1
|
Figueiredo ÍL, Frota PB, da Cunha DG, da Silva Raposo R, Canuto KM, de Andrade GM, Sousa N, Moore SR, Anstead GM, Alvarez-Leite JI, Guerrant RL, Oriá RB. Prolonged maternal separation induces undernutrition and systemic inflammation with disrupted hippocampal development in mice. Nutrition 2016; 32:1019-27. [PMID: 27157468 DOI: 10.1016/j.nut.2016.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/15/2016] [Accepted: 02/21/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Prolonged maternal separation (PMS) in the first 2 wk of life has been associated with poor growth with lasting effects in brain structure and function. This study aimed to investigate whether PMS-induced undernutrition could cause systemic inflammation and changes in nutrition-related hormonal levels, affecting hippocampal structure and neurotransmission in C57BL/6J suckling mice. METHODS This study assessed mouse growth parameters coupled with insulin-like growth factor-1 (IGF-1) serum levels. In addition, leptin, adiponectin, and corticosterone serum levels were measured following PMS. Hippocampal stereology and the amino acid levels were also assessed. Furthermore, we measured myelin basic protein and synapthophysin (SYN) expression in the overall brain tissue and hippocampal SYN immunolabeling. For behavioral tests, we analyzed the ontogeny of selected neonatal reflexes. PMS was induced by separating half the pups in each litter from their lactating dams for defined periods each day (4 h on day 1, 8 h on day 2, and 12 h thereafter). A total of 67 suckling pups were used in this study. RESULTS PMS induced significant slowdown in weight gain and growth impairment. Significant reductions in serum leptin and IGF-1 levels were found following PMS. Total CA3 area and volume were reduced, specifically affecting the pyramidal layer in PMS mice. CA1 pyramidal layer area was also reduced. Overall hippocampal SYN immunolabeling was lower, especially in CA3 field and dentate gyrus. Furthermore, PMS reduced hippocampal aspartate, glutamate, and gamma-aminobutyric acid levels, as compared with unseparated controls. CONCLUSION These findings suggest that PMS causes significant growth deficits and alterations in hippocampal morphology and neurotransmission.
Collapse
Affiliation(s)
- Ítalo Leite Figueiredo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Ceara, Brazil
| | - Priscila B Frota
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Ceara, Brazil
| | - Davi G da Cunha
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Ceara, Brazil
| | | | - Kildere M Canuto
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Ceara, Brazil
| | - Geanne M de Andrade
- Department of Physiology and Pharmacology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Ceara, Brazil
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sean R Moore
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Jacqueline I Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Reinaldo B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Ceara, Brazil.
| |
Collapse
|
2
|
Zinc and glutamine improve brain development in suckling mice subjected to early postnatal malnutrition. Nutrition 2010; 26:662-70. [PMID: 20371167 DOI: 10.1016/j.nut.2009.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/04/2009] [Accepted: 11/14/2009] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The effect of zinc and glutamine on brain development was investigated during the lactation period in Swiss mice. METHODS Malnutrition was induced by clustering the litter size from 6-7 pups/dam (nourished control) to 12-14 pups/dam (undernourished control) following birth. Undernourished groups received daily supplementation with glutamine by subcutaneous injections starting at day 2 and continuing until day 14. Glutamine (100 mM, 40-80 microL) was used for morphological and behavioral studies. Zinc acetate was added in the drinking water (500 mg/L) to the lactating dams. Synaptophysin and myelin basic protein brain expressions were evaluated by immunoblot. Zinc serum and brain levels and hippocampal neurotransmitters were also evaluated. RESULTS Zinc with or without glutamine improved weight gain as compared to untreated, undernourished controls. In addition, zinc supplementation improved cliff avoidance and head position during swim behaviors especially on days 9 and 10. Using design-based stereological methods, we found a significant increase in the volume of CA1 neuronal cells in undernourished control mice, which was not seen in mice receiving zinc or glutamine alone or in combination. Undernourished mice given glutamine showed increased CA1 layer volume as compared with the other groups, consistent with the trend toward increased number of neurons. Brain zinc levels were increased in the nourished and undernourished-glutamine treated mice as compared to the undernourished controls on day 7. Undernourished glutamine-treated mice showed increased hippocampal gamma-aminobutyric acid and synaptophysin levels on day 14. CONCLUSION We conclude that glutamine or zinc protects against malnutrition-induced brain developmental impairments.
Collapse
|
3
|
Williams DB. A novel, rapid, inhibitory effect of insulin on alpha1beta2gamma2s gamma-aminobutyric acid type A receptors. Neurosci Lett 2008; 443:27-31. [PMID: 18672028 DOI: 10.1016/j.neulet.2008.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/09/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
In the CNS, GABA and insulin seem to contribute to similar processes, including neuronal survival; learning and reward; and energy balance and food intake. It is likely then that insulin and GABA may interact, perhaps at the GABA(A) receptor. One such interaction has already been described [Q. Wan, Z.G. Xiong, H.Y. Man, C.A. Ackerley, J. Braunton, W.Y. Lu, L.E. Becker, J.F. MacDonald, Y.T. Wang, Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin, Nature 388 (1997) 686-690]; in it a micromolar concentration of insulin causes the insertion of GABA(A) receptors into the cell membrane, increasing GABA current. I have discovered another effect of insulin on GABA(A) currents. Using a receptor isoform, alpha(1)beta(2)gamma(2s) that is the likely main neuronal GABA(A) isoform expressed recombinantly in Xenopus oocytes, insulin inhibits GABA-induced current when applied simultaneously with low concentrations of GABA. Insulin will significantly inhibit currents induced by EC(30-50) concentrations of GABA by about 38%. Insulin is potent in this effect; IC(50) of insulin was found to be about 4.3 x 10(-10) M. The insulin effect on the GABA dose responses looked like that of an antagonist similar to bicuculline or beta-carbolines. However, an effect of phosphorylation on the GABA(A) receptor from the insulin receptor signal transduction pathway cannot yet be dismissed.
Collapse
Affiliation(s)
- Daniel B Williams
- Department of Life Sciences, Winston-Salem St. University, 601 Martin Luther King Jr Dr, WBA 402, Winston-Salem, NC 27110, United States.
| |
Collapse
|