1
|
Yang L, Hao G, Yang W, Hou L. The impact of different timing of mouth opening exercises on trismus in postoperative radiotherapy patients with oral cancer. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024:102104. [PMID: 39366485 DOI: 10.1016/j.jormas.2024.102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVE To compare the effects of starting mouth opening exercises at two different times on trismus in postoperative radiotherapy patients with oral cancer. METHODS Through a prospective randomized controlled trial, purposive sampling was used to select 76 patients undergoing postoperative radiotherapy for oral cancer from March 2023 to January 2024 at the Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. Patients were randomly divided into an experimental group (n = 38) and a control group (n = 38) using a random number table at a ratio of 1:1. The experimental group began mouth opening exercises in the second week after surgery (before radiotherapy), while the control group began in the fourth week after surgery (at the start of radiotherapy). The primary outcome measure was maximum interincisal opening (MIO). Secondary outcome measures included pain visual analog scale (VAS) scores and quality of life scores (UW-QOL), assessed at baseline, the second week post-surgery (before radiotherapy), the fourth week post-surgery (at the start of radiotherapy), the ninth week post-surgery (end of radiotherapy), and the twelfth week post-surgery (three weeks after the end of radiotherapy). RESULTS A total of 72 patients completed all assessments, with 36 in each group, resulting in an overall sample attrition rate of 5.26 % (less than 15 %). There were no statistically significant differences in general demographic and clinical characteristics between the two groups. Repeated measures ANOVA showed significant differences in MIO, VAS, and UW-QOL scores between groups, over time, and in group-time interactions (P < 0.001). From the fourth week post-surgery (at the start of radiotherapy), the experimental group had significantly higher MIO (P < 0.001), significantly lower VAS scores (P < 0.001), and significantly higher UW-QOL scores (P < 0.001) compared to the control group. These differences persisted at subsequent assessment points. CONCLUSION Initiating mouth opening exercises in the second week post-surgery (before radiotherapy) can significantly improve mouth opening, reduce pain, and enhance the quality of life in postoperative radiotherapy patients with oral cancer. This provides important evidence for clinical practice, although further research is needed to verify the long-term effects.
Collapse
Affiliation(s)
- Ling Yang
- Department of Nursing, Chengdu Xinhua Hospital, Chengdu, China.
| | - Guihua Hao
- Department of Nursing, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyu Yang
- Department of Oral and Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Hou
- Department of Nursing, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
2
|
Davis JF, Khan T, Thornton M, Reeves ND, DeLuca M, Mohagheghi AA. High Velocity Passive Stretching Mimics Eccentric Exercise in Cerebral Palsy and May Be Used to Increase Spastic Muscle Fascicle Length. Bioengineering (Basel) 2024; 11:608. [PMID: 38927844 PMCID: PMC11200552 DOI: 10.3390/bioengineering11060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Muscle fascicles are shorter and stiffer than normal in spastic Cerebral Palsy (CP). Increasing fascicle length (FL) has been attempted in CP, the outcomes of which have been unsatisfactory. In healthy muscles, FL can be increased using eccentric exercise at high velocities (ECC). Three conditions are possibly met during such ECC: muscle micro-damage, positive fascicle strain, and momentary muscle deactivation during lengthening. Participants with and without CP underwent a single bout of passive stretching at (appropriately) high velocities using isokinetic dynamometry, during which we examined muscle and fascicle behaviour. Vastus lateralis (VL) FL change was measured using ultrasonography and showed positive fascicle strain. Measures of muscle creatine kinase were used to establish whether micro-damage occurred in response to stretching, but the results did not confirm damage in either group. Vastus medialis (VM) and biceps femoris muscle activity were measured using electromyography in those with CP. Results supported momentary spastic muscle deactivation during lengthening: all participants experienced at least one epoch (60 ms) of increased activation followed by activation inhibition/deactivation of the VM during knee flexion. We argue that high-velocity passive stretching in CP provides a movement context which mimics ECC and could be used to increase spastic FL with training.
Collapse
Affiliation(s)
- Jessica F. Davis
- Centre of Health, Physical Activity, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK; (J.F.D.); (M.D.)
| | - Tahir Khan
- The Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK (M.T.)
| | - Matt Thornton
- The Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK (M.T.)
| | - Neil D. Reeves
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Stanmore HA7 4LP, UK;
| | - Mara DeLuca
- Centre of Health, Physical Activity, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK; (J.F.D.); (M.D.)
| | - Amir A. Mohagheghi
- Centre for Cognitive and Clinical Neuroscience, Brunel University London, London UB8 3PH, UK
| |
Collapse
|
3
|
Quantitative measurement of resistance force and subsequent attenuation during passive isokinetic extension of the wrist in patients with mild to moderate spasticity after stroke. J Neuroeng Rehabil 2022; 19:110. [PMID: 36224659 PMCID: PMC9559851 DOI: 10.1186/s12984-022-01087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Spasticity is evaluated by measuring the increased resistance to passive movement, primarily by manual methods. Few options are available to measure spasticity in the wrist more objectively. Furthermore, no studies have investigated the force attenuation following increased resistance. The aim of this study was to conduct a safe quantitative evaluation of wrist passive extension stiffness in stroke survivors with mild to moderate spastic paresis using a custom motor-controlled device. Furthermore, we wanted to clarify whether the changes in the measured values could quantitatively reflect the spastic state of the flexor muscles involved in the wrist stiffness of the patients. Materials and methods Resistance forces were measured in 17 patients during repetitive passive extension of the wrist at velocities of 30, 60, and 90 deg/s. The Modified Ashworth Scale (MAS) in the wrist and finger flexors was also assessed by two skilled therapists and their scores were averaged (i.e., average MAS) for analysis. Of the fluctuation of resistance, we focused on the damping just after the peak forces and used these for our analysis. A repeated measures analysis of variance was conducted to assess velocity-dependence. Correlations between MAS and damping parameters were analyzed using Spearman’s rank correlation. Results The damping force and normalized value calculated from damping part showed significant velocity-dependent increases. There were significant correlations (ρ = 0.53–0.56) between average MAS for wrist and the normalized value of the damping part at 90 deg/s. The correlations became stronger at 60 deg/s and 90 deg/s when the MAS for finger flexors was added to that for wrist flexors (ρ = 0.65–0.68). Conclusions This custom-made isokinetic device could quantitatively evaluate spastic changes in the wrist and finger flexors simultaneously by focusing on the damping part, which may reflect the decrease in resistance we perceive when manually assessing wrist spasticity using MAS. Trial registration UMIN Clinical Trial Registry, as UMIN000030672, on July 4, 2018
Collapse
|
4
|
Shared and distinct voxel-based lesion-symptom mappings for spasticity and impaired movement in the hemiparetic upper limb. Sci Rep 2022; 12:10169. [PMID: 35715476 PMCID: PMC9206020 DOI: 10.1038/s41598-022-14359-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022] Open
Abstract
Hemiparesis and spasticity are common co-occurring manifestations of hemispheric stroke. The relationship between impaired precision and force in voluntary movement (hemiparesis) and the increment in muscle tone that stems from dysregulated activity of the stretch reflex (spasticity) is far from clear. Here we aimed to elucidate whether variation in lesion topography affects hemiparesis and spasticity in a similar or dis-similar manner. Voxel-based lesion-symptom mapping (VLSM) was used to assess the impact of lesion topography on (a) upper limb paresis, as reflected by the Fugl-Meyer Assessment scale for the upper limb and (b) elbow flexor spasticity, as reflected by the Tonic Stretch Reflex Threshold, in 41 patients with first-ever stroke. Hemiparesis and spasticity were affected by damage to peri-Sylvian cortical and subcortical regions and the putamen. Hemiparesis (but not spasticity) was affected by damage to the corticospinal tract at corona-radiata and capsular levels, and by damage to white-matter association tracts and additional regions in the temporal cortex and pallidum. VLSM conjunction analysis showed only a minor overlap of brain voxels where the existence of damage affected both hemiparesis and spasticity, suggesting that control of voluntary movement and regulation of muscle tone at rest involve largely separate parts of the motor network.
Collapse
|
5
|
Patterson JR, Dewald JPA, Drogos JM, Gurari N. Impact of Voluntary Muscle Activation on Stretch Reflex Excitability in Individuals With Hemiparetic Stroke. Front Neurol 2022; 13:764650. [PMID: 35359658 PMCID: PMC8964046 DOI: 10.3389/fneur.2022.764650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Objective To characterize how, following a stretch-induced attenuation, volitional muscle activation impacts stretch reflex activity in individuals with stroke. Methods A robotic device rotated the paretic elbow of individuals with hemiparetic stroke from 70° to 150°, and then back to 70° elbow flexion at an angular speed of 120°/s. This stretching sequence was repeated 20 times. Subsequently, participants volitionally activated their elbow musculature or rested. Finally, the stretching sequence was repeated another 20 times. The flexors' stretch reflex activity was quantified as the net torque measured at 135°. Results Data from 15 participants indicated that the stretching sequence attenuated the flexion torque (p < 0.001) and resting sustained the attenuation (p = 1.000). Contrastingly, based on data from 14 participants, voluntary muscle activation increased the flexion torque (p < 0.001) to an initial pre-stretch torque magnitude (p = 1.000). Conclusions Stretch reflex attenuation induced by repeated fast stretches may be nullified when individuals post-stroke volitionally activate their muscles. In contrast, resting may enable a sustained reflex attenuation if the individual remains relaxed. Significance Stretching is commonly implemented to reduce hyperactive stretch reflexes following a stroke. These findings suggest that stretch reflex accommodation arising from repeated fast stretching may be reversed once an individual volitionally moves their paretic arm.
Collapse
Affiliation(s)
- Jacqueline R. Patterson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Department of Physiology, Northwestern University, Chicago, IL, United States
| | - Julius P. A. Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Justin M. Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Netta Gurari
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, United States
- *Correspondence: Netta Gurari
| |
Collapse
|
6
|
Latash ML. Understanding and Synergy: A Single Concept at Different Levels of Analysis? Front Syst Neurosci 2021; 15:735406. [PMID: 34867220 PMCID: PMC8636674 DOI: 10.3389/fnsys.2021.735406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022] Open
Abstract
Biological systems differ from the inanimate world in their behaviors ranging from simple movements to coordinated purposeful actions by large groups of muscles, to perception of the world based on signals of different modalities, to cognitive acts, and to the role of self-imposed constraints such as laws of ethics. Respectively, depending on the behavior of interest, studies of biological objects based on laws of nature (physics) have to deal with different salient sets of variables and parameters. Understanding is a high-level concept, and its analysis has been linked to other high-level concepts such as "mental model" and "meaning". Attempts to analyze understanding based on laws of nature are an example of the top-down approach. Studies of the neural control of movements represent an opposite, bottom-up approach, which starts at the interface with classical physics of the inanimate world and operates with traditional concepts such as forces, coordinates, etc. There are common features shared by the two approaches. In particular, both assume organizations of large groups of elements into task-specific groups, which can be described with only a handful of salient variables. Both assume optimality criteria that allow the emergence of families of solutions to typical tasks. Both assume predictive processes reflected in anticipatory adjustments to actions (motor and non-motor). Both recognize the importance of generating dynamically stable solutions. The recent progress in studies of the neural control of movements has led to a theory of hierarchical control with spatial referent coordinates for the effectors. This theory, in combination with the uncontrolled manifold hypothesis, allows quantifying the stability of actions with respect to salient variables. This approach has been used in the analysis of motor learning, changes in movements with typical and atypical development and with aging, and impaired actions by patients with various neurological disorders. It has been developed to address issues of kinesthetic perception. There seems to be hope that the two counter-directional approaches will meet and result in a single theoretical scheme encompassing biological phenomena from figuring out the best next move in a chess position to activating motor units appropriate for implementing that move on the chessboard.
Collapse
Affiliation(s)
- Mark L. Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
- Moscow Institute of Physics and Technology, Dolgoprudnyj, Russia
| |
Collapse
|
7
|
Feldman AG, Levin MF, Garofolini A, Piscitelli D, Zhang L. Central pattern generator and human locomotion in the context of referent control of motor actions. Clin Neurophysiol 2021; 132:2870-2889. [PMID: 34628342 DOI: 10.1016/j.clinph.2021.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/13/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022]
Abstract
Unperturbed human locomotion presumably results from feedforward shifts in stable body equilibrium in the environment, thus avoiding falling and subsequent catching considered in alternative theories of locomotion. Such shifts are achieved by relocation of the referent body configuration at which multiple muscle recruitment begins. Rather than being directly specified by a central pattern generator, multiple muscles are activated depending on the extent to which the body is deflected from the referent, threshold body configuration, as confirmed in previous studies. Based on the referent control theory of action and perception, solutions to classical problems in motor control are offered, including the previously unresolved problem of the integration of central and reflex influences on motoneurons and the problem of how posture and movement are related. The speed of locomotion depends on the rate of shifts in the referent body configuration. The transition from walking to running results from increasing the rate of referent shifts. It is emphasised that there is a certain hierarchy between reciprocal and co-activation of agonist and antagonist muscles during locomotion and other motor actions, which is also essential for the understanding of how locomotor speed is regulated. The analysis opens a new avenue in neurophysiological approaches to human locomotion with clinical implications.
Collapse
Affiliation(s)
- Anatol G Feldman
- Department of Neuroscience, University of Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada.
| | - Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y5, Canada
| | - Alessandro Garofolini
- Institute for Health and Sport (IHES), Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia
| | - Daniele Piscitelli
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y5, Canada
| | - Lei Zhang
- Institut für Neuroinformatik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
8
|
Tonic stretch reflex threshold as a measure of spasticity after stroke: Reliability, minimal detectable change and responsiveness. Clin Neurophysiol 2021; 132:1226-1233. [PMID: 33867256 DOI: 10.1016/j.clinph.2021.02.390] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To determine inter-rater reliability, minimal detectable change and responsiveness of Tonic Stretch Reflex Threshold (TSRT) as a quantitative measure of elbow flexor spasticity. METHODS Elbow flexor spasticity was assessed in 55 patients with sub-acute stroke by determining TSRT, the angle of spasticity onset at rest (velocity = 0°/s). Elbow flexor muscles were stretched 20 times at different velocities. Dynamic stretch-reflex thresholds, the elbow angles corresponding to the onset of elbow flexor EMG at each velocity, were used for TSRT calculation. Spasticity was also measured with the Modified Ashworth Scale (MAS). In a sub-group of 44 subjects, TSRT and MAS were measured before and after two weeks of an upper-limb intervention. RESULTS The intraclass correlation coefficient was 0.65 and the 95% minimal detectable change was 32.4°. In the treated sub-group, TSRT, but not MAS significantly changed. TSRT effect size and standardized response mean were 0.40 and 0.35, respectively. Detection of clinically meaningful improvements in upper-limb motor impairment by TSRT change scores ranged from poor to excellent. CONCLUSIONS Evaluation of stroke-related elbow flexor spasticity by TSRT has good inter-rater reliability. Test responsiveness is low, but better than that of the MAS. SIGNIFICANCE TSRT may be used to complement current scales of spasticity quantification.
Collapse
|
9
|
The mechanisms of adaptation for muscle fascicle length changes with exercise: Implications for spastic muscle. Med Hypotheses 2020; 144:110199. [PMID: 33254508 DOI: 10.1016/j.mehy.2020.110199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 11/23/2022]
Abstract
We are proposing optimal training conditions that can lead to an increase in the number of serial sarcomeres (SSN) and muscle fascicle length (FL) in spastic muscles. Therapeutic interventions for increasing FL in clinical populations with neurological origin, in whom relative shortness of muscle fascicles contributed to the presentation of symptoms such as spasticity, contracture, and limited functional abilities, do not generally meet these conditions, and therefore, result in less than satisfactory outcomes. Based on a review of literature, we argue that protocols of exercise interventions that led to sarcomerogenesis, and increases in SSN and FL in healthy animal and human models satisfied three criteria: 1) all involved eccentric exercise at appropriately high velocity; 2) resulted in positive strain of muscle fascicles; and 3) momentary deactivation in the stretched muscle. Accordingly, to increase FL in spastic muscles, new exercise protocols in which the three presumed criteria are satisfied, must be developed, and long-term muscle architectural and functional adaptations to such trainings must be examined.
Collapse
|
10
|
Cha Y, Arami A. Quantitative Modeling of Spasticity for Clinical Assessment, Treatment and Rehabilitation. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5046. [PMID: 32899490 PMCID: PMC7571189 DOI: 10.3390/s20185046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/23/2022]
Abstract
Spasticity, a common symptom in patients with upper motor neuron lesions, reduces the ability of a person to freely move their limbs by generating unwanted reflexes. Spasticity can interfere with rehabilitation programs and cause pain, muscle atrophy and musculoskeletal deformities. Despite its prevalence, it is not commonly understood. Widely used clinical scores are neither accurate nor reliable for spasticity assessment and follow up of treatments. Advancement of wearable sensors, signal processing and robotic platforms have enabled new developments and modeling approaches to better quantify spasticity. In this paper, we review quantitative modeling techniques that have been used for evaluating spasticity. These models generate objective measures to assess spasticity and use different approaches, such as purely mechanical modeling, musculoskeletal and neurological modeling, and threshold control-based modeling. We compare their advantages and limitations and discuss the recommendations for future studies. Finally, we discuss the focus on treatment and rehabilitation and the need for further investigation in those directions.
Collapse
Affiliation(s)
- Yesung Cha
- Neuromechanics and Assistive Robotics Laboratory, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada;
| | - Arash Arami
- Neuromechanics and Assistive Robotics Laboratory, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada;
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| |
Collapse
|
11
|
Deficits in corticospinal control of stretch reflex thresholds in stroke: Implications for motor impairment. Clin Neurophysiol 2020; 131:2067-2078. [DOI: 10.1016/j.clinph.2020.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
|
12
|
On Primitives in Motor Control. Motor Control 2020; 24:318-346. [DOI: 10.1123/mc.2019-0099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 11/18/2022]
Abstract
The concept of primitives has been used in motor control both as a theoretical construct and as a means of describing the results of experimental studies involving multiple moving elements. This concept is close to Bernstein’s notion of engrams and level of synergies. Performance primitives have been explored in spaces of peripheral variables but interpreted in terms of neural control primitives. Performance primitives reflect a variety of mechanisms ranging from body mechanics to spinal mechanisms and to supraspinal circuitry. This review suggests that primitives originate at the task level as preferred time functions of spatial referent coordinates or at mappings from higher level referent coordinates to lower level, frequently abundant, referent coordinate sets. Different patterns of performance primitives can emerge depending, in particular, on the external force field.
Collapse
|
13
|
Chan-Viquez D, Hasanbarani F, Zhang L, Anaby D, Turpin NA, Lamontagne A, Feldman AG, Levin MF. Development of vertical and forward jumping skills in typically developing children in the context of referent control of motor actions. Dev Psychobiol 2020; 62:711-722. [PMID: 31957019 DOI: 10.1002/dev.21949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/14/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022]
Abstract
The empirically based referent control theory of motor actions provides a new framework for understanding locomotor maturation. Mature movement patterns of referent control are characterized by periods of minimization of activity across multiple muscles (global electromyographic [EMG] minima) resulting from transient matching between actual and referent body configurations. We identified whether locomotor maturation in young children was associated with (a) development of referent control and (b) children's frequency of participation in everyday activities evaluated by parents. Kinematics and EMG activity were recorded from typically developing children (n = 15, 3-5 years) and young adults (n = 10, 18-25 years) while walking, vertical or forward jumping. Presence and location of global EMG minima in movement cycles, slopes of ankle vertical/sagittal displacements, and shoulder displacement ratios were evaluated. Children had fewer global EMG minima compared to adults during specific phases of vertical and forward jumps. Ankle displacement profiles for walking and jumping forward were related to each other in adults, whereas those for walking and vertical jumping were related in children. Higher frequency of participation was significantly correlated with more mature jumping patterns in children. A decrease in the number of global EMG minima and changes in ankle movement patterns could be indicators of locomotor immaturity in typically developing children.
Collapse
Affiliation(s)
- Daniela Chan-Viquez
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Fariba Hasanbarani
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Lei Zhang
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada.,Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Dana Anaby
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Nicolas A Turpin
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada.,Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Anouk Lamontagne
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Anatol G Feldman
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada.,Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| |
Collapse
|
14
|
Feldman AG. Indirect, referent control of motor actions underlies directional tuning of neurons. J Neurophysiol 2018; 121:823-841. [PMID: 30565957 DOI: 10.1152/jn.00575.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many neurons of the primary motor cortex (M1) are maximally sensitive to "preferred" hand movement directions and generate progressively less activity with movements away from these directions. M1 activity also correlates with other biomechanical variables. These findings are predominantly interpreted in a framework in which the brain preprograms and directly specifies the desired motor outcome. This approach is inconsistent with the empirically derived equilibrium-point hypothesis, in which the brain can control motor actions only indirectly, by changing neurophysiological parameters that may influence, but remain independent of, biomechanical variables. The controversy is resolved on the basis of experimental findings and theoretical analysis of how sensory and central influences are integrated in the presence of the fundamental nonlinearity of neurons: electrical thresholds. In the presence of sensory inputs, electrical thresholds are converted into spatial thresholds that predetermine the position of the body segments at which muscles begin to be activated. Such thresholds may be considered as referent points of respective spatial frames of reference (FRs) in which neurons, including motoneurons, are centrally predetermined to work. By shifting the referent points of respective FRs, the brain elicits intentional actions. Pure involuntary reactions to perturbations are accomplished in motionless FRs. Neurons are primarily sensitive to shifts in referent directions, i.e., shifts in spatial FRs, whereas emergent neural activity may or may not correlate with different biomechanical variables depending on the motor task and external conditions. Indirect, referent control of posture and movement symbolizes a departure from conventional views based on direct preprogramming of the motor outcome.
Collapse
Affiliation(s)
- Anatol G Feldman
- Department of Neuroscience, University of Montreal , Montreal, Quebec , Canada.,Institut de Réadaptation Gingras-Lindsay de Montréal, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) , Montreal, Quebec , Canada.,Jewish Rehabilitation Hospital, CRIR, Laval, Quebec, Canada
| |
Collapse
|
15
|
Does galvanic vestibular stimulation decrease spasticity in clinically complete spinal cord injury? Int J Rehabil Res 2018; 41:251-257. [PMID: 29889116 DOI: 10.1097/mrr.0000000000000297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this study was to determine changes in clinical and biomechanical measures of spasticity after administering galvanic vestibular stimulation in patients with a complete spinal cord injury (SCI). The spasticity in the lower limbs was assessed using the Modified Ashworth Scale and the pendulum test in seven SCI patients (grade A on the ASIA Impairment Scale) before (0), immediately after (0), and at 5 and 30 min after the real versus sham galvanic vestibular stimulation (15 s each, anode over the right mastoid). Overall, the changes in spasticity were not significantly different between the real and sham galvanic vestibular stimulation. However, the Modified Ashworth Scale and the pendulum test indicated a reduction in spasticity in two out of seven patients. The results suggest that galvanic vestibular stimulation may modify spasticity in some patients with complete SCI, presumably through the residual vestibulospinal influences. Future studies should determine clinical and neurophysiological profiles of responders versus nonresponders and optimize parameters of galvanic vestibular stimulation.
Collapse
|
16
|
Activation of elbow extensors during passive stretch of flexors in patients with post-stroke spasticity. Clin Neurophysiol 2018; 129:2065-2074. [DOI: 10.1016/j.clinph.2018.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/18/2018] [Accepted: 07/15/2018] [Indexed: 11/20/2022]
|
17
|
Zhang L, Feldman AG, Levin MF. Vestibular and corticospinal control of human body orientation in the gravitational field. J Neurophysiol 2018; 120:3026-3041. [PMID: 30207862 DOI: 10.1152/jn.00483.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Body orientation with respect to the direction of gravity changes when we lean forward from upright standing. We tested the hypothesis that during upright standing, the nervous system specifies the referent body orientation that defines spatial thresholds for activation of multiple muscles across the body. To intentionally lean the body forward, the system is postulated to transfer balance and stability to the leaned position by monotonically tilting the referent orientation, thus increasing the activation thresholds of ankle extensors and decreasing their activity. Consequently, the unbalanced gravitational torque would start to lean the body forward. With restretching, ankle extensors would be reactivated and generate increasing electromyographic (EMG) activity until the enhanced gravitational torque would be balanced at a new posture. As predicted, vestibular influences on motoneurons of ankle extensors evaluated by galvanic vestibular stimulation were smaller in the leaned compared with the upright position, despite higher tonic EMG activity. Defacilitation of vestibular influences was also observed during forward leaning when the EMG levels in the upright and leaned position were equalized by compensating the gravitational torque with a load. The vestibular system is involved in the active control of body orientation without directly specifying the motor outcome. Corticospinal influences originating from the primary motor cortex evaluated by transcranial magnetic stimulation remained similar at the two body postures. Thus, in contrast to the vestibular system, the corticospinal system maintains a similar descending facilitation of motoneurons of leg muscles at different body orientations. The study advances the understanding of how body orientation is controlled. NEW & NOTEWORTHY The brain changes the referent body orientation with respect to gravity to lean the body forward. Physiologically, this is achieved by shifts in spatial thresholds for activation of ankle muscles, which involves the vestibular system. Results advance the understanding of how the brain controls body orientation in the gravitational field. The study also extends previous evidence of empirical control of motor function, i.e., without the reliance on model-based computations and direct specification of motor outcome.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neuroscience, University of Montreal , Montreal, Quebec , Canada.,Institut de Réadaptation Gingras-Lindsay de Montréal, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) , Montreal, Quebec , Canada.,Jewish Rehabilitation Hospital, CRIR, Laval, Quebec , Canada
| | - Anatol G Feldman
- Department of Neuroscience, University of Montreal , Montreal, Quebec , Canada.,Institut de Réadaptation Gingras-Lindsay de Montréal, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) , Montreal, Quebec , Canada.,Jewish Rehabilitation Hospital, CRIR, Laval, Quebec , Canada
| | - Mindy F Levin
- Jewish Rehabilitation Hospital, CRIR, Laval, Quebec , Canada.,School of Physical and Occupational Therapy, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
18
|
Referent control of the orientation of posture and movement in the gravitational field. Exp Brain Res 2017; 236:381-398. [PMID: 29164285 DOI: 10.1007/s00221-017-5133-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
This study addresses the question of how posture and movement are oriented with respect to the direction of gravity. It is suggested that neural control levels coordinate spatial thresholds at which multiple muscles begin to be activated to specify a referent body orientation (RO) at which muscle activity is minimized. Under the influence of gravity, the body is deflected from the RO to an actual orientation (AO) until the emerging muscle activity and forces begin to balance gravitational forces and maintain body stability. We assumed that (1) during quiet standing on differently tilted surfaces, the same RO and thus AO can be maintained by adjusting activation thresholds of ankle muscles according to the surface tilt angle; (2) intentional forward body leaning results from monotonic ramp-and-hold shifts in the RO; (3) rhythmic oscillation of the RO about the ankle joints during standing results in body swaying. At certain sway phases, the AO and RO may transiently overlap, resulting in minima in the activity of multiple muscles across the body. EMG kinematic patterns of the 3 tasks were recorded and explained based on the RO concept that implies that these patterns emerge due to referent control without being pre-programmed. We also confirmed the predicted occurrence of minima in the activity of multiple muscles at specific body configurations during swaying. Results re-affirm previous rejections of model-based computational theories of motor control. The role of different descending systems in the referent control of posture and movement in the gravitational field is considered.
Collapse
|
19
|
Turpin NA, Feldman AG, Levin MF. Stretch-reflex threshold modulation during active elbow movements in post-stroke survivors with spasticity. Clin Neurophysiol 2017; 128:1891-1897. [DOI: 10.1016/j.clinph.2017.07.411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/24/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|
20
|
Zhang L, Turpin NA, Feldman AG. Threshold position control of anticipation in humans: a possible role of corticospinal influences. J Physiol 2017; 595:5359-5374. [PMID: 28560812 DOI: 10.1113/jp274309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sudden unloading of preloaded wrist muscles elicits motion to a new wrist position. Such motion is prevented if subjects unload muscles using the contralateral arm (self-unloading). Corticospinal influences originated from the primary motor cortex maintain tonic influences on motoneurons of wrist muscles before sudden unloading but modify these influences prior to the onset and until the end of self-unloading. Results are interpreted based on the previous finding that intentional actions are caused by central, particularly corticospinal, shifts in the spatial thresholds at which wrist motoneurons are activated, thus predetermining the attractor point at which the neuromuscular periphery achieves mechanical balance with environment forces. By maintaining or shifting the thresholds, descending systems let body segments go to the equilibrium position in the respective unloading tasks without the pre-programming of kinematics or muscle activation patterns. The study advances the understanding of how motor actions in general, and anticipation in particular, are controlled. ABSTRACT The role of corticospinal (CS) pathways in anticipatory motor actions was evaluated using transcranial magnetic stimulation (TMS) of the primary motor cortex projecting to motoneurons (MNs) of wrist muscles. Preloaded wrist flexors were suddenly unloaded by the experimenter or by the subject using the other hand (self-unloading). After sudden unloading, the wrist joint involuntarily flexed to a new position. In contrast, during self-unloading the wrist remained almost motionless, implying that an anticipatory postural adjustment occurred. In the self-unloading task, anticipation was manifested by a decrease in descending facilitation of pre-activated flexor MNs starting ∼72 ms before changes in the background EMG activity. Descending facilitation of extensor MNs began to increase ∼61 ms later. Conversely, these influences remained unchanged before sudden unloading, implying the absence of anticipation. We also tested TMS responses during EMG silent periods produced by brief muscle shortening, transiently resulting in similar EMG levels before the onset and after the end of self-unloading. We found reduced descending facilitation of flexor MNs after self-unloading. To explain why the wrist excursion was minimized in self-unloading due to these changes in descending influences, we relied on previous demonstrations that descending systems pre-set the threshold positions of body segments at which muscles begin to be activated, thus predetermining the equilibrium point to which the system is attracted. Based on this notion, a more consistent explanation of the kinematic, EMG and descending patterns in the two types of unloading is proposed compared to the alternative notion of direct pre-programming of kinematic and/or EMG patterns.
Collapse
Affiliation(s)
- Lei Zhang
- Center for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal and Jewish Rehabilitation Hospital, Laval, Quebec, Canada.,Department of Neuroscience, University of Montréal, Quebec, Canada
| | - Nicolas A Turpin
- Center for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal and Jewish Rehabilitation Hospital, Laval, Quebec, Canada.,Department of Neuroscience, University of Montréal, Quebec, Canada
| | - Anatol G Feldman
- Center for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal and Jewish Rehabilitation Hospital, Laval, Quebec, Canada.,Department of Neuroscience, University of Montréal, Quebec, Canada
| |
Collapse
|
21
|
Naceri A, Moscatelli A, Haschke R, Ritter H, Santello M, Ernst MO. Multidigit force control during unconstrained grasping in response to object perturbations. J Neurophysiol 2017; 117:2025-2036. [PMID: 28228582 DOI: 10.1152/jn.00546.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 11/22/2022] Open
Abstract
Because of the complex anatomy of the human hand, in the absence of external constraints, a large number of postures and force combinations can be used to attain a stable grasp. Motor synergies provide a viable strategy to solve this problem of motor redundancy. In this study, we exploited the technical advantages of an innovative sensorized object to study unconstrained hand grasping within the theoretical framework of motor synergies. Participants were required to grasp, lift, and hold the sensorized object. During the holding phase, we repetitively applied external disturbance forces and torques and recorded the spatiotemporal distribution of grip forces produced by each digit. We found that the time to reach the maximum grip force during each perturbation was roughly equal across fingers, consistent with a synchronous, synergistic stiffening across digits. We further evaluated this hypothesis by comparing the force distribution of human grasping vs. robotic grasping, where the control strategy was set by the experimenter. We controlled the global hand stiffness of the robotic hand and found that this control algorithm produced a force pattern qualitatively similar to human grasping performance. Our results suggest that the nervous system uses a default whole hand synergistic control to maintain a stable grasp regardless of the number of digits involved in the task, their position on the objects, and the type and frequency of external perturbations.NEW & NOTEWORTHY We studied hand grasping using a sensorized object allowing unconstrained finger placement. During object perturbation, the time to reach the peak force was roughly equal across fingers, consistently with a synergistic stiffening across fingers. Force distribution of a robotic grasping hand, where the control algorithm is based on global hand stiffness, was qualitatively similar to human grasping. This suggests that the central nervous system uses a default whole hand synergistic control to maintain a stable grasp.
Collapse
Affiliation(s)
- Abdeldjallil Naceri
- Neuroinformatics Group, Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany;
| | - Alessandro Moscatelli
- Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome "Tor Vergata," Rome, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Robert Haschke
- Neuroinformatics Group, Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Helge Ritter
- Neuroinformatics Group, Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Marco Santello
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona; and
| | - Marc O Ernst
- Faculty for Computer Science, Engineering, and Psychology, Ulm University, Ulm, Germany
| |
Collapse
|
22
|
Tomita Y, Feldman AG, Levin MF. Referent control and motor equivalence of reaching from standing. J Neurophysiol 2016; 117:303-315. [PMID: 27784802 DOI: 10.1152/jn.00292.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/18/2016] [Indexed: 11/22/2022] Open
Abstract
Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (RT) and actual trajectory (QT) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing. NEW & NOTEWORTHY Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching.
Collapse
Affiliation(s)
- Yosuke Tomita
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada
| | - Anatol G Feldman
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada; and.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada
| | - Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada; .,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Jewish Rehabilitation Hospital, Laval, Quebec, Canada
| |
Collapse
|
23
|
Feldman AG, Levin MF. Spatial control of reflexes, posture and movement in normal conditions and after neurological lesions. J Hum Kinet 2016; 52:21-34. [PMID: 28149391 PMCID: PMC5260515 DOI: 10.1515/hukin-2015-0191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 11/24/2022] Open
Abstract
Control of reflexes is usually associated with central modulation of their sensitivity (gain) or phase-dependent inhibition and facilitation of their influences on motoneurons (reflex gating). Accumulated empirical findings show that the gain modulation and reflex gating are secondary, emergent properties of central control of spatial thresholds at which reflexes become functional. In this way, the system pre-determines, in a feedforward and task-specific way, where, in a spatial domain or a frame of reference, muscles are allowed to work without directly prescribing EMG activity and forces. This control strategy is illustrated by considering reflex adaptation to repeated muscle stretches in healthy subjects, a process associated with implicit learning and generalization. It has also been shown that spasticity, rigidity, weakness and other neurological motor deficits may have a common source - limitations in the range of spatial threshold control elicited by neural lesions.
Collapse
Affiliation(s)
- Anatol G. Feldman
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, Quebec, Canada
| | - Mindy F. Levin
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, Quebec, Canada
| |
Collapse
|
24
|
Feldman AG. Active sensing without efference copy: referent control of perception. J Neurophysiol 2016; 116:960-76. [PMID: 27306668 PMCID: PMC5009211 DOI: 10.1152/jn.00016.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022] Open
Abstract
Although action and perception are different behaviors, they are likely to be interrelated, as implied by the notions of perception-action coupling and active sensing. Traditionally, it has been assumed that the nervous system directly preprograms motor commands required for actions and uses a copy of them called efference copy (EC) to also influence our senses. This review offers a critical analysis of the EC concept by identifying its limitations. An alternative to the EC concept is based on the experimentally confirmed notion that sensory signals from receptors are perceived relative to referent signals specified by the brain. These referents also underlie the control of motor actions by predetermining where, in the spatial domain, muscles can work without preprogramming how they should work in terms of motor commands or EC. This approach helps solve several problems of action and explain several sensory experiences, including position sense and the sense that the world remains stationary despite changes in its retinal image during eye or body motion (visual space constancy). The phantom limb phenomenon and other kinesthetic illusions are also explained within this framework.
Collapse
Affiliation(s)
- Anatol G Feldman
- Department of Neuroscience and Institute of Biomedical Engineering, University of Montreal, Montreal, QC, Canada; and Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| |
Collapse
|