A, Breveglieri R, Reser D, Galletti C, Fattori P. Multiple representation of reaching space in the medial posterior parietal area V6A. ACTA ACUST UNITED AC 2014; 25:1654-67. [PMID: 24421176 DOI: 10.1093/cercor/bht420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
During foveal reaching, the activity of neurons in the macaque medial posterior parietal area V6A is modulated by both gaze and arm direction. In the present work, we dissociated the position of gaze and reaching targets, and studied the neural activity of single V6A cells while the eyes and reaching targets were arranged in different spatial configurations (peripheral and foveal combinations). Target position influenced neural activity in all stages of the task, from visual presentation of target and movement planning, through reach execution and holding time. The majority of neurons preferred reaches directed toward peripheral targets, rather than foveal. Most neurons discharged in both premovement and action epochs. In most cases, reaching activity was tuned coherently across action planning and execution. When reaches were planned and executed in different eye/target configurations, multiple analyses revealed that few neurons coded reaching actions according to the absolute position of target, or to the position of target relative to the eye. The majority of cells responded to a combination of both these factors. These data suggest that V6A contains multiple representations of spatial information for reaching, consistent with a role of this area in forming cross-reference frame representations to be used by premotor cortex.
Collapse
Affiliation(s)
- A Bosco
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - R Breveglieri
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - D Reser
- Department of Physiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - C Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - P Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
41
|
Gaveau V, Pisella L, Priot AE, Fukui T, Rossetti Y, Pélisson D, Prablanc C. Automatic online control of motor adjustments in reaching and grasping. Neuropsychologia 2013; 55:25-40. [PMID: 24334110 DOI: 10.1016/j.neuropsychologia.2013.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 11/16/2013] [Accepted: 12/04/2013] [Indexed: 11/16/2022]
Abstract
Following the princeps investigations of Marc Jeannerod on action-perception, specifically, goal-directed movement, this review article addresses visual and non-visual processes involved in guiding the hand in reaching or grasping tasks. The contributions of different sources of correction of ongoing movements are considered; these include visual feedback of the hand, as well as the often-neglected but important spatial updating and sharpening of goal localization following gaze-saccade orientation. The existence of an automatic online process guiding limb trajectory toward its goal is highlighted by a series of princeps experiments of goal-directed pointing movements. We then review psychophysical, electrophysiological, neuroimaging and clinical studies that have explored the properties of these automatic corrective mechanisms and their neural bases, and established their generality. Finally, the functional significance of automatic corrective mechanisms-referred to as motor flexibility-and their potential use in rehabilitation are discussed.
Collapse
Affiliation(s)
- Valérie Gaveau
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Laure Pisella
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Anne-Emmanuelle Priot
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Institut de recherche biomédicale des armées (IRBA), BP 73, 91223 Brétigny-sur-Orge cedex, France
| | - Takao Fukui
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France
| | - Yves Rossetti
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Denis Pélisson
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Claude Prablanc
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France.
| |
Collapse
|
42
|
Breveglieri R, Galletti C, Dal Bò G, Hadjidimitrakis K, Fattori P. Multiple aspects of neural activity during reaching preparation in the medial posterior parietal area V6A. J Cogn Neurosci 2013; 26:878-95. [PMID: 24168224 DOI: 10.1162/jocn_a_00510] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The posterior parietal cortex is involved in the visuomotor transformations occurring during arm-reaching movements. The medial posterior parietal area V6A has been shown to be implicated in reaching execution, but its role in reaching preparation has not been sufficiently investigated. Here, we addressed this issue exploring the neural correlates of reaching preparation in V6A. Neural activity of single cells during the instructed delay period of a foveated Reaching task was compared with the activity in the same delay period during a Detection task. In this latter task, animals fixated the target but, instead of performing an arm reaching movement, they responded with a button release to the go signal. Targets were allocated in different positions in 3-D space. We found three types of neurons: cells where delay activity was equally spatially tuned in the two tasks (Gaze cells), cells spatially tuned only during reaching preparation (Set cells), and cells influenced by both gaze and reaching preparation signals (Gaze/Set cells). In cells influenced by reaching preparation, the delay activity in the Reaching task could be higher or lower compared with the Detection task. All the Set cells and a minority of Gaze/Set cells were more active during reaching preparation. Most cells modulated by movement preparation were also modulated with a congruent spatial tuning during movement execution. Present results highlight the convergence of visuospatial information, reach planning and reach execution signals on V6A, and indicate that visuospatial processing and movement execution have a larger influence on V6A activity than the encoding of reach plans.
Collapse
|
43
|
Khan AZ, Pisella L, Blohm G. Causal evidence for posterior parietal cortex involvement in visual-to-motor transformations of reach targets. Cortex 2013; 49:2439-48. [DOI: 10.1016/j.cortex.2012.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 08/30/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022]
|
44
|
Abstract
Voluntary movements are frequently composed of several actions that are combined to achieve a specific behavior. For example, prehension involves reaching and grasping actions to transport the hand to a target to grasp or manipulate it. For controlling these actions, separate parietofrontal networks have been described for generating reaching and grasping actions. However, this separation has been challenged recently for the dorsomedial part of this network (area V6A). Here we report that the anterior intraparietal (AIP) and the rostral ventral premotor area (F5) in the macaque, which are both part of the dorsolateral parietofrontal network and causally linked to hand grasping movements, also represent spatial information during the execution of a reach-to-grasp task. In addition to grip type information, gaze and target positions were represented in AIP and F5 and could be readily decoded from single unit activity in these areas. Whereas the fraction of grip type tuned units increased toward movement execution, the number of cells with spatial representations stayed relatively constant throughout the task, although more prominently in AIP than in F5. Furthermore, the recorded target position signals were substantially encoded in retinotopic coordinates. In conclusion, the simultaneous presence of grasp-related and spatial information in AIP and F5 suggests at least a supportive role of these spatial signals for the planning of grasp actions. Whether these spatial signals in AIP and F5 also play a causal role for the planning of reach actions would need to be the subject of further investigations.
Collapse
|
45
|
Alikhanian H, Crawford JD, Desouza JFX, Cheyne DO, Blohm G. Adaptive cluster analysis approach for functional localization using magnetoencephalography. Front Neurosci 2013; 7:73. [PMID: 23675314 PMCID: PMC3653128 DOI: 10.3389/fnins.2013.00073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/24/2013] [Indexed: 11/23/2022] Open
Abstract
In this paper we propose an agglomerative hierarchical clustering Ward's algorithm in tandem with the Affinity Propagation algorithm to reliably localize active brain regions from magnetoencephalography (MEG) brain signals. Reliable localization of brain areas with MEG has been difficult due to variations in signal strength, and the spatial extent of the reconstructed activity. The proposed approach to resolve this difficulty is based on adaptive clustering on reconstructed beamformer images to find locations that are consistently active across different participants and experimental conditions with high spatial resolution. Using data from a human reaching task, we show that the method allows more accurate and reliable localization from MEG data alone without using functional magnetic resonance imaging (fMRI) or any other imaging techniques.
Collapse
Affiliation(s)
- Hooman Alikhanian
- Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada ; Canadian Action and Perception Network Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
46
|
Shi Y, Apker G, Buneo CA. Multimodal representation of limb endpoint position in the posterior parietal cortex. J Neurophysiol 2013; 109:2097-107. [DOI: 10.1152/jn.00223.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding the neural representation of limb position is important for comprehending the control of limb movements and the maintenance of body schema, as well as for the development of neuroprosthetic systems designed to replace lost limb function. Multiple subcortical and cortical areas contribute to this representation, but its multimodal basis has largely been ignored. Regarding the parietal cortex, previous results suggest that visual information about arm position is not strongly represented in area 5, although these results were obtained under conditions in which animals were not using their arms to interact with objects in their environment, which could have affected the relative weighting of relevant sensory signals. Here we examined the multimodal basis of limb position in the superior parietal lobule (SPL) as monkeys reached to and actively maintained their arm position at multiple locations in a frontal plane. On half of the trials both visual and nonvisual feedback of the endpoint of the arm were available, while on the other trials visual feedback was withheld. Many neurons were tuned to arm position, while a smaller number were modulated by the presence/absence of visual feedback. Visual modulation generally took the form of a decrease in both firing rate and variability with limb vision and was associated with more accurate decoding of position at the population level under these conditions. These findings support a multimodal representation of limb endpoint position in the SPL but suggest that visual signals are relatively weakly represented in this area, and only at the population level.
Collapse
Affiliation(s)
- Ying Shi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Gregory Apker
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Christopher A. Buneo
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| |
Collapse
|
47
|
Sugawara K, Onishi H, Yamashiro K, Soma T, Oyama M, Kirimoto H, Tamaki H, Murakami H, Kameyama S. Repeated practice of a Go/NoGo visuomotor task induces neuroplastic change in the human posterior parietal cortex: an MEG study. Exp Brain Res 2013; 226:495-502. [PMID: 23455731 DOI: 10.1007/s00221-013-3461-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The posterior parietal cortex (PPC) is strongly related to task performance by evaluating sensory cues and visually guided movements. Sensorimotor processing is improved by task repetition as indicated by reduced response time. We investigated practice-induced changes in PPC visuomotor processing during a Go/NoGo task in humans using 306-channel magnetoencephalography. Eleven healthy adult males were instructed to extend the right index finger when presented with the Go stimulus (a red circle), but not to react to the NoGo stimulus (a green circle or a red square). Magnetic fields over the visual, posterior parietal, and sensorimotor cortices were measured before and after 3 days of task practice. The first peak of the visual-evoked field (VEF) occurred at approximately 80 ms after presentation of either the Go or NoGo stimulus, while a PPC response, with latency to a peak of 175.8 ± 26.7 ms, occurred only after the Go stimulus. No significant change in the first peak of VEF was measured after 3 days of task practice, but there was a significant reduction in the latency to peak PPC activity (160.1 ± 27.6 ms) and in the time from peak PPC activity to electromyogram onset. In all participants, practice resulted in a significant reduction in reaction time. These results demonstrate that practicing a sensorimotor task induces neuroplastic changes in PPC that accelerate sensorimotor processing and reduce motor response times.
Collapse
Affiliation(s)
- Kazuhiro Sugawara
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City 9503198, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lingnau A, Strnad L, He C, Fabbri S, Han Z, Bi Y, Caramazza A. Cross-modal plasticity preserves functional specialization in posterior parietal cortex. Cereb Cortex 2012; 24:541-9. [PMID: 23118194 DOI: 10.1093/cercor/bhs340] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In congenitally blind individuals, many regions of the brain that are typically heavily involved in visual processing are recruited for a variety of nonvisual sensory and cognitive tasks (Rauschecker 1995; Pascual-Leone et al. 2005). This phenomenon-cross-modal plasticity-has been widely documented, but the principles that determine where and how cross-modal changes occur remain poorly understood (Bavelier and Neville 2002). Here, we evaluate the hypothesis that cross-modal plasticity respects the type of computations performed by a region, even as it changes the modality of the inputs over which they are carried out (Pascual-Leone and Hamilton 2001). We compared the fMRI signal in sighted and congenitally blind participants during proprioceptively guided reaching. We show that parietooccipital reach-related regions retain their functional role-encoding of the spatial position of the reach target-even as the dominant modality in this region changes from visual to nonvisual inputs. This suggests that the computational role of a region, independently of the processing modality, codetermines its potential cross-modal recruitment. Our findings demonstrate that preservation of functional properties can serve as a guiding principle for cross-modal plasticity even in visuomotor cortical regions, i.e. beyond the early visual cortex and other traditional visual areas.
Collapse
Affiliation(s)
- Angelika Lingnau
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Busan P, Zanon M, Vinciati F, Monti F, Pizzolato G, Battaglini PP. Transcranial magnetic stimulation and preparation of visually-guided reaching movements. FRONTIERS IN NEUROENGINEERING 2012; 5:18. [PMID: 22891059 PMCID: PMC3413947 DOI: 10.3389/fneng.2012.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 07/19/2012] [Indexed: 11/18/2022]
Abstract
To better define the neural networks related to preparation of reaching, we applied transcranial magnetic stimulation (TMS) to the lateral parietal and frontal cortex. TMS did not evoke effects closely related to preparation of reaching, suggesting that neural networks already identified by our group are not larger than previously thought. We also replicated previous TMS/EEG data by applying TMS to the parietal cortex: new analyses were performed to better support reliability of already reported findings (Zanon et al., 2010; Brain Topography 22, 307-317). We showed the existence of neural circuits ranging from posterior to frontal regions of the brain after the stimulation of parietal cortex, supporting the idea of strong connections among these areas and suggesting their possible temporal dynamic. Connection with ventral stream was confirmed. The present work helps to define those areas which are involved in preparation of natural reaching in humans. They correspond to parieto-occipital, parietal and premotor medial regions of the left hemisphere, i.e., the contralateral one with respect to the moving hand, as suggested by previous studies. Behavioral data support the existence of a discrete stream involved in reaching. Besides the serial flow of activation from posterior to anterior direction, a parallel elaboration of information among parietal and premotor areas seems also to exist. Present cortico-cortical interactions (TMS/EEG experiment) show propagation of activity to frontal, temporal, parietal and more posterior regions, exhibiting distributed communication among various areas in the brain. The neural system highlighted by TMS/EEG experiments is wider with respect to the one disclosed by the TMS behavioral approach. Further studies are needed to unravel this paucity of overlap. Moreover, the understanding of these mechanisms is crucial for the comprehension of response inhibition and changes in prepared actions, which are common behaviors in everyday life.
Collapse
Affiliation(s)
- Pierpaolo Busan
- BRAIN, Center for Neuroscience, Department of Life Sciences, University of TriesteTrieste, Italy
| | - Marco Zanon
- Department of Medical and Biological Sciences, University of UdineUdine, Italy
| | - Federica Vinciati
- BRAIN, Center for Neuroscience, Department of Life Sciences, University of TriesteTrieste, Italy
| | - Fabrizio Monti
- Department of Medical, Surgical and Health Sciences, University of TriesteTrieste, Italy
| | - Gilberto Pizzolato
- Department of Medical, Surgical and Health Sciences, University of TriesteTrieste, Italy
| | - Piero P. Battaglini
- BRAIN, Center for Neuroscience, Department of Life Sciences, University of TriesteTrieste, Italy
| |
Collapse
|
50
|
Funahashi S. Space representation in the prefrontal cortex. Prog Neurobiol 2012; 103:131-55. [PMID: 22521602 DOI: 10.1016/j.pneurobio.2012.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/04/2012] [Accepted: 04/04/2012] [Indexed: 11/30/2022]
Abstract
The representation of space and its function in the prefrontal cortex have been examined using a variety of behavioral tasks. Among them, since the delayed-response task requires the temporary maintenance of spatial information, this task has been used to examine the mechanisms of spatial representation. In addition, the concept of working memory to explain prefrontal functions has helped us to understand the nature and functions of space representation in the prefrontal cortex. The detailed analysis of delay-period activity observed in spatial working memory tasks has provided important information for understanding space representation in the prefrontal cortex. Directional delay-period activity has been shown to be a neural correlate of the mechanism for temporarily maintaining information and represent spatial information for the visual cue and the saccade. In addition, many task-related prefrontal neurons exhibit spatially selective activities. These neurons are also important components of spatial information processing. In fact, information flow from sensory-related neurons to motor-related neurons has been demonstrated, along with a change in spatial representation as the trial progresses. The dynamic functional interactions among neurons exhibiting different task-related activities and representing different aspects of information could play an essential role in information processing. In addition, information provided from other cortical or subcortical areas might also be necessary for the representation of space in the prefrontal cortex. To better understand the representation of space and its function in the prefrontal cortex, we need to understand the nature of functional interactions between the prefrontal cortex and other cortical and subcortical areas.
Collapse
Affiliation(s)
- Shintaro Funahashi
- Kokoro Research Center, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|