1
|
Castellote JM, Kofler M, Mayr A. The benefit of knowledge: postural response modulation by foreknowledge of equilibrium perturbation in an upper limb task. Eur J Appl Physiol 2024; 124:975-991. [PMID: 37755580 PMCID: PMC10879248 DOI: 10.1007/s00421-023-05323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
For whole-body sway patterns, a compound motor response following an external stimulus may comprise reflexes, postural adjustments (anticipatory or compensatory), and voluntary muscular activity. Responses to equilibrium destabilization may depend on both motor set and a subject`s expectation of the disturbing stimulus. To disentangle these influences on lower limb responses, we studied a model in which subjects (n = 14) were suspended in the air, without foot support, and performed a fast unilateral wrist extension (WE) in response to a passive knee flexion (KF) delivered by a robot. To characterize the responses, electromyographic activity of rectus femoris and reactive leg torque was obtained bilaterally in a series of trials, with or without the requirement of WE (motor set), and/or beforehand information about the upcoming velocity of KF (subject`s expectation). Some fast-velocity trials resulted in StartReact responses, which were used to subclassify leg responses. When subjects were uninformed about the upcoming KF, large rectus femoris responses concurred with a postural reaction in conditions without motor task, and with both postural reaction and postural adjustment when WE was required. WE in response to a low-volume acoustic signal elicited no postural adjustments. When subjects were informed about KF velocity and had to perform WE, large rectus femoris responses corresponded to anticipatory postural adjustment rather than postural reaction. In conclusion, when subjects are suspended in the air and have to respond with WE, the prepared motor set includes anticipatory postural adjustments if KF velocity is known, and additional postural reactions if KF velocity is unknown.
Collapse
Affiliation(s)
- Juan M Castellote
- Radiology, Rehabilitation and Physiotherapy Department, Faculty of Medicine, Universidad Complutense, Madrid, Spain.
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Andreas Mayr
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| |
Collapse
|
2
|
Martino G, Beck ON, Ting LH. Voluntary muscle coactivation in quiet standing elicits reciprocal rather than coactive agonist-antagonist control of reactive balance. J Neurophysiol 2023; 129:1378-1388. [PMID: 37162064 PMCID: PMC10259861 DOI: 10.1152/jn.00458.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/04/2023] [Accepted: 05/06/2023] [Indexed: 05/11/2023] Open
Abstract
Muscle coactivation increases in challenging balance conditions as well as with advanced age and mobility impairments. Increased muscle coactivation can occur both in anticipation of (feedforward) and in reaction to (feedback) perturbations, however, the causal relationship between feedforward and feedback muscle coactivation remains elusive. Here, we hypothesized that feedforward muscle coactivation would increase both the body's initial mechanical resistance due to muscle intrinsic properties and the later feedback-mediated muscle coactivation in response to postural perturbations. Young adults voluntarily increased leg muscle coactivation using visual biofeedback before support-surface perturbations. In contrast to our hypothesis, feedforward muscle coactivation did not increase the body's initial intrinsic resistance to perturbations, nor did it increase feedback muscle coactivation. Rather, perturbations with feedforward muscle coactivation elicited a medium- to long-latency increase of feedback-mediated agonist activity but a decrease of feedback-mediated antagonist activity. This reciprocal rather than coactivation effect on ankle agonist and antagonist muscles enabled faster reactive ankle torque generation, reduced ankle dorsiflexion, and reduced center of mass (CoM) motion. We conclude that in young adults, voluntary feedforward muscle coactivation can be independently modulated with respect to feedback-mediated muscle coactivation. Furthermore, our findings suggest feedforward muscle coactivation may be useful for enabling quicker joint torque generation through reciprocal, rather than coactivated, agonist-antagonist feedback muscle activity. As such our results suggest that behavioral context is critical to whether muscle coactivation functions to increase agility versus stability.NEW & NOTEWORTHY Feedforward and feedback muscle coactivation are commonly observed in older and mobility impaired adults and are considered strategies to improve stability by increasing body stiffness prior to and in response to perturbations. In young adults, voluntary feedforward coactivation does not necessarily increase feedback coactivation in response to perturbations. Instead, feedforward coactivation enabled faster ankle torques through reciprocal agonist-antagonist muscle activity. As such, coactivation may promote either agility or stability depending on the behavioral context.
Collapse
Affiliation(s)
- Giovanni Martino
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Owen N Beck
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States
| | - Lena H Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Barradas VR, Cho W, Koike Y. EMG space similarity feedback promotes learning of expert-like muscle activation patterns in a complex motor skill. Front Hum Neurosci 2023; 16:805867. [PMID: 36741786 PMCID: PMC9897456 DOI: 10.3389/fnhum.2022.805867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Augmented feedback provided by a coach or augmented reality system can facilitate the acquisition of a motor skill. Verbal instructions and visual aids can be effective in providing feedback about the kinematics of the desired movements. However, many skills require mastering not only kinematic, but also complex kinetic patterns, for which feedback is harder to convey. Here, we propose the electromyography (EMG) space similarity feedback, which may indirectly convey kinematic and kinetic feedback by comparing the muscle activations of the learner and an expert in the task. The EMG space similarity feedback is a score that reflects how well a set of muscle synergies extracted from the expert can reconstruct the learner's EMG when performing the task. We tested the EMG space similarity feedback in a virtual bimanual polishing task that uses a robotic system to simulate the dynamics of a real polishing operation. We measured the expert's and learner's EMG from eight muscles in each arm during the real and virtual polishing tasks, respectively. The goal of the virtual task was to smoothen the surface of a virtual object. Therefore, we defined performance in the task as the smoothness of the object at the end of a trial. We separated learners into real feedback and null feedback groups to assess the effects of the EMG space similarity feedback. The real and null feedback groups received veridic and no EMG space similarity feedback, respectively. Subjects participated in five training sessions on different days, and we evaluated their performance on each day. Subjects in both groups were able to increase smoothness throughout the training sessions, with no significant differences between groups. However, subjects in the real feedback group were able to improve in the EMG space similarity score to a significantly greater extent than the null feedback group. Additionally, subjects in the real feedback group produced muscle activations that became increasingly consistent with an important muscle synergy found in the expert. Our results indicate that the EMG space similarity feedback promotes acquiring expert-like muscle activation patterns, suggesting that it may assist in the acquisition of complex motor skills.
Collapse
Affiliation(s)
- Victor R. Barradas
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Woorim Cho
- School of Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasuharu Koike
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan,*Correspondence: Yasuharu Koike,
| |
Collapse
|
4
|
Nicolozakes CP, Sohn MH, Baillargeon EM, Lipps DB, Perreault EJ. Stretch reflex gain scaling at the shoulder varies with synergistic muscle activity. J Neurophysiol 2022; 128:1244-1257. [PMID: 36224165 PMCID: PMC9662809 DOI: 10.1152/jn.00259.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
The unique anatomy of the shoulder allows for expansive mobility but also sometimes precarious stability. It has long been suggested that stretch-sensitive reflexes contribute to maintaining joint stability through feedback control, but little is known about how stretch-sensitive reflexes are coordinated between the muscles of the shoulder. The purpose of this study was to investigate the coordination of stretch reflexes in shoulder muscles elicited by rotations of the glenohumeral joint. We hypothesized that stretch reflexes are sensitive to not only a given muscle's background activity but also the aggregate activity of all muscles crossing the shoulder based on the different groupings of muscles required to actuate the shoulder in three rotational degrees of freedom. We examined the relationship between a muscle's background activity and its reflex response in eight shoulder muscles by applying rotational perturbations while participants produced voluntary isometric torques. We found that this relationship, defined as gain scaling, differed at both short and long latencies based on the direction of voluntary torque generated by the participant. Therefore, gain scaling differed based on the aggregate of muscles that were active, not just the background activity in the muscle within which the reflex was measured. Across all muscles, the consideration of torque-dependent gain scaling improved model fits (ΔR2) by 0.17 ± 0.12. Modulation was most evident when volitional torques and perturbation directions were aligned along the same measurement axis, suggesting a functional role in resisting perturbations among synergists while maintaining task performance.NEW & NOTEWORTHY Careful coordination of muscles crossing the shoulder is needed to maintain the delicate balance between the joint's mobility and stability. We provide experimental evidence that stretch reflexes within shoulder muscles are modulated based on the aggregate activity of muscles crossing the joint, not just the activity of the muscle in which the reflex is elicited. Our results reflect coordination through neural coupling that may help maintain shoulder stability during encounters with environmental perturbations.
Collapse
Affiliation(s)
- Constantine P Nicolozakes
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - M Hongchul Sohn
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Emma M Baillargeon
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David B Lipps
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
5
|
Wang AB, Housley SN, Flores AM, Cope TC, Perreault EJ. Cancer survivors post-chemotherapy exhibit unique proprioceptive deficits in proximal limbs. J Neuroeng Rehabil 2022; 19:32. [PMID: 35321749 PMCID: PMC8944065 DOI: 10.1186/s12984-022-01010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxaliplatin (OX) chemotherapy for colorectal cancer is associated with adverse neurotoxic effects that can contribute to long-term sensorimotor impairments in cancer survivors. It is often thought that the sensorimotor impairments are dominated by OX-induced dying-back sensory neuropathy that primarily affects the distal regions of the limb. Recent preclinical studies have identified encoding dysfunction of muscle proprioceptors as an alternative mechanism. Unlike the dying-back sensory neuropathy affecting distal limbs, dysfunction of muscle proprioceptors could have more widespread effects. Most investigations of chemotherapy-induced sensorimotor impairments have considered only the effects of distal changes in sensory processing; none have evaluated proximal changes or their influence on function. Our study fills this gap by evaluating the functional use of proprioception in the shoulder and elbow joints of cancer survivors post OX chemotherapy. We implemented three multidirectional sensorimotor tasks: force matching, target reaching, and postural stability tasks to evaluate various aspects of proprioception and their use. Force and kinematic data of the sensorimotor tasks were collected in 13 cancer survivors treated with OX and 13 age-matched healthy controls. RESULTS Cancer survivors exhibited less accuracy and precision than an age-matched control group when they had to rely only on proprioceptive information to match force, even for forces that required only torques about the shoulder. There were also small differences in the ability to maintain arm posture but no significant differences in reaching. The force deficits in cancer survivors were significantly correlated with self-reported motor dysfunction. CONCLUSIONS These results suggest that cancer survivors post OX chemotherapy exhibit proximal proprioceptive deficits, and that the deficits in producing accurate and precise forces are larger than those for producing unloaded movements. Current clinical assessments of chemotherapy-related sensorimotor dysfunction are largely limited to distal symptoms. Our study suggests that we also need to consider changes in proximal function. Force matching tasks similar to those used here could provide a clinically meaningful approach to quantifying OX-related movement dysfunction during and after chemotherapy.
Collapse
Affiliation(s)
- Allison B Wang
- Department of Biomedical Engineering, Northwestern University, 355 E Erie St 21st Floor, Evanston, IL, 60611, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
- Shirley Ryan AbilityLab, Chicago, IL, USA.
| | - Stephen N Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ann Marie Flores
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Cancer Survivorship Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Timothy C Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Georgia Institute of Technology, Atlanta, GA, USA
- Integrated Cancer Research Center, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, 355 E Erie St 21st Floor, Evanston, IL, 60611, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern, Chicago, IL, USA
| |
Collapse
|
6
|
Nicolozakes CP, Coats-Thomas MS, Ludvig D, Seitz AL, Perreault EJ. Translations of the Humeral Head Elicit Reflexes in Rotator Cuff Muscles That Are Larger Than Those in the Primary Shoulder Movers. Front Integr Neurosci 2022; 15:796472. [PMID: 35185484 PMCID: PMC8847177 DOI: 10.3389/fnint.2021.796472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Muscle activation helps stabilize the glenohumeral joint and prevent dislocations, which are more common at the shoulder than at any other human joint. Feedforward control of shoulder muscles is important for protecting the glenohumeral joint from harm caused by anticipated external perturbations. However, dislocations are frequently caused by unexpected perturbations for which feedback control is essential. Stretch-evoked reflexes elicited by translations of the glenohumeral joint may therefore be an important mechanism for maintaining joint integrity, yet little is known about them. Specifically, reflexes elicited by glenohumeral translations have only been studied under passive conditions, and there have been no investigations of how responses are coordinated across the functional groupings of muscles found at the shoulder. Our objective was to characterize stretch-evoked reflexes elicited by translations of the glenohumeral joint while shoulder muscles are active. We aimed to determine how these responses differ between the rotator cuff muscles, which are essential for maintaining glenohumeral stability, and the primary shoulder movers, which are essential for the large mobility of this joint. We evoked reflexes using anterior and posterior translations of the humeral head while participants produced voluntary isometric torque in six directions spanning the three rotational degrees-of-freedom about the shoulder. Electromyograms were used to measure the stretch-evoked reflexes elicited in nine shoulder muscles. We found that reflex amplitudes were larger in the rotator cuff muscles than in the primary shoulder movers, in part due to increased background activation during torque generation but more so due to an increased scaling of reflex responses with background activation. The reflexes we observed likely arose from the diversity of proprioceptors within the muscles and in the passive structures surrounding the shoulder. The large reflexes observed in the rotator cuff muscles suggest that feedback control of the rotator cuff augments the feedforward control that serves to compress the humeral head into the glenoid. This coordination may serve to stabilize the shoulder rapidly when preparing for and responding to unexpected disturbances.
Collapse
Affiliation(s)
- Constantine P. Nicolozakes
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Shirley Ryan AbilityLab, Chicago, IL, United States
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Constantine P. Nicolozakes
| | - Margaret S. Coats-Thomas
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Shirley Ryan AbilityLab, Chicago, IL, United States
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel Ludvig
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Amee L. Seitz
- Department of Physical Therapy & Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Eric J. Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
- Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| |
Collapse
|
7
|
Anastasopoulos D, Anastasopoulos L, Mergner T. Voluntary suppression of neck reflexes during passive head-on-trunk rotations - reflex gain control vs. proprioceptive feedback. J Neurophysiol 2021; 127:161-172. [PMID: 34907798 PMCID: PMC8858664 DOI: 10.1152/jn.00297.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normal subjects can completely eliminate resistance upon imposed head-on-trunk rotations when they are asked to relax. It is not, however, clear how neck reflexes to stretch can be voluntarily suppressed. Reflexive responses might be modified by adjusting the gain of the reflex loop through descending control. Theoretically, necessary corrections upon interfering disturbances during coordinated motor performance requiring the interplay of relaxation/activation may be missing if muscle relaxation is taking place exclusively by this mechanism. It has been alternatively proposed that sensory information from the periphery may be allowed to “neutralize” neck reflexes if it is fed back with opposite sign to the structures driving the reflexes. Six healthy subjects were asked to relax while subjected to head-on-trunk rotations generated by a head motor. After any initial resistance had completely subsided, the head was unexpectedly exposed to “ramp-and-hold” perturbations of up to 2° amplitude and 0.7 s duration. Resistance to stretch consistently reappeared thereupon, suggesting that stretch reflex gain had not been set to zero during the previously achieved complete relaxation. Resistance to perturbations under these circumstances was compared with the forces generated when the same ramp-and-hold displacements were delivered unpredictably to the head held stationary. A quantitative model of neck proprioceptive reflexes suppression has been thus constructed. Gain scheduling or “motor set” cannot sufficiently account for the voluntary reflex suppression during slow passive head rotations. Instead, we propose as underlying mechanism, the “neutralization” of the controlling servo by means of continuous feedback tracking displacement and force signals from the periphery. NEW & NOTEWORTHY Head stabilizing neck reflexes can be voluntarily suppressed or activated depending on the task at hand. By applying brief perturbations unexpectedly, both during passive head-on-trunk movements and at rest, we investigated the mechanism of voluntary suppression of resistance to stretch. A physiologically plausible, neuromechanical model of voluntary/reflexive interactions was constructed favoring feedback over reflex gain adjustments. Accordingly, muscle relaxation during imposed head movements is based on sensory feedback similarly to muscle contractions during purposeful movements.
Collapse
Affiliation(s)
- Dimitri Anastasopoulos
- Department of Neurorehabilitation, Zurzachcare, Bad Zurzach, Switzerland.,Department of Physiology, University of Athens, Athens, Greece
| | | | - Thomas Mergner
- Department of Neurology, University of Freiburg, Germany
| |
Collapse
|
8
|
Luo Q, Niu CM, Liu J, Chou CH, Hao M, Lan N. Evaluation of Model-Based Biomimetic Control of Prosthetic Finger Force for Grasp. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1723-1733. [PMID: 34415835 DOI: 10.1109/tnsre.2021.3106304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Restoring neuromuscular reflex properties in the control of a prosthetic hand may potentially approach human-level grasp functions in the prosthetic hand. Previous studies have confirmed the feasibility of real-time emulation of a monosynaptic spinal reflex loop for prosthetic control. This study continues to explore how well the biomimetic controller could enable the amputee to perform force-control tasks that required both strength and error-tolerance. The biomimetic controller was programmed on a neuromorphic chip for real-time emulation of reflex. The model-calculated force of finger flexor was used to drive a torque motor, which pulled a tendon that flexed prosthetic fingers. Force control ability was evaluated in a "press-without-break" task, which required participants to press a force transducer toward a target level, but never exceeding a breakage threshold. The same task was tested either with the index finger or the full hand; the performance of the biomimetic controller was compared to a proportional linear feedback (PLF) controller, and the contralateral normal hand. Data from finger pressing task in 5 amputees showed that the biomimetic controller and the PLF controller achieved 95.8% and 66.9% the performance of contralateral finger in success rate; 50.0% and 25.1% in stability of force control; 59.9% and 42.8% in information throughput; and 51.5% and 38.4% in completion time. The biomimetic controller outperformed the PLF controller in all performance indices. Similar trends were observed with full-hand grasp task. The biomimetic controller exhibited capacity and behavior closer to contralateral normal hand. Results suggest that incorporating neuromuscular reflex properties in the biomimetic controller may provide human-like capacity of force regulation, which may enhance motor performance of amputees operating a tendon-driven prosthetic hand.
Collapse
|
9
|
Poscente SV, Peters RM, Cashaback JGA, Cluff T. Rapid Feedback Responses Parallel the Urgency of Voluntary Reaching Movements. Neuroscience 2021; 475:163-184. [PMID: 34302907 DOI: 10.1016/j.neuroscience.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022]
Abstract
Optimal feedback control is a prominent theory used to interpret human motor behaviour. The theory posits that skilled actions emerge from control policies that link voluntary motor control (feedforward) with flexible feedback corrections (feedback control). It is clear the nervous system can generate flexible motor corrections (reflexes) when performing actions with different goals. We know little, however, about shared features of voluntary actions and feedback control in human movement. Here we reveal a link between the timing demands of voluntary actions and flexible responses to mechanical perturbations. In two experiments, 40 human participants (21 females) made reaching movements with different timing demands. We disturbed the arm with mechanical perturbations at movement onset (Experiment 1) and at locations ranging from movement onset to completion (Experiment 2). We used the resulting muscle responses and limb displacements as a proxy for the control policies that support voluntary reaching movements. We observed an increase in the sensitivity of elbow and shoulder muscle responses and a reduction in limb motion when the task imposed greater urgency to respond to the same perturbations. The results reveal a relationship between voluntary actions and feedback control as the limb was displaced less when moving faster in perturbation trials. Muscle responses scaled with changes in the displacement of the limb in perturbation trials within each timing condition. Across both experiments, human behaviour was captured by simulations based on stochastic optimal feedback control. Taken together, the results highlight flexible control that links sensory processing with features of human reaching movements.
Collapse
Affiliation(s)
- Sophia V Poscente
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ryan M Peters
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Joshua G A Cashaback
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
10
|
Forelimb force direction and magnitude independently controlled by spinal modules in the macaque. Proc Natl Acad Sci U S A 2020; 117:27655-27666. [PMID: 33060294 PMCID: PMC7959559 DOI: 10.1073/pnas.1919253117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Studies in frogs and rodents have shown that to deal with the complexity of controlling all the muscles in the body the brain can activate sets of neurons in the spinal cord with a single signal. Here, we provide confirmation of a similar system of “modular” output in nonhuman primates. Costimulation at two spinal sites resulted in force field directionality that was the linear sum of the fields from each site. However, unlike the frog and rodent, the magnitude of the force vectors was greater than the simple sum (supralinear). Thus, while force direction in primates is controlled by the linear sum of modular output, force amplitude might be adjusted by additional sources shared by those modules. Modular organization of the spinal motor system is thought to reduce the cognitive complexity of simultaneously controlling the large number of muscles and joints in the human body. Although modular organization has been confirmed in the hindlimb control system of several animal species, it has yet to be established in the forelimb motor system or in primates. Expanding upon experiments originally performed in the frog lumbar spinal cord, we examined whether costimulation of two sites in the macaque monkey cervical spinal cord results in motor activity that is a simple linear sum of the responses evoked by stimulating each site individually. Similar to previous observations in the frog and rodent hindlimb, our analysis revealed that in most cases (77% of all pairs) the directions of the force fields elicited by costimulation were highly similar to those predicted by the simple linear sum of those elicited by stimulating each site individually. A comparable simple summation of electromyography (EMG) output, especially in the proximal muscles, suggested that this linear summation of force field direction was produced by a spinal neural mechanism whereby the forelimb motor output recruited by costimulation was also summed linearly. We further found that the force field magnitudes exhibited supralinear (amplified) summation, which was also observed in the EMG output of distal forelimb muscles, implying a novel feature of primate forelimb control. Overall, our observations support the idea that complex movements in the primate forelimb control system are made possible by flexibly combined spinal motor modules.
Collapse
|
11
|
Koelewijn AD, Ijspeert AJ. Exploring the Contribution of Proprioceptive Reflexes to Balance Control in Perturbed Standing. Front Bioeng Biotechnol 2020; 8:866. [PMID: 32984265 PMCID: PMC7485384 DOI: 10.3389/fbioe.2020.00866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/06/2020] [Indexed: 11/17/2022] Open
Abstract
Humans control balance using different feedback loops involving the vestibular system, the visual system, and proprioception. In this article, we focus on proprioception and explore the contribution of reflexes based on force and length feedback to standing balance. In particular, we address the questions of how much proprioception alone could explain balance control, and whether one modality, force or length feedback, is more important than the other. A sagittal plane neuro-musculoskeletal model was developed with six degrees of freedom and nine muscles in each leg. A controller was designed using proprioceptive reflexes and a dead zone. No feedback control was applied inside the dead zone. Reflexes were active once the center of mass moved outside the dead zone. Controller parameters were found by solving an optimization problem, where effort was minimized while the neuro-musculoskeletal model should remain standing upright on a perturbed platform. The ground was perturbed with random square pulses in the sagittal plane with different amplitudes and durations. The optimization was solved for three controllers: using force and length feedback (base model), using only force feedback, and using only length feedback. Simulations were compared to human data from previous work, where an experiment with the same perturbation signal was performed. The optimized controller yielded a similar posture, since average joint angles were within 5 degrees of the experimental average joint angles. The joint angles of the base model, the length only model, and the force only model correlated weakly (ankle) to moderately with the experimental joint angles. The ankle moment correlated weakly to moderately with the experimental ankle moment, while the hip and knee moment were only weakly correlated, or not at all. The time series of the joint angles showed that the length feedback model was better able to explain the experimental joint angles than the force feedback model. Changes in time delay affected the correlation of the joint angles and joint moments. The objective of effort minimization yielded lower joint moments than in the experiment, suggesting that other objectives are also important in balance control, which cause an increase in effort and thus larger joint moments.
Collapse
Affiliation(s)
- Anne D Koelewijn
- Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Machine Learning and Data Analytics Lab, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Auke J Ijspeert
- Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Muraoka T, Kurtzer I. Spinal Circuits Mediate a Stretch Reflex Between the Upper Limbs in Humans. Neuroscience 2020; 431:115-127. [PMID: 32062020 DOI: 10.1016/j.neuroscience.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 11/15/2022]
Abstract
Inter-limb reflexes play an important role in coordinating behaviors involving different limbs. Previous studies have demonstrated that human elbow muscles express an inter-limb stretch reflex at long-latency (50-100 ms), a timing consistent with a trans-cortical linkage. Here we probe for inter-limb stretch reflexes in the shoulder muscles of human participants. Unexpected torque pulses displaced one or both shoulders while participants adopted a steady posture against background torques. The results demonstrated inter-limb stretch reflexes occurring at short-latency for both shoulder extensors and flexors; the rapid timing (36-50 ms) must involve a spinal linkage for the two arms. Inter-limb stretch reflexes were also observed at long-latency yet they were opposite to the preceding short-latency; when the short-latency stretch reflex was excitatory then the long-latency stretch reflex was inhibitory and vice versa. Comparing the responses to contralateral arm displacement to those during simultaneous displacement of both arms revealed that inhibitory inter-limb stretch reflexes are independent of within-limb stretch reflexes, but that excitatory inter-limb stretch reflexes are suppressed by within-limb stretch reflexes. Our results provide the first demonstration of short-latency inter-limb stretch reflexes in the upper limb of humans and reveal interacting spinal circuits for within-limb and inter-limb stretch reflexes.
Collapse
Affiliation(s)
- Tetsuro Muraoka
- College of Economics, Nihon University, Tokyo, Japan; Department of Biomedical Sciences, New York Institute of Technology - College of Osteopathic Medicine, Old Westbury, New York, USA.
| | - Isaac Kurtzer
- Department of Biomedical Sciences, New York Institute of Technology - College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
13
|
Lee H, Perreault EJ. Stabilizing stretch reflexes are modulated independently from the rapid release of perturbation-triggered motor plans. Sci Rep 2019; 9:13926. [PMID: 31558754 PMCID: PMC6763490 DOI: 10.1038/s41598-019-50460-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/12/2019] [Indexed: 01/26/2023] Open
Abstract
Responses elicited after the shortest latency spinal reflexes but prior to the onset of voluntary activity can display sophistication beyond a stereotypical reflex. Two distinct behaviors have been identified for these rapid motor responses, often called long-latency reflexes. The first is to maintain limb stability by opposing external perturbations. The second is to quickly release motor actions planned prior to the disturbance, often called a triggered reaction. This study investigated their interaction when motor tasks involve both limb stabilization and motor planning. We used a robotic manipulator to change the stability of the haptic environment during 2D arm reaching tasks, and to apply perturbations that could elicit rapid motor responses. Stabilizing reflexes were modulated by the orientation of the haptic environment (field effect) whereas triggered reactions were modulated by the target to which subjects were instructed to reach (target effect). We observed that there were no significant interactions between the target and field effects in the early (50–75 ms) portion of the long-latency reflex, indicating that these components of the rapid motor response are initially controlled independently. There were small but significant interactions for two of the six relevant muscles in the later portion (75–100 ms) of the reflex response. In addition, the target effect was influenced by the direction of the perturbation used to elicit the motor response, indicating a later feedback correction in addition to the early component of the triggered reaction. Together, these results demonstrate how distinct components of the long-latency reflex can work independently and together to generate sophisticated rapid motor responses that integrate planning with reaction to uncertain conditions.
Collapse
Affiliation(s)
- Hyunglae Lee
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85287, USA.
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.,Shirley Ryan Ability Lab, Chicago, IL, 60611, USA
| |
Collapse
|
14
|
Uncertainty in when a perturbation will arrive influences the preparation and release of triggered responses. Exp Brain Res 2019; 237:2353-2365. [PMID: 31292693 DOI: 10.1007/s00221-019-05592-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/22/2019] [Indexed: 01/06/2023]
Abstract
The timing and magnitude of muscle responses to perturbations are critical for acting in uncertain environments. A planned movement can strongly influence average muscle responses to perturbations, but certainty in when a perturbation will arrive changes this effect. The objective of this study was to investigate how uncertainty in perturbation timing influences the preparation and release of involuntary, perturbation-triggered responses. We hypothesized that uncertainty would influence the average magnitude of triggered responses and how they develop in time. We investigated three levels of uncertainty in when a proprioceptive cue to move would arrive by changing the duration and variability of the time between a preparation and movement cue. Participants performed ballistic elbow extension movements in response to the movement cue. Unexpected, large perturbations that flexed the elbow were delivered at various times between the preparation and movement cues to evaluate how cue uncertainty influenced the development of triggered responses. We found that this uncertainty strongly influences how a motor response is prepared, and the efficacy of triggering that response by a postural perturbation. When timing was certain, the motor plan was prepared within 150 ms of the expected disturbance, and consistently released earlier by a perturbation than could be done voluntarily. Less predictable stimuli led to much earlier planning and a lower probability of releasing the plan early. These results clarify how uncertainty in when to move influences the planning and early release of perturbation-triggered responses, demonstrating an effect similar to previous reports on the planning of volitional movements.
Collapse
|
15
|
The Effects of Selective Muscle Weakness on Muscle Coordination in the Human Arm. Appl Bionics Biomech 2018; 2018:5637568. [PMID: 30402139 PMCID: PMC6192169 DOI: 10.1155/2018/5637568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022] Open
Abstract
Despite the fundamental importance of muscle coordination in daily life, it is currently unclear how muscle coordination adapts when the musculoskeletal system is perturbed. In this study, we quantified the impact of selective muscle weakness on several metrics of muscle coordination. Seven healthy subjects performed 2D and 3D isometric force target matches, while electromyographic (EMG) signals were recorded from 13 elbow and shoulder muscles. Subsequently, muscle weakness was induced by a motor point block of brachialis muscle. Postblock subjects repeated the force generation tasks. We quantified muscle coordination pre- and postblock using three metrics: tuning curve preferred direction, tuning curve area, and motor modules analysis via nonnegative matrix factorization. For most muscles, the tuning direction for the 2D protocol was not substantially altered postblock, while tuning areas changed more drastically. Typically, five motor modules were identified from the 3D task, and four motor modules were identified in the 2D task; this result held across both pre- and postblock conditions. The composition of one or two motor modules, ones that involved mainly the activation of shoulder muscles, was altered postblock. Our results demonstrate that selective muscle weakness can induce nonintuitive alternations in muscle coordination in the mechanically redundant human arm.
Collapse
|
16
|
Roh J, Lee SW, Wilger KD. Modular Organization of Exploratory Force Development Under Isometric Conditions in the Human Arm. J Mot Behav 2018; 51:83-99. [PMID: 29384438 DOI: 10.1080/00222895.2017.1423020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle coordination of isometric force production can be explained by a smaller number of modules. Variability in force output, however, is higher during exploratory/transient force development phases than force maintenance phase, and it is not clear whether the same modular structure underlies both phases. In this study, eight neurologically-intact adults isometrically performed target force matches in 54 directions at hands, and electromyographic (EMG) data from eight muscles were parsed into four sequential phases. Despite the varying degree of motor complexity across phases (significant between-phase differences in EMG-force correlation, angular errors, and between-force correlations), the number/composition of motor modules were found equivalent across phases, suggesting that the CNS systematically modulated activation of the same set of motor modules throughout sequential force development.
Collapse
Affiliation(s)
- Jinsook Roh
- a Department of Kinesiology , Temple University , Philadelphia , PA , USA.,b Neuromotor Science Program, Temple University , Philadelphia , PA , USA.,c Department of Physical Medicine and Rehabilitation , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Sang Wook Lee
- d Department of Biomedical Engineering , Catholic University of America , Washington, DC , USA.,e Center for Applied Biomechanics and Rehabilitation Research, MedStar National Rehabilitation Hospital , Washington, DC , USA.,f Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institute of Health , Bethesda , MD , USA
| | - Kevin D Wilger
- a Department of Kinesiology , Temple University , Philadelphia , PA , USA.,b Neuromotor Science Program, Temple University , Philadelphia , PA , USA
| |
Collapse
|
17
|
Reflex Circuits and Their Modulation in Motor Control: A Historical Perspective and Current View. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-017-0052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Kocjan A, Sarabon N. The Effect of Unicycle Riding Course on Trunk Strength and Trunk Stability Functions in Children. J Strength Cond Res 2017; 34:3560-3568. [PMID: 28746244 DOI: 10.1519/jsc.0000000000002151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kocjan, A and Sarabon, N. The effect of unicycle riding course on trunk strength and trunk stability functions in children. J Strength Cond Res 34(12): 3560-3568, 2020-The aim of the study was to assess the effect of unicycling on trunk strength and timing of automatic stability actions of the selected trunk muscles (multifidus, obliquus externus, and erector spine). Twenty healthy 12-year-old children (12 boys, 8 girls; age 12.1 ± 0.2 years; body height 1.57 ± 0.05 m; body mass 52.8 ± 10.6 kg) were assigned to experimental and control group. Experimental group performed a supervised 12-session course of unicycling. Trunk strength was measured with a multipurpose diagnostic machine in frontal and sagittal planes in standing position. Trunk reflex responses and anticipatory actions were assessed through unexpected loading over the hands and rapid shoulder flexion, respectively. After the intervention, strength increased significantly (p < 0.01) in the experimental group in all analyzed positions. A significant interaction effect was observed during trunk extension (p < 0.01) and lateral flexion exertions (p < 0.03). Postural reflex latency improved significantly (p < 0.001) in the experimental group with a significant interaction effect in all analyzed muscles (p < 0.001). Anticipatory postural adaptations improved significantly (p ≤ 0.05) in multifidus and obliquus externus of the experimental group only. Unicycling proved to be an effective and funny tool to develop proximal stability and strength, which prevents low back pain and improves the efficiency of energy transfer between body segments. To improve the efficiency of physical education classes, unicycling should be considered a useful tool to increase trunk strength and stability among prepubertal children.
Collapse
Affiliation(s)
- Andrej Kocjan
- University of Primorska, Faculty of Education, Koper, Slovenia.,University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Koper, Slovenial
| | - Nejc Sarabon
- Department of Health Study, University of Primorska, Andrej Marusic Institute, Koper, Slovenia; and.,S2P Ltd., Laboratory for Motor Control and Motor Learning, Ljubljana, Slovenia
| |
Collapse
|
19
|
McPherson JG, Stienen AH, Drogos JM, Dewald JP. Modification of Spastic Stretch Reflexes at the Elbow by Flexion Synergy Expression in Individuals With Chronic Hemiparetic Stroke. Arch Phys Med Rehabil 2017; 99:491-500. [PMID: 28751255 DOI: 10.1016/j.apmr.2017.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To systematically characterize the effect of flexion synergy expression on the manifestation of elbow flexor stretch reflexes poststroke, and to relate these findings to elbow flexor stretch reflexes in individuals without neurologic injury. DESIGN Controlled cohort study. SETTING Academic medical center. PARTICIPANTS Participants (N=20) included individuals with chronic hemiparetic stroke (n=10) and a convenience sample of individuals without neurologic or musculoskeletal injury (n=10). INTERVENTIONS Participants with stroke were interfaced with a robotic device that precisely manipulated flexion synergy expression (by regulating shoulder abduction loading) while delivering controlled elbow extension perturbations over a wide range of velocities. This device was also used to elicit elbow flexor stretch reflexes during volitional elbow flexor activation, both in the cohort of individuals with stroke and in a control cohort. In both cases, the amplitude of volitional elbow flexor preactivation was matched to that generated involuntarily during flexion synergy expression. MAIN OUTCOME MEASURES The amplitude of short- and long-latency stretch reflexes in the biceps brachii, assessed by electromyography, and expressed as a function of background muscle activation and stretch velocity. RESULTS Increased shoulder abduction loading potentiated elbow flexor stretch reflexes via flexion synergy expression in the paretic arm. Compared with stretch reflexes in individuals without neurologic injury, paretic reflexes were larger at rest but were approximately equal to control muscles at matched levels of preactivation. CONCLUSIONS Because flexion synergy expression modifies stretch reflexes in involved muscles, interventions that reduce flexion synergy expression may confer the added benefit of reducing spasticity during functional use of the arm.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Arno H Stienen
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Justin M Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Julius P Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL.
| |
Collapse
|
20
|
Zhang L, Turpin NA, Feldman AG. Threshold position control of anticipation in humans: a possible role of corticospinal influences. J Physiol 2017; 595:5359-5374. [PMID: 28560812 DOI: 10.1113/jp274309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sudden unloading of preloaded wrist muscles elicits motion to a new wrist position. Such motion is prevented if subjects unload muscles using the contralateral arm (self-unloading). Corticospinal influences originated from the primary motor cortex maintain tonic influences on motoneurons of wrist muscles before sudden unloading but modify these influences prior to the onset and until the end of self-unloading. Results are interpreted based on the previous finding that intentional actions are caused by central, particularly corticospinal, shifts in the spatial thresholds at which wrist motoneurons are activated, thus predetermining the attractor point at which the neuromuscular periphery achieves mechanical balance with environment forces. By maintaining or shifting the thresholds, descending systems let body segments go to the equilibrium position in the respective unloading tasks without the pre-programming of kinematics or muscle activation patterns. The study advances the understanding of how motor actions in general, and anticipation in particular, are controlled. ABSTRACT The role of corticospinal (CS) pathways in anticipatory motor actions was evaluated using transcranial magnetic stimulation (TMS) of the primary motor cortex projecting to motoneurons (MNs) of wrist muscles. Preloaded wrist flexors were suddenly unloaded by the experimenter or by the subject using the other hand (self-unloading). After sudden unloading, the wrist joint involuntarily flexed to a new position. In contrast, during self-unloading the wrist remained almost motionless, implying that an anticipatory postural adjustment occurred. In the self-unloading task, anticipation was manifested by a decrease in descending facilitation of pre-activated flexor MNs starting ∼72 ms before changes in the background EMG activity. Descending facilitation of extensor MNs began to increase ∼61 ms later. Conversely, these influences remained unchanged before sudden unloading, implying the absence of anticipation. We also tested TMS responses during EMG silent periods produced by brief muscle shortening, transiently resulting in similar EMG levels before the onset and after the end of self-unloading. We found reduced descending facilitation of flexor MNs after self-unloading. To explain why the wrist excursion was minimized in self-unloading due to these changes in descending influences, we relied on previous demonstrations that descending systems pre-set the threshold positions of body segments at which muscles begin to be activated, thus predetermining the equilibrium point to which the system is attracted. Based on this notion, a more consistent explanation of the kinematic, EMG and descending patterns in the two types of unloading is proposed compared to the alternative notion of direct pre-programming of kinematic and/or EMG patterns.
Collapse
Affiliation(s)
- Lei Zhang
- Center for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal and Jewish Rehabilitation Hospital, Laval, Quebec, Canada.,Department of Neuroscience, University of Montréal, Quebec, Canada
| | - Nicolas A Turpin
- Center for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal and Jewish Rehabilitation Hospital, Laval, Quebec, Canada.,Department of Neuroscience, University of Montréal, Quebec, Canada
| | - Anatol G Feldman
- Center for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal and Jewish Rehabilitation Hospital, Laval, Quebec, Canada.,Department of Neuroscience, University of Montréal, Quebec, Canada
| |
Collapse
|
21
|
Weiler J, Saravanamuttu J, Gribble PL, Pruszynski JA. Coordinating long-latency stretch responses across the shoulder, elbow, and wrist during goal-directed reaching. J Neurophysiol 2016; 116:2236-2249. [PMID: 27535378 DOI: 10.1152/jn.00524.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/17/2016] [Indexed: 11/22/2022] Open
Abstract
The long-latency stretch response (muscle activity 50-100 ms after a mechanical perturbation) can be coordinated across multiple joints to support goal-directed actions. Here we assessed the flexibility of such coordination and whether it serves to counteract intersegmental dynamics and exploit kinematic redundancy. In three experiments, participants made planar reaches to visual targets after elbow perturbations and we assessed the coordination of long-latency stretch responses across shoulder, elbow, and wrist muscles. Importantly, targets were placed such that elbow and wrist (but not shoulder) rotations could help transport the hand to the target-a simple form of kinematic redundancy. In experiment 1 we applied perturbations of different magnitudes to the elbow and found that long-latency stretch responses in shoulder, elbow, and wrist muscles scaled with perturbation magnitude. In experiment 2 we examined the trial-by-trial relationship between long-latency stretch responses at adjacent joints and found that the magnitudes of the responses in shoulder and elbow muscles, as well as elbow and wrist muscles, were positively correlated. In experiment 3 we explicitly instructed participants how to use their wrist to move their hand to the target after the perturbation. We found that long-latency stretch responses in wrist muscles were not sensitive to our instructions, despite the fact that participants incorporated these instructions into their voluntary behavior. Taken together, our results indicate that, during reaching, the coordination of long-latency stretch responses across multiple joints counteracts intersegmental dynamics but may not be able to exploit kinematic redundancy.
Collapse
Affiliation(s)
- Jeffrey Weiler
- Brain and Mind Institute, Western University, London, Ontario, Canada; .,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - James Saravanamuttu
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Paul L Gribble
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - J Andrew Pruszynski
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada; and.,Department of Integrative Medical Biology, Umea University, Umea, Sweden
| |
Collapse
|
22
|
Vlaar MP, Solis-Escalante T, Vardy AN, van der Helm FCT, Schouten AC. Quantifying Nonlinear Contributions to Cortical Responses Evoked by Continuous Wrist Manipulation. IEEE Trans Neural Syst Rehabil Eng 2016; 25:481-491. [PMID: 27305683 DOI: 10.1109/tnsre.2016.2579118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cortical responses to continuous stimuli as recorded using either magneto- or electroencephalography (EEG) have shown power at harmonics of the stimulated frequency, indicating nonlinear behavior. Even though the selection of analysis techniques depends on the linearity of the system under study, the importance of nonlinear contributions to cortical responses has not been formally addressed. The goal of this paper is to quantify the nonlinear contributions to the cortical response obtained from continuous sensory stimulation. EEG was used to record the cortical response evoked by continuous movement of the wrist joint of healthy subjects applied with a robotic manipulator. Multisine stimulus signals (i.e., the sum of several sinusoids) elicit a periodic cortical response and allow to assess the nonlinear contributions to the response. Wrist dynamics (relation between joint angle and torque) were successfully linearized, explaining 99% of the response. In contrast, the cortical response revealed a highly nonlinear relation; where most power ( ∼ 80 %) occurred at non-stimulated frequencies. Moreover, only 10% of the response could be explained using a nonparametric linear model. These results indicate that the recorded evoked cortical responses are governed by nonlinearities and that linear methods do not suffice when describing the relation between mechanical stimulus and cortical response.
Collapse
|
23
|
Kurtzer I, Meriggi J, Parikh N, Saad K. Long-latency reflexes of elbow and shoulder muscles suggest reciprocal excitation of flexors, reciprocal excitation of extensors, and reciprocal inhibition between flexors and extensors. J Neurophysiol 2016; 115:2176-90. [PMID: 26864766 DOI: 10.1152/jn.00929.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/09/2016] [Indexed: 11/22/2022] Open
Abstract
Postural corrections of the upper limb are required in tasks ranging from handling an umbrella in the changing wind to securing a wriggling baby. One complication in this process is the mechanical interaction between the different segments of the arm where torque applied at one joint induces motion at multiple joints. Previous studies have shown the long-latency reflexes of shoulder muscles (50-100 ms after a limb perturbation) account for these mechanical interactions by integrating information about motion of both the shoulder and elbow. It is less clear whether long-latency reflexes of elbow muscles exhibit a similar capability and what is the relation between the responses of shoulder and elbow muscles. The present study utilized joint-based loads tailored to the subjects' arm dynamics to induce well-controlled displacements of their shoulder and elbow. Our results demonstrate that the long-latency reflexes of shoulder and elbow muscles integrate motion from both joints: the shoulder and elbow flexors respond to extension at both joints, whereas the shoulder and elbow extensors respond to flexion at both joints. This general pattern accounts for the inherent flexion-extension coupling of the two joints arising from the arm's intersegmental dynamics and is consistent with spindle-based reciprocal excitation of shoulder and elbow flexors, reciprocal excitation of shoulder and elbow extensors, and across-joint inhibition between the flexors and extensors.
Collapse
Affiliation(s)
- Isaac Kurtzer
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Jenna Meriggi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Nidhi Parikh
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Kenneth Saad
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| |
Collapse
|
24
|
Nichols TR, Bunderson NE, Lyle MA. Neural Regulation of Limb Mechanics: Insights from the Organization of Proprioceptive Circuits. NEUROMECHANICAL MODELING OF POSTURE AND LOCOMOTION 2016. [DOI: 10.1007/978-1-4939-3267-2_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Weiler J, Gribble PL, Pruszynski JA. Goal-dependent modulation of the long-latency stretch response at the shoulder, elbow, and wrist. J Neurophysiol 2015; 114:3242-54. [PMID: 26445871 DOI: 10.1152/jn.00702.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/30/2015] [Indexed: 12/17/2022] Open
Abstract
Many studies have demonstrated that muscle activity 50-100 ms after a mechanical perturbation (i.e., the long-latency stretch response) can be modulated in a manner that reflects voluntary motor control. These previous studies typically assessed modulation of the long-latency stretch response from individual muscles rather than how this response is concurrently modulated across multiple muscles. Here we investigated such concurrent modulation by having participants execute goal-directed reaches to visual targets after mechanical perturbations of the shoulder, elbow, or wrist while measuring activity from six muscles that articulate these joints. We found that shoulder, elbow, and wrist muscles displayed goal-dependent modulation of the long-latency stretch response, that the relative magnitude of participants' goal-dependent activity was similar across muscles, that the temporal onset of goal-dependent muscle activity was not reliably different across the three joints, and that shoulder muscles displayed goal-dependent activity appropriate for counteracting intersegmental dynamics. We also observed that the long-latency stretch response of wrist muscles displayed goal-dependent modulation after elbow perturbations and that the long-latency stretch response of elbow muscles displayed goal-dependent modulation after wrist perturbations. This pattern likely arises because motion at either joint could bring the hand to the visual target and suggests that the nervous system rapidly exploits such simple kinematic redundancy when processing sensory feedback to support goal-directed actions.
Collapse
Affiliation(s)
- Jeffrey Weiler
- Brain and Mind Institute, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada;
| | - Paul L Gribble
- Brain and Mind Institute, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; and
| | - J Andrew Pruszynski
- Brain and Mind Institute, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; and Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
26
|
Franklin DW. Impedance control: Learning stability in human sensorimotor control. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:1421-1424. [PMID: 26736536 DOI: 10.1109/embc.2015.7318636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The human sensorimotor control system generates movement by adapting and controlling the mechanics of the musculoskeletal system. To generate skilful movements the sensorimotor control system must be able to predict and compensate for any disturbances generated either in our own body or in the external environment. While stable and repeatable perturbations can be easily adapted through iterative learning, instability and unpredictability require a different approach: impedance control. Here I outline the arguments for impedance control as a fundamental process of human adaptation as well as describe evidence suggesting the manner in which such impedance can be learned in order to ensure the stability of the neuro-mechanical system.
Collapse
|
27
|
Feedback control during voluntary motor actions. Curr Opin Neurobiol 2015; 33:85-94. [DOI: 10.1016/j.conb.2015.03.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/27/2022]
|
28
|
Arm dominance affects feedforward strategy more than feedback sensitivity during a postural task. Exp Brain Res 2015; 233:2001-11. [PMID: 25850407 DOI: 10.1007/s00221-015-4271-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23 to 51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development.
Collapse
|
29
|
Roh J, Rymer WZ, Beer RF. Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment. Front Hum Neurosci 2015; 9:6. [PMID: 25717296 PMCID: PMC4324145 DOI: 10.3389/fnhum.2015.00006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/05/2015] [Indexed: 11/26/2022] Open
Abstract
Previous studies indicate that motor coordination may be achieved by assembling task-dependent combinations of a few muscle synergies, defined here as fixed patterns of activation across a set of muscles. Our recent study of severely impaired chronic stroke survivors showed that some muscle synergies underlying isometric force generation at the hand are altered in the affected arm. However, whether similar alterations are evident in stroke survivors with lesser impairment remains unclear. Accordingly, we examined muscle synergies underlying spatial patterns of elbow and shoulder muscle activation recorded during an isometric force target matching protocol performed by 16 chronic stroke survivors, evenly divided across mild and moderate impairment levels. We applied non-negative matrix factorization to identify the muscle synergies and compared their structure across groups, including previously collected data from six age-matched control subjects and eight severely impaired stroke survivors. For all groups, EMG spatial patterns were well explained by task-dependent combinations of only a few (typically 4) muscle synergies. Broadly speaking, elbow-related synergies were conserved across stroke survivors, regardless of impairment level. In contrast, the shoulder-related synergies of some stroke survivors with mild and moderate impairment differed from controls, in a manner similar to severely impaired subjects. Cluster analysis of pooled synergies for the 30 subjects identified seven distinct clusters (synergies). Subsequent analysis confirmed that the incidences of three elbow-related synergies were independent of impairment level, while the incidences of four shoulder-related synergies were systematically correlated with impairment level. Overall, our results suggest that alterations in the shoulder muscle synergies underlying isometric force generation appear prominently in mild and moderate stroke, as in most cases of severe stroke, in an impairment level-dependent manner.
Collapse
Affiliation(s)
- Jinsook Roh
- Department of Kinesiology, Temple University Philadelphia, PA, USA ; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - William Z Rymer
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Sensory Motor Performance Program, Rehabilitation Institute of Chicago Chicago, IL, USA ; Department of Biomedical Engineering, Northwestern University Chicago, IL, USA
| | - Randall F Beer
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Sensory Motor Performance Program, Rehabilitation Institute of Chicago Chicago, IL, USA
| |
Collapse
|
30
|
Kurtzer IL. Long-latency reflexes account for limb biomechanics through several supraspinal pathways. Front Integr Neurosci 2015; 8:99. [PMID: 25688187 PMCID: PMC4310276 DOI: 10.3389/fnint.2014.00099] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/21/2014] [Indexed: 12/01/2022] Open
Abstract
Accurate control of body posture is enforced by a multitude of corrective actions operating over a range of time scales. The earliest correction is the short-latency reflex (SLR) which occurs between 20–45 ms following a sudden displacement of the limb and is generated entirely by spinal circuits. In contrast, voluntary reactions are generated by a highly distributed network but at a significantly longer delay after stimulus onset (greater than 100 ms). Between these two epochs is the long-latency reflex (LLR) (around 50–100 ms) which acts more rapidly than voluntary reactions but shares some supraspinal pathways and functional capabilities. In particular, the LLR accounts for the arm’s biomechanical properties rather than only responding to local muscle stretch like the SLR. This paper will review how the LLR accounts for the arm’s biomechanical properties and the supraspinal pathways supporting this ability. Relevant experimental paradigms include clinical studies, non-invasive brain stimulation, neural recordings in monkeys, and human behavioral studies. The sum of this effort indicates that primary motor cortex and reticular formation (RF) contribute to the LLR either by generating or scaling its structured response appropriate for the arm’s biomechanics whereas the cerebellum scales the magnitude of the feedback response. Additional putative pathways are discussed as well as potential research lines.
Collapse
Affiliation(s)
- Isaac L Kurtzer
- Department of Biomedical Sciences, New York Institute of Technology - College of Osteopathic Medicine Old Westbury, NY, USA
| |
Collapse
|
31
|
Shemmell J. Interactions between stretch and startle reflexes produce task-appropriate rapid postural reactions. Front Integr Neurosci 2015; 9:2. [PMID: 25674055 PMCID: PMC4309033 DOI: 10.3389/fnint.2015.00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/07/2015] [Indexed: 11/13/2022] Open
Abstract
Neural pathways underpinning startle reflex and limb stretch reflexes evolved independently and have served vastly different purposes. In their most basic form, the pathways responsible for these reflex responses are relatively simple processing units that produce a motoric response that is proportional to the stimulus received. It is becoming clear however, that rapid responses to external stimuli produced by human and non-human primates are context-dependent in a manner similar to voluntary movements. This mini review discusses the nature of startle and stretch reflex interactions in human and non-human primates and the involvement of the primary motor cortex in their regulation.
Collapse
Affiliation(s)
- Jonathan Shemmell
- Sport and Exercise Sciences, Brain Health Research Centre and School of Physical Education, University of Otago Dunedin, New Zealand
| |
Collapse
|
32
|
Effects of predictability of load magnitude on the response of the Flexor Digitorum Superficialis to a sudden fingers extension. PLoS One 2014; 9:e109067. [PMID: 25271638 PMCID: PMC4182945 DOI: 10.1371/journal.pone.0109067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 09/07/2014] [Indexed: 11/19/2022] Open
Abstract
Muscle reflexes, evoked by opposing a sudden joint displacement, may be modulated by several factors associated with the features of the mechanical perturbation. We investigated the variations of muscle reflex response in relation to the predictability of load magnitude during a reactive grasping task. Subjects were instructed to flex the fingers 2–5 very quickly after a stretching was exerted by a handle pulled by loads of 750 or 1250 g. Two blocks of trials, one for each load (predictable condition), and one block of trials with a randomized distribution of the loads (unpredictable condition) were performed. Kinematic data were collected by an electrogoniometer attached to the middle phalanx of the digit III while the electromyography of the Flexor Digitorum Superficialis muscle was recorded by surface electrodes. For each trial we measured the kinematics of the finger angular rotation, the latency of muscle response and the level of muscle activation recorded below 50 ms (short-latency reflex), between 50 and 100 ms (long-latency reflex) and between 100 and 140 ms (initial portion of voluntary response) from the movement onset. We found that the latency of the muscle response lengthened from predictable (35.5±1.3 ms for 750 g and 35.5±2.5 ms for 1250 g) to unpredictable condition (43.6±1.3 ms for 750 g and 40.9±2.1 ms for 1250 g) and the level of muscle activation increased with load magnitude. The parallel increasing of muscle activation and load magnitude occurred within the window of the long-latency reflex during the predictable condition, and later, at the earliest portion of the voluntary response, in the unpredictable condition. Therefore, these results indicate that when the amount of an upcoming perturbation is known in advance, the muscle response improves, shortening the latency and modulating the muscle activity in relation to the mechanical demand.
Collapse
|
33
|
Pruszynski JA. Primary motor cortex and fast feedback responses to mechanical perturbations: a primer on what we know now and some suggestions on what we should find out next. Front Integr Neurosci 2014; 8:72. [PMID: 25309359 PMCID: PMC4164001 DOI: 10.3389/fnint.2014.00072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 11/26/2022] Open
Abstract
Many researchers have drawn a clear distinction between fast feedback responses to mechanical perturbations (e.g., stretch responses) and voluntary control processes. But this simple distinction is difficult to reconcile with growing evidence that long-latency stretch responses share most of the defining capabilities of voluntary control. My general view—and I believe a growing consensus—is that the functional similarities between long-latency stretch responses and voluntary control processes can be readily understood based on their shared neural circuitry, especially a transcortical pathway through primary motor cortex. Here I provide a very brief and selective account of the human and monkey studies linking a transcortical pathway through primary motor cortex to the generation and functional sophistication of the long-latency stretch response. I then lay out some of the notable issues that are ready to be answered.
Collapse
Affiliation(s)
- J Andrew Pruszynski
- Department of Integrative Medical Biology, Physiology Section, Umeå University Umeå, Sweden
| |
Collapse
|
34
|
Kurtzer I, Crevecoeur F, Scott SH. Fast feedback control involves two independent processes utilizing knowledge of limb dynamics. J Neurophysiol 2014; 111:1631-45. [PMID: 24478157 DOI: 10.1152/jn.00514.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corrective muscle responses occurring 50-100 ms after a mechanical perturbation are tailored to the mechanical features of the limb and its environment. For example, the evoked response by the shoulder's extensor muscle counters an imposed shoulder torque, rather than local shoulder motion, by integrating motion information from the shoulder and elbow appropriate for their dynamic interaction. Previous studies suggest that arm muscle activity within this epoch, alternately termed the R2/3 response, or long-latency reflex, reflects the summed result of two distinct components: an activity-dependent component which scales with the background muscle activity, and a task-dependent component which scales with the required vigor of the behavioral task. Here we examine how the knowledge of limb dynamics expressed during the shoulder muscle's R2/3 epoch is related to these two functional components. Subjects countered torque steps applied to their shoulder and/or elbow under different conditions of background torque and target size to recruit the activity-dependent and task-dependent component in varying degrees. Experiment 1 involved four torque perturbations, two levels of background torques and two target sizes; this design revealed that both background torque and target size impacted the shoulder's R2/3 activity, indicative of knowledge of limb dynamics. Experiment 2 involved two perturbation torques, five levels of background torque and two target sizes; this design demonstrated that the two factors had an independent impact on the R2/3 activity indicative of knowledge of limb dynamics. We conclude that a sophisticated feature of upper limb feedback control reflects the summation of two processes having a common capability.
Collapse
Affiliation(s)
- Isaac Kurtzer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | | | | |
Collapse
|
35
|
Fox J, Shemmell J. The ipsilateral motor cortex does not contribute to long-latency stretch reflex amplitude at the wrist. Brain Behav 2014; 4:60-9. [PMID: 24653955 PMCID: PMC3937707 DOI: 10.1002/brb3.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 10/03/2013] [Accepted: 10/15/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A capacity for modulating the amplitude of the long-latency stretch reflex (LLSR) allows us to successfully interact with a physical world with a wide range of different mechanical properties. It has recently been demonstrated that stretch reflex modulation is impaired in both arms following monohemispheric stroke, suggesting that reflex regulation may involve structures on both sides of the motor system. METHODS We examined the involvement of both primary motor cortices in healthy reflex regulation by eliciting stretch reflexes during periods of suppression of the motor cortices contra-and ipsilateral to the extensor carpi radialis in the nondominant arm. RESULTS LLSRs were significantly attenuated during suppression of the contralateral, but not ipsilateral, motor cortex. Modulation of the LLSR was not affected by suppression of either primary motor cortex. CONCLUSION Our results confirm the involvement of the contralateral motor cortex in the transmission of the LLSR, but suggest that the ipsilateral motor cortex plays no role in reflex transmission and that neither motor cortex is involved in stability-dependent modulation of the LLSR. The implications of these results for reflex impairments following stroke are discussed.
Collapse
Affiliation(s)
- Jonathan Fox
- School of Physical Education and Brain Health Research Centre, University of Otago Dunedin, New Zealand
| | - Jonathan Shemmell
- School of Physical Education and Brain Health Research Centre, University of Otago Dunedin, New Zealand
| |
Collapse
|
36
|
Rapid feedback responses correlate with reach adaptation and properties of novel upper limb loads. J Neurosci 2013; 33:15903-14. [PMID: 24089496 DOI: 10.1523/jneurosci.0263-13.2013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hallmark of voluntary motor control is the ability to adjust motor patterns for novel mechanical or visuomotor contexts. Recent work has also highlighted the importance of feedback for voluntary control, leading to the hypothesis that feedback responses should adapt when we learn new motor skills. We tested this prediction with a novel paradigm requiring that human subjects adapt to a viscous elbow load while reaching to three targets. Target 1 required combined shoulder and elbow motion, target 2 required only elbow motion, and target 3 (probe target) required shoulder but no elbow motion. This simple approach controlled muscle activity at the probe target before, during, and after the application of novel elbow loads. Our paradigm allowed us to perturb the elbow during reaching movements to the probe target and identify several key properties of adapted stretch responses. Adapted long-latency responses expressed (de-) adaptation similar to reaching errors observed when we introduced (removed) the elbow load. Moreover, reaching errors during learning correlated with changes in the long-latency response, showing subjects who adapted more to the elbow load displayed greater modulation of their stretch responses. These adapted responses were sensitive to the size and direction of the viscous training load. Our results highlight an important link between the adaptation of feedforward and feedback control and suggest a key part of motor adaptation is to adjust feedback responses to the requirements of novel motor skills.
Collapse
|
37
|
Lyle MA, Valero-Cuevas FJ, Gregor RJ, Powers CM. Control of dynamic foot-ground interactions in male and female soccer athletes: females exhibit reduced dexterity and higher limb stiffness during landing. J Biomech 2013; 47:512-7. [PMID: 24275440 DOI: 10.1016/j.jbiomech.2013.10.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 10/21/2013] [Accepted: 10/26/2013] [Indexed: 01/12/2023]
Abstract
Controlling dynamic interactions between the lower limb and ground is important for skilled locomotion and may influence injury risk in athletes. It is well known that female athletes sustain anterior cruciate ligament (ACL) tears at higher rates than male athletes, and exhibit lower extremity biomechanics thought to increase injury risk during sport maneuvers. The purpose of this study was to examine whether lower extremity dexterity (LED)--the ability to dynamically control endpoint force magnitude and direction as quantified by compressing an unstable spring with the lower limb at submaximal forces--is a potential contributing factor to the "at-risk" movement behavior exhibited by female athletes. We tested this hypothesis by comparing LED-test performance and single-limb drop jump biomechanics between 14 female and 14 male high school soccer players. We found that female athletes exhibited reduced LED-test performance (p=0.001) and higher limb stiffness during landing (p=0.008) calculated on average within 51 ms of foot contact. Females also exhibited higher coactivation at the ankle (p=0.001) and knee (p=0.02) before landing. No sex differences in sagittal plane joint angles and center of mass velocity at foot contact were observed. Collectively, our results raise the possibility that the higher leg stiffness observed in females during landing is an anticipatory behavior due in part to reduced lower extremity dexterity. The reduced lower extremity dexterity and compensatory stiffening strategy may contribute to the heightened risk of ACL injury in this population.
Collapse
Affiliation(s)
- Mark A Lyle
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States; School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332-0356, United States.
| | - Francisco J Valero-Cuevas
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Robert J Gregor
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States; School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332-0356, United States
| | - Christopher M Powers
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
38
|
Crevecoeur F, Kurtzer I, Bourke T, Scott SH. Feedback responses rapidly scale with the urgency to correct for external perturbations. J Neurophysiol 2013; 110:1323-32. [DOI: 10.1152/jn.00216.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Healthy subjects can easily produce voluntary actions at different speeds and with varying accuracy requirements. It remains unknown whether rapid corrective responses to mechanical perturbations also possess this flexibility and, thereby, contribute to the capability expressed in voluntary control. Paralleling previous studies on self-initiated movements, we examined how muscle activity was impacted by either implicit or explicit criteria affecting the urgency to respond to the perturbation. Participants maintained their arm position against torque perturbations with unpredictable timing and direction. In the first experiment, the urgency to respond was explicitly altered by varying the time limit (300 ms vs. 700 ms) to return to a small target. A second experiment addresses implicit urgency criteria by varying the radius of the goal target, such that task accuracy could be achieved with less vigorous corrections for large targets than small target. We show that muscle responses at ∼60 ms scaled with the task demand. Moreover, in both experiments, we found a strong intertrial correlation between long-latency responses (∼50–100 ms) and the movement reversal times, which emphasizes that these rapid motor responses are directly linked to behavioral performance. The slopes of these linear regressions were sensitive to the experimental condition during the long-latency and early voluntary epochs. These findings suggest that feedback gains for very rapid responses are flexibly scaled according to task-related urgency.
Collapse
Affiliation(s)
- F. Crevecoeur
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - I. Kurtzer
- Department of Neuroscience and Histology, New York College of Osteopathic Medicine, Old Westbury, New York; and
| | - T. Bourke
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - S. H. Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
39
|
Finley JM, Dhaher YY, Perreault EJ. Acceleration dependence and task-specific modulation of short- and medium-latency reflexes in the ankle extensors. Physiol Rep 2013; 1:e00051. [PMID: 24303134 PMCID: PMC3835007 DOI: 10.1002/phy2.51] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/10/2013] [Accepted: 07/14/2013] [Indexed: 12/13/2022] Open
Abstract
Involuntary responses to muscle stretch are often composed of a short-latency reflex (SLR) and more variable responses at longer latencies such as the medium-latency (MLR) and long-latency stretch reflex (LLR). Although longer latency reflexes are enhanced in the upper limb during stabilization of external loads, it remains unknown if they have a similar role in the lower limb. This uncertainty results in part from the inconsistency with which longer latency reflexes have been observed in the lower limb. A review of the literature suggests that studies that only observe SLRs have used perturbations with large accelerations, possibly causing a synchronization of motoneuron refractory periods or an activation of force-dependent inhibition. We therefore hypothesized that the amplitude of longer latency reflexes would vary with perturbation acceleration. We further hypothesized that if longer latency reflexes were elicited, they would increase in amplitude during control of an unstable load, as has been observed in the upper limb. These hypotheses were tested at the ankle while subjects performed a torque or position control task. SLR and MLR reflex components were elicited by ankle flexion perturbations with a fixed peak velocity and variable acceleration. Both reflex components initially scaled with acceleration, however, while the SLR continued to increase at high accelerations, the MLR weakened. At accelerations that reliably elicited MLRs, both the SLR and MLR were reduced during control of the unstable load. These findings clarify the conditions required to elicit MLRs in the ankle extensors and provide additional evidence that rapid feedback pathways are downregulated when stability is compromised in the lower limb.
Collapse
Affiliation(s)
- James M Finley
- Department of Biomedical Engineering, Northwestern University Evanston, Illinois, USA ; Sensory Motor Performance Program, Rehabilitation Institute of Chicago Chicago, Illinois, USA
| | | | | |
Collapse
|
40
|
Ravichandran VJ, Honeycutt CF, Shemmell J, Perreault EJ. Instruction-dependent modulation of the long-latency stretch reflex is associated with indicators of startle. Exp Brain Res 2013; 230:59-69. [PMID: 23811739 DOI: 10.1007/s00221-013-3630-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/18/2013] [Indexed: 12/01/2022]
Abstract
Long-latency responses elicited by postural perturbation are modulated by how a subject is instructed to respond to the perturbation, yet the neural pathways responsible for this modulation remain unclear. The goal of this study was to determine whether instruction-dependent modulation is associated with activity in brainstem pathways contributing to startle. Our hypothesis was that elbow perturbations can evoked startle, indicated by activity in the sternocleidomastoid muscle (SCM). Perturbation responses were compared to those elicited by a loud acoustic stimulus, known to elicit startle. Postural perturbations and startling acoustic stimuli both evoked SCM activity, but only when a ballistic elbow extension movement was planned. Both stimuli triggered SCM activity with the same probability. When SCM activity was present, there was an associated early onset of triceps electromyographic (EMG), as required for the planned movement. This early EMG onset occurred at a time often attributed to long-latency stretch reflexes (75-100 ms). The nature of the perturbation-triggered EMG (excitatory or inhibitory) was independent of the perturbation direction (flexion or extension) indicating that it was not a feedback response appropriate for returning the limb to its original position. The net EMG response to perturbations delivered after a movement had been planned could be explained as the sum of a stretch reflex opposing the perturbation and a startle-evoked response associated with the prepared movement. These results demonstrate that rapid perturbations can trigger early release of a planned ballistic movement, and that this release is associated with activity in the brainstem pathways contributing to startle reflexes.
Collapse
|
41
|
Safavynia SA, Ting LH. Long-latency muscle activity reflects continuous, delayed sensorimotor feedback of task-level and not joint-level error. J Neurophysiol 2013; 110:1278-90. [PMID: 23803325 DOI: 10.1152/jn.00609.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In both the upper and lower limbs, evidence suggests that short-latency electromyographic (EMG) responses to mechanical perturbations are modulated based on muscle stretch or joint motion, whereas long-latency responses are modulated based on attainment of task-level goals, e.g., desired direction of limb movement. We hypothesized that long-latency responses are modulated continuously by task-level error feedback. Previously, we identified an error-based sensorimotor feedback transformation that describes the time course of EMG responses to ramp-and-hold perturbations during standing balance (Safavynia and Ting 2013; Welch and Ting 2008, 2009). Here, our goals were 1) to test the robustness of the sensorimotor transformation over a richer set of perturbation conditions and postural states; and 2) to explicitly test whether the sensorimotor transformation is based on task-level vs. joint-level error. We developed novel perturbation trains of acceleration pulses such that perturbations were applied when the body deviated from the desired, upright state while recovering from preceding perturbations. The entire time course of EMG responses (∼4 s) in an antagonistic muscle pair was reconstructed using a weighted sum of center of mass (CoM) kinematics preceding EMGs at long-latency delays (∼100 ms). Furthermore, CoM and joint kinematic trajectories became decorrelated during perturbation trains, allowing us to explicitly compare task-level vs. joint feedback in the same experimental condition. Reconstruction of EMGs was poorer using joint kinematics compared with CoM kinematics and required unphysiologically short (∼10 ms) delays. Thus continuous, long-latency feedback of task-level variables may be a common mechanism regulating long-latency responses in the upper and lower limbs.
Collapse
|
42
|
Alessandro C, Delis I, Nori F, Panzeri S, Berret B. Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives. Front Comput Neurosci 2013; 7:43. [PMID: 23626535 PMCID: PMC3630334 DOI: 10.3389/fncom.2013.00043] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/03/2013] [Indexed: 12/25/2022] Open
Abstract
In this paper we review the works related to muscle synergies that have been carried-out in neuroscience and control engineering. In particular, we refer to the hypothesis that the central nervous system (CNS) generates desired muscle contractions by combining a small number of predefined modules, called muscle synergies. We provide an overview of the methods that have been employed to test the validity of this scheme, and we show how the concept of muscle synergy has been generalized for the control of artificial agents. The comparison between these two lines of research, in particular their different goals and approaches, is instrumental to explain the computational implications of the hypothesized modular organization. Moreover, it clarifies the importance of assessing the functional role of muscle synergies: although these basic modules are defined at the level of muscle activations (input-space), they should result in the effective accomplishment of the desired task. This requirement is not always explicitly considered in experimental neuroscience, as muscle synergies are often estimated solely by analyzing recorded muscle activities. We suggest that synergy extraction methods should explicitly take into account task execution variables, thus moving from a perspective purely based on input-space to one grounded on task-space as well.
Collapse
Affiliation(s)
- Cristiano Alessandro
- Artificial Intelligence Laboratory, Department of Informatics, University of Zurich Zurich, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Wang X, O’Dwyer N, Halaki M, Smith R. Identifying Coordinative Structure Using Principal Component Analysis Based on Coherence Derived From Linear Systems Analysis. J Mot Behav 2013; 45:167-79. [DOI: 10.1080/00222895.2013.770383] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Trumbower RD, Finley JM, Shemmell JB, Honeycutt CF, Perreault EJ. Bilateral impairments in task-dependent modulation of the long-latency stretch reflex following stroke. Clin Neurophysiol 2013; 124:1373-80. [PMID: 23453250 DOI: 10.1016/j.clinph.2013.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/15/2012] [Accepted: 01/26/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Modulation of the long-latency reflex (LLR) is important for sensorimotor control during interaction with different mechanical loads. Transcortical pathways usually contribute to LLR modulation, but the integrity of pathways projecting to the paretic and non-paretic arms of stroke survivors is compromised. We hypothesize that disruption of transcortical reflex pathways reduces the capacity for stroke survivors to appropriately regulate the LLR bilaterally. METHODS Elbow perturbations were applied to the paretic and non-paretic arms of persons with stroke, and the dominant arm of age-matched controls as subjects interacted with Stiff or Compliant environments rendered by a linear actuator. Reflexes were quantified using surface electromyograms, recorded from biceps. RESULTS LLR amplitude was significantly larger during interaction with the Compliant load compared to the Stiff load in controls. However, there was no significant change in LLR amplitude for the paretic or non-paretic arm of stroke survivors. CONCLUSION Modulation of the LLR is altered in the paretic and non-paretic arms after stroke. SIGNIFICANCE Our results are indicative of bilateral sensorimotor impairments following stroke. The inability to regulate the LLR may contribute to bilateral deficits in tasks that require precise control of limb mechanics and stability.
Collapse
Affiliation(s)
- Randy D Trumbower
- Dept. of Rehabilitation Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
45
|
Reciprocal inhibition versus unloading response during stretch reflex in humans. Exp Brain Res 2013; 226:33-43. [PMID: 23354665 DOI: 10.1007/s00221-013-3408-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/03/2013] [Indexed: 01/08/2023]
Abstract
Rotation of an upper limb joint produces excitatory stretch reflex peaks M1 and M2 in the stretched muscles and simultaneous decrease in electromyographic (EMG) activity in the shortened muscles. The objective of this study was to examine whether the decreased activity in the antagonists (rINHIB) is purely from unloading of the spindles or receives active inhibition involving inhibitory interneurons. If rINHIB is due only to unloading, then the termination of rINHIB should vary with the duration of perturbation used to elicit stretch reflex, namely shorter stretches should result in shorter values of decreased periods of EMG. To examine this question, rectangular pulses, ranging in duration from 25 to 150 ms, were used to stretch wrist flexors or extensors with a torque motor. These rectangular pulses resulted in joint rotations which peaked at times (T(peak)) ranging from approximately 75-160 ms. As shown by previous authors, when the duration of rotation was shortened, the magnitude of M1 did not change, while the magnitude of M2 decreased. However, termination time of rINHIB in the shortened muscles did not change with change in T(peak), implying thereby that unloading of spindles of the antagonist muscles is not the only mechanism for the reduction in activity and that inhibitory reflex pathways most likely contribute. Possible sources of inhibition are discussed for the short- and long-latency inhibition.
Collapse
|
46
|
He X, Du YF, Lan N. Evaluation of feedforward and feedback contributions to hand stiffness and variability in multijoint arm control. IEEE Trans Neural Syst Rehabil Eng 2012; 21:634-47. [PMID: 23268385 DOI: 10.1109/tnsre.2012.2234479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study is to validate a neuromechanical model of the virtual arm (VA) by comparing emerging behaviors of the model to those of experimental observations. Hand stiffness of the VA model was obtained by either theoretical computation or simulated perturbations. Variability in hand position of the VA was generated by adding signal dependent noise (SDN) to the motoneuron pools of muscles. Reflex circuits of Ia, Ib and Renshaw cells were included to regulate the motoneuron pool outputs. Evaluation of hand stiffness and variability was conducted in simulations with and without afferent feedback under different patterns of muscle activations during postural maintenance. The simulated hand stiffness and variability ellipses captured the experimentally observed features in shape, magnitude and orientation. Steady state afferent feedback contributed significantly to the increase in hand stiffness by 35.75±16.99% in area, 18.37±7.80% and 16.15±7.15% in major and minor axes; and to the reduction of hand variability by 49.41±21.19% in area, 36.89±12.78% and 18.87±23.32% in major and minor axes. The VA model reproduced the neuromechanical behaviors that were consistent with experimental data, and it could be a useful tool for study of neural control of posture and movement, as well as for application to rehabilitation.
Collapse
Affiliation(s)
- Xin He
- Institute of Rehabilitation Engineering, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | | | | |
Collapse
|
47
|
Pascoe MA, Gould JR, Enoka RM. Motor unit activity when young and old adults perform steady contractions while supporting an inertial load. J Neurophysiol 2012; 109:1055-64. [PMID: 23221403 DOI: 10.1152/jn.00437.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to compare the discharge characteristics of biceps brachii motor units of young and old adults when they performed steady, submaximal contractions while the arm supported different inertial loads. Young (28 ± 4 yr; n = 16) and old (75 ± 4 yr; n = 14) adults performed steady contractions with the elbow flexors at target forces set at either small (11.7 ± 4.4% maximum) or large (17.8 ± 6.5% maximum) differences below the recruitment threshold force of the motor unit (n = 40). The task was to maintain an elbow angle at 1.57 rad until the motor unit was recruited and discharged action potentials for ∼120 s. Time to recruitment was longer for the larger target force difference (187 ± 227 s vs. 23 ± 46 s, P < 0.001). Once recruited, motor units discharged action potentials either repetitively or intermittently, with a greater proportion of motor units exhibiting the repetitive pattern for old adults. Discharge rate at recruitment and during the steady contraction was similar for the two target force differences for old adults but was greater for the small target force difference for young adults. Discharge variability was similar at recruitment for the two age groups but less for the old adults during the steady contraction. The greatest difference between the present results and those reported previously when the arm pulled against a rigid restraint was that old adults modulated discharge rate less than young adults across the two contraction intensities for both load types.
Collapse
Affiliation(s)
- Michael A Pascoe
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado 80045, USA.
| | | | | |
Collapse
|
48
|
Krutky MA, Trumbower RD, Perreault EJ. Influence of environmental stability on the regulation of end-point impedance during the maintenance of arm posture. J Neurophysiol 2012; 109:1045-54. [PMID: 23221409 DOI: 10.1152/jn.00135.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many common tasks compromise arm stability along specific directions. Such tasks can be completed only if the impedance of the arm is sufficient to compensate for the destabilizing effects of the task. During movement, it has been demonstrated that the direction of maximal arm stiffness, the static component of impedance, can be preferentially increased to compensate for directionally unstable environments. In contrast, numerous studies have shown that such control is not possible during postural tasks. It remains unknown if these findings represent a fundamental difference in the control of arm mechanics during posture and movement or an involuntary response to the destabilizing environments used in the movement studies but not yet tested during posture maintenance. Our goal was to quantify how arm impedance is adapted during postural tasks that compromise stability along specific directions. Our results demonstrate that impedance can be modulated to compensate for these instabilities during postural tasks but that the changes are modest relative to those previously reported during reaching. Our observed changes were primarily in the magnitude of end-point stiffness, but these were not sufficient to alter the direction of maximal stiffness. Furthermore, there were no substantial changes in the magnitude of end-point viscosity or inertia, suggesting that the primary change to arm impedance was a selective increase in stiffness to compensate for the destabilizing stiffness properties of the environment. We suggest that these modest changes provide an initial involuntary response to destabilizing environments prior to the larger changes that can be affected through voluntary interventions.
Collapse
Affiliation(s)
- Matthew A Krutky
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
49
|
Roh J, Rymer WZ, Perreault EJ, Yoo SB, Beer RF. Alterations in upper limb muscle synergy structure in chronic stroke survivors. J Neurophysiol 2012; 109:768-81. [PMID: 23155178 DOI: 10.1152/jn.00670.2012] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies in neurologically intact subjects have shown that motor coordination can be described by task-dependent combinations of a few muscle synergies, defined here as a fixed pattern of activation across a set of muscles. Arm function in severely impaired stroke survivors is characterized by stereotypical postural and movement patterns involving the shoulder and elbow. Accordingly, we hypothesized that muscle synergy composition is altered in severely impaired stroke survivors. Using an isometric force matching protocol, we examined the spatial activation patterns of elbow and shoulder muscles in the affected arm of 10 stroke survivors (Fugl-Meyer <25/66) and in both arms of six age-matched controls. Underlying muscle synergies were identified using non-negative matrix factorization. In both groups, muscle activation patterns could be reconstructed by combinations of a few muscle synergies (typically 4). We did not find abnormal coupling of shoulder and elbow muscles within individual muscle synergies. In stroke survivors, as in controls, two of the synergies were comprised of isolated activation of the elbow flexors and extensors. However, muscle synergies involving proximal muscles exhibited consistent alterations following stroke. Unlike controls, the anterior deltoid was coactivated with medial and posterior deltoids within the shoulder abductor/extensor synergy and the shoulder adductor/flexor synergy in stroke was dominated by activation of pectoralis major, with limited anterior deltoid activation. Recruitment of the altered shoulder muscle synergies was strongly associated with abnormal task performance. Overall, our results suggest that an impaired control of the individual deltoid heads may contribute to poststroke deficits in arm function.
Collapse
Affiliation(s)
- Jinsook Roh
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
50
|
Scott SH. The computational and neural basis of voluntary motor control and planning. Trends Cogn Sci 2012; 16:541-9. [DOI: 10.1016/j.tics.2012.09.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 01/26/2023]
|