1
|
Wei L, Verschooten E, Joris PX. Enhancement of phase-locking in rodents. II. An axonal recording study in chinchilla. J Neurophysiol 2023; 130:751-767. [PMID: 37609701 DOI: 10.1152/jn.00474.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
The trapezoid body (TB) contains axons of neurons residing in the anteroventral cochlear nucleus (AVCN) that provide excitatory and inhibitory inputs to the main monaural and binaural nuclei in the superior olivary complex (SOC). To understand the monaural and binaural response properties of neurons in the medial and lateral superior olive (MSO and LSO), it is important to characterize the temporal firing properties of these inputs. Because of its exceptional low-frequency hearing, the chinchilla (Chinchilla lanigera) is one of the widely used small animal models for studies of hearing. However, the characterization of the output of its ventral cochlear nucleus to the nuclei of the SOC is fragmentary. We obtained responses of TB axons to stimuli typically used in binaural studies and compared these responses to those of auditory nerve (AN) fibers, with a focus on temporal coding. We found enhancement of phase-locking and entrainment, i.e., the ability of a neuron to fire action potentials at a certain stimulus phase for nearly every stimulus period, in TB axons relative to AN fibers. Enhancement in phase-locking and entrainment are quantitatively more modest than in the cat but greater than in the gerbil. As in these species, these phenomena occur not only in low-frequency neurons stimulated at their characteristic frequency but also in neurons tuned to higher frequencies when stimulated with low-frequency tones, to which complex phase-locking behavior with multiple modes of firing per stimulus cycle is frequently observed.NEW & NOTEWORTHY The sensitivity of neurons to small time differences in sustained sounds to both ears is important for binaural hearing, and this sensitivity is critically dependent on phase-locking in the monaural pathways. Although studies in cat showed a marked improvement in phase-locking from the peripheral to the central auditory nervous system, the evidence in rodents is mixed. Here, we recorded from AN and TB of chinchilla and found temporal enhancement, though more limited than in cat.
Collapse
Affiliation(s)
- Liting Wei
- Laboratory of Auditory Neurophysiology, KU Leuven, Leuven, Belgium
| | - Eric Verschooten
- Laboratory of Auditory Neurophysiology, KU Leuven, Leuven, Belgium
| | - Philip X Joris
- Laboratory of Auditory Neurophysiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Joris PX. Use of reverse noise to measure ongoing delay. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:926-937. [PMID: 37578194 DOI: 10.1121/10.0020657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Counts of spike coincidences provide a powerful means to compare responses to different stimuli or of different neurons, particularly regarding temporal factors. A drawback is that these methods do not provide an absolute measure of latency, i.e., the temporal interval between stimulus features and response. It is desirable to have such a measure within the analysis framework of coincidence counting. Single neuron responses were obtained, from 130 fibers in several tracts (auditory nerve, trapezoid body, lateral lemniscus), to a broadband noise and its polarity-inverted version. The spike trains in response to these stimuli are the "forward noise" responses. The same stimuli were also played time-reversed. The resulting spike trains were then again time-reversed: These are the "reverse-noise" responses. The forward and reverse responses were then analyzed with the coincidence count methods we have introduced earlier. Correlograms between forward- and reverse-noise responses show maxima at values consistent with latencies measured with other methods; the pattern of latencies with characteristic frequency, sound pressure level, and recording location was also consistent. At low characteristic frequencies, correlograms were well-predicted by reverse-correlation functions. We conclude that reverse noise provides an easy and reliable means to estimate latency of auditory nerve and brainstem neurons.
Collapse
Affiliation(s)
- Philip X Joris
- Laboratory of Auditory Neurophysiology, KU Leuven, Leuven B-3000, Belgium
| |
Collapse
|
3
|
Temporal Correlates to Monaural Edge Pitch in the Distribution of Interspike Interval Statistics in the Auditory Nerve. eNeuro 2021; 8:ENEURO.0292-21.2021. [PMID: 34281977 PMCID: PMC8387151 DOI: 10.1523/eneuro.0292-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Pitch is a perceptual attribute enabling perception of melody. There is no consensus regarding the fundamental nature of pitch and its underlying neural code. A stimulus which has received much interest in psychophysical and computational studies is noise with a sharp spectral edge. High-pass (HP) or low-pass (LP) noise gives rise to a pitch near the edge frequency (monaural edge pitch; MEP). The simplicity of this stimulus, combined with its spectral and autocorrelation properties, make it an interesting stimulus to examine spectral versus temporal cues that could underly its pitch. We recorded responses of single auditory nerve (AN) fibers in chinchilla to MEP-stimuli varying in edge frequency. Temporal cues were examined with shuffled autocorrelogram (SAC) analysis. Correspondence between the population’s dominant interspike interval and reported pitch estimates was poor. A fuller analysis of the population interspike interval distribution, which incorporates not only the dominant but all intervals, results in good matches with behavioral results, but not for the entire range of edge frequencies that generates pitch. Finally, we also examined temporal structure over a slower time scale, intermediate between average firing rate and interspike intervals, by studying the SAC envelope. We found that, in response to a given MEP stimulus, this feature also systematically varies with edge frequency, across fibers with different characteristic frequency (CF). Because neural mechanisms to extract envelope cues are well established, and because this cue is not limited by coding of stimulus fine-structure, this newly identified slower temporal cue is a more plausible basis for pitch than cues based on fine-structure.
Collapse
|
4
|
McLaughlin M, Franken TP, van der Heijden M, Joris PX. The interaural time difference pathway: a comparison of spectral bandwidth and correlation sensitivity at three anatomical levels. J Assoc Res Otolaryngol 2014; 15:203-18. [PMID: 24402167 DOI: 10.1007/s10162-013-0436-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/20/2013] [Indexed: 11/25/2022] Open
Abstract
Temporal differences between the two ears are critical for spatial hearing. They can be described along axes of interaural time difference (ITD) and interaural correlation, and their processing starts in the brainstem with the convergence of monaural pathways which are tuned in frequency and which carry temporal information. In previous studies, we examined the bandwidth (BW) of frequency tuning at two stages: the auditory nerve (AN) and inferior colliculus (IC), and showed that BW depends on characteristic frequency (CF) but that there is no difference in the mean BW of these two structures when measured in a binaural, temporal framework. This suggested that there is little frequency convergence in the ITD pathway between AN and IC and that frequency selectivity determined by the cochlear filter is preserved up to the IC. Unexpectedly, we found that AN and IC neurons can be similar in CF and BW, yet responses to changes in interaural correlation in the IC were different than expected from coincidence patterns ("pseudo-binaural" responses) in the AN. To better understand this, we here examine the responses of bushy cells, which provide monaural inputs to binaural neurons. Using broadband noise, we measured BW and correlation sensitivity in the cat trapezoid body (TB), which contains the axons of bushy cells. This allowed us to compare these two metrics at three stages in the ITD pathway. We found that BWs in the TB are similar to those in the AN and IC. However, TB neurons were found to be more sensitive to changes in stimulus correlation than AN or IC neurons. This is consistent with findings that show that TB fibers are more temporally precise than AN fibers, but is surprising because it suggests that the temporal information available monaurally is not fully exploited binaurally.
Collapse
Affiliation(s)
- Myles McLaughlin
- Laboratory of Auditory Neurophysiology, Medical School, K.U. Leuven, Campus Gasthuisberg O&N 2, Herestraat 49 bus 1021, 3000, Leuven, Belgium,
| | | | | | | |
Collapse
|
5
|
Recio-Spinoso A, Joris PX. Temporal properties of responses to sound in the ventral nucleus of the lateral lemniscus. J Neurophysiol 2013; 111:817-35. [PMID: 24285864 DOI: 10.1152/jn.00971.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Besides the rapid fluctuations in pressure that constitute the "fine structure" of a sound stimulus, slower fluctuations in the sound's envelope represent an important temporal feature. At various stages in the auditory system, neurons exhibit tuning to envelope frequency and have been described as modulation filters. We examine such tuning in the ventral nucleus of the lateral lemniscus (VNLL) of the pentobarbital-anesthetized cat. The VNLL is a large but poorly accessible auditory structure that provides a massive inhibitory input to the inferior colliculus. We test whether envelope filtering effectively applies to the envelope spectrum when multiple envelope components are simultaneously present. We find two broad classes of response with often complementary properties. The firing rate of onset neurons is tuned to a band of modulation frequencies, over which they also synchronize strongly to the envelope waveform. Although most sustained neurons show little firing rate dependence on modulation frequency, some of them are weakly tuned. The latter neurons are usually band-pass or low-pass tuned in synchronization, and a reverse-correlation approach demonstrates that their modulation tuning is preserved to nonperiodic, noisy envelope modulations of a tonal carrier. Modulation tuning to this type of stimulus is weaker for onset neurons. In response to broadband noise, sustained and onset neurons tend to filter out envelope components over a frequency range consistent with their modulation tuning to periodically modulated tones. The results support a role for VNLL in providing temporal reference signals to the auditory midbrain.
Collapse
Affiliation(s)
- Alberto Recio-Spinoso
- Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and
| | | |
Collapse
|
6
|
Ongoing temporal coding of a stochastic stimulus as a function of intensity: time-intensity trading. J Neurosci 2012; 32:9517-27. [PMID: 22787037 DOI: 10.1523/jneurosci.0103-12.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stimulus-locked temporal codes are increasingly seen as relevant to perception. The timing of action potentials typically varies with stimulus intensity, and the invariance of temporal representations with intensity is therefore an issue. We examine the timing of action potentials in cat auditory nerve to broadband noise presented at different intensities, using an analysis inspired by coincidence detection and by the binaural "latency hypothesis." It is known that the two cues for azimuthal sound localization, interaural intensity or level differences and interaural time differences (ITDs), interact perceptually. According to the latency hypothesis, the increase in intensity for the ear nearest to a sound source off the midline causes a decrease in response latency in that ear relative to the other ear. We found that changes in intensity cause small but systematic shifts in the ongoing timing of responses in the auditory nerve, generally but not always resulting in shorter delays between stimulus onset and neural response for increasing intensity. The size of the temporal shifts depends on characteristic frequency with a pattern indicating a fine-structure and an envelope response regime. Overall, the results show that ongoing timing is remarkably stable with intensity at the most peripheral neural level. The results are not consistent in a simple way with the latency hypothesis, but because of the acute sensitivity to ITDs, the subtle effects of intensity on timing may nevertheless have perceptual consequences.
Collapse
|
7
|
Abstract
The ability to determine the location of a sound source is fundamental to hearing. However, auditory space is not represented in any systematic manner on the basilar membrane of the cochlea, the sensory surface of the receptor organ for hearing. Understanding the means by which sensitivity to spatial cues is computed in central neurons can therefore contribute to our understanding of the basic nature of complex neural representations. We review recent evidence concerning the nature of the neural representation of auditory space in the mammalian brain and elaborate on recent advances in the understanding of mammalian subcortical processing of auditory spatial cues that challenge the “textbook” version of sound localization, in particular brain mechanisms contributing to binaural hearing.
Collapse
Affiliation(s)
- Benedikt Grothe
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet, Munich, Germany; and UCL Ear Institute, University College London, United Kingdom
| | - Michael Pecka
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet, Munich, Germany; and UCL Ear Institute, University College London, United Kingdom
| | - David McAlpine
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet, Munich, Germany; and UCL Ear Institute, University College London, United Kingdom
| |
Collapse
|
8
|
Bibikov NG, Nizamov SV. Analysis of single unit activity evoked by tones amplitude-modulated with low-frequency noise in frog medulla. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350909050157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Quantifying envelope and fine-structure coding in auditory nerve responses to chimaeric speech. J Assoc Res Otolaryngol 2009; 10:407-23. [PMID: 19365691 DOI: 10.1007/s10162-009-0169-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 03/13/2009] [Indexed: 10/20/2022] Open
Abstract
Any sound can be separated mathematically into a slowly varying envelope and rapidly varying fine-structure component. This property has motivated numerous perceptual studies to understand the relative importance of each component for speech and music perception. Specialized acoustic stimuli, such as auditory chimaeras with the envelope of one sound and fine structure of another have been used to separate the perceptual roles for envelope and fine structure. Cochlear narrowband filtering limits the ability to isolate fine structure from envelope; however, envelope recovery from fine structure has been difficult to evaluate physiologically. To evaluate envelope recovery at the output of the cochlea, neural cross-correlation coefficients were developed that quantify the similarity between two sets of spike-train responses. Shuffled auto- and cross-correlogram analyses were used to compute separate correlations for responses to envelope and fine structure based on both model and recorded spike trains from auditory nerve fibers. Previous correlogram analyses were extended to isolate envelope coding more effectively in auditory nerve fibers with low center frequencies, which are particularly important for speech coding. Recovered speech envelopes were present in both model and recorded responses to one- and 16-band speech fine-structure chimaeras and were significantly greater for the one-band case, consistent with perceptual studies. Model predictions suggest that cochlear recovered envelopes are reduced following sensorineural hearing loss due to broadened tuning associated with outer-hair cell dysfunction. In addition to the within-fiber cross-stimulus cases considered here, these neural cross-correlation coefficients can also be used to evaluate spatiotemporal coding by applying them to cross-fiber within-stimulus conditions. Thus, these neural metrics can be used to quantitatively evaluate a wide range of perceptually significant temporal coding issues relevant to normal and impaired hearing.
Collapse
|
10
|
Mc Laughlin M, Chabwine JN, van der Heijden M, Joris PX. Comparison of bandwidths in the inferior colliculus and the auditory nerve. II: Measurement using a temporally manipulated stimulus. J Neurophysiol 2008; 100:2312-27. [PMID: 18701761 DOI: 10.1152/jn.90252.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To localize low-frequency sounds, humans rely on an interaural comparison of the temporally encoded sound waveform after peripheral filtering. This process can be compared with cross-correlation. For a broadband stimulus, after filtering, the correlation function has a damped oscillatory shape where the periodicity reflects the filter's center frequency and the damping reflects the bandwidth (BW). The physiological equivalent of the correlation function is the noise delay (ND) function, which is obtained from binaural cells by measuring response rate to broadband noise with varying interaural time delays (ITDs). For monaural neurons, delay functions are obtained by counting coincidences for varying delays across spike trains obtained to the same stimulus. Previously, we showed that BWs in monaural and binaural neurons were similar. However, earlier work showed that the damping of delay functions differs significantly between these two populations. Here, we address this paradox by looking at the role of sensitivity to changes in interaural correlation. We measured delay and correlation functions in the cat inferior colliculus (IC) and auditory nerve (AN). We find that, at a population level, AN and IC neurons with similar characteristic frequencies (CF) and BWs can have different responses to changes in correlation. Notably, binaural neurons often show compression, which is not found in the AN and which makes the shape of delay functions more invariant with CF at the level of the IC than at the AN. We conclude that binaural sensitivity is more dependent on correlation sensitivity than has hitherto been appreciated and that the mechanisms underlying correlation sensitivity should be addressed in future studies.
Collapse
Affiliation(s)
- Myles Mc Laughlin
- Laboratory of Auditory Neurophysiology, Medical School, K. U. Leuven, Campus Gasthuisberg O&N 2, Herestraat 49 bus 1021, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|