1
|
Robotized Knee-Ankle-Foot Orthosis-Assisted Gait Training on Genu Recurvatum during Gait in Patients with Chronic Stroke: A Feasibility Study and Case Report. J Clin Med 2023; 12:jcm12020415. [PMID: 36675345 PMCID: PMC9860649 DOI: 10.3390/jcm12020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Genu recurvatum (knee hyperextension) is a common problem after stroke. It is important to promote the coordination between knee and ankle movements during gait; however, no study has investigated how multi-joint assistance affects genu recurvatum. We are developing a gait training technique that uses robotized knee-ankle-foot orthosis (KAFO) to assists the knee and ankle joints simultaneously. This report aimed to investigate the safety of robotized KAFO-assisted gait training (Experiment 1) and a clinical trial to treat genu recurvatum in a patient with stroke (Experiment 2). Six healthy participants and eight patients with chronic stroke participated in Experiment 1. They received robotized KAFO-assisted gait training for one or 10 sessions. One patient with chronic stroke participated in Experiment 2 to investigate the effect of robotized KAFO-assisted gait training on genu recurvatum. The patient received the training for 30 min/day for nine days. The robot consisted of KAFO and an attached actuator of four pneumatic artificial muscles. The assistance parameters were adjusted by therapists to prevent genu recurvatum during gait. In Experiment 2, we evaluated the knee joint angle during overground gait, Fugl-Meyer Assessment of lower extremity (FMA-LE), modified Ashworth scale (MAS), Gait Assessment and Intervention Tool (G.A.I.T.), 10-m gait speed test, and 6-min walk test (6MWT) before and after the intervention without the robot. All participants completed the training in both experiments safely. In Experiment 2, genu recurvatum, FMA-LE, MAS, G.A.I.T., and 6MWT improved after robotized KAFO-assisted gait training. The results indicated that the multi-joint assistance robot may be effective for genu recurvatum after stroke.
Collapse
|
2
|
Takahashi Y, Kawakami M, Mikami R, Nakajima T, Nagumo T, Yamaguchi T, Honaga K, Kondo K, Ishii R, Fujiwara T, Liu M. Relationship between spinal reflexes and leg motor function in sub-acute and chronic stroke patients. Clin Neurophysiol 2022; 138:74-83. [DOI: 10.1016/j.clinph.2022.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/27/2022] [Accepted: 02/27/2022] [Indexed: 11/03/2022]
|
3
|
Becker M, Parker D. Time course of functional changes in locomotor and sensory systems after spinal cord lesions in lamprey. J Neurophysiol 2019; 121:2323-2335. [DOI: 10.1152/jn.00120.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Changes in motor and sensory properties occur either side of spinal cord lesion sites from lower vertebrates to humans. We have previously examined these changes in the lamprey, a model system for studying recovery after spinal cord injury. These analyses were performed 8–12 wk after complete spinal cord lesions, a time when most animals have recovered good locomotor function. However, anatomical analyses have been performed at earlier and later times than this. Because there have been no functional studies at these times, in this study we have examined changes between 2 and 24+ wk after lesioning. Functional changes developed at different times in different regions of the spinal cord. Spinal cord excitability was significantly reduced above and below the lesion site less than 6 wk after lesioning but showed variable region-specific changes at later times. Excitatory synaptic inputs to motor neurons were increased above the lesion site during the recovery phase (2–8 wk after lesioning) but only increased below the lesion site once recovery had occurred (8 wk and later). These synaptic effects were associated with lesion-induced changes in connectivity between premotor excitatory interneurons. Sensory inputs were potentiated at 8 wk and later after lesioning but were markedly reduced at earlier times. There are thus time- and region-specific changes in motor and sensory properties above and below the lesion site. Although animals typically recover good locomotor function by 8 wk, there were further changes at 24+ wk. With the assumption that these changes can help to compensate for the reduced descending input to the spinal cord, effects at later times may reflect ongoing modifications as regeneration continues. NEW & NOTEWORTHY The lamprey is a model system for studying functional recovery and regeneration after spinal cord injury. We show that changes in spinal cord excitability and sensory inputs develop at different times above and below the lesion site during recovery. These changes may occur in response to the lesion-induced removal of descending inputs and may subsequently help to compensate for the reduction of the descending drive to allow locomotor recovery. Changes also continue once animals have recovered locomotor function, potentially reflecting adaptations to further regeneration at later recovery times.
Collapse
Affiliation(s)
- Matthew Becker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - David Parker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Parker D. The Lesioned Spinal Cord Is a "New" Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey. Front Neural Circuits 2017; 11:84. [PMID: 29163065 PMCID: PMC5681538 DOI: 10.3389/fncir.2017.00084] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/16/2017] [Indexed: 01/13/2023] Open
Abstract
Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where comparisons with mammalian systems can be made effects seem to be conserved, improving functional recovery in higher vertebrates will require interventions that generate the optimal spinal cord conditions conducive to recovery. The analyses needed to identify these conditions are difficult in the mammalian spinal cord, but lower vertebrate systems should help to identify the principles of the optimal spinal cord response to injury.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Abnormal cutaneous flexor reflex activity during controlled isometric plantarflexion in human spinal cord injury spasticity syndrome. Spinal Cord 2016; 54:687-94. [PMID: 26902460 DOI: 10.1038/sc.2016.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/18/2015] [Accepted: 01/02/2016] [Indexed: 11/09/2022]
|
6
|
Barroso FO, Torricelli D, Bravo-Esteban E, Taylor J, Gómez-Soriano J, Santos C, Moreno JC, Pons JL. Muscle Synergies in Cycling after Incomplete Spinal Cord Injury: Correlation with Clinical Measures of Motor Function and Spasticity. Front Hum Neurosci 2016; 9:706. [PMID: 26793088 PMCID: PMC4707299 DOI: 10.3389/fnhum.2015.00706] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/15/2015] [Indexed: 11/24/2022] Open
Abstract
Background: After incomplete spinal cord injury (iSCI), patients suffer important sensorimotor impairments, such as abnormal locomotion patterns and spasticity. Complementary to current clinical diagnostic procedures, the analysis of muscle synergies has emerged as a promising tool to study muscle coordination, which plays a major role in the control of multi-limb functional movements. Objective: Based on recent findings suggesting that walking and cycling share similar synergistic control, the analysis of muscle synergies during cycling might be explored as an early descriptor of gait-related impaired control. This idea was split into the following two hypotheses: (a) iSCI patients present a synergistic control of muscles during cycling; (b) muscle synergies outcomes extracted during cycling correlate with clinical measurements of gait performance and/or spasticity. Methods: Electromyographic (EMG) activity of 13 unilateral lower limb muscles was recorded in a group of 10 healthy individuals and 10 iSCI subjects during cycling at four different cadences. A non-negative matrix factorization (NNMF) algorithm was applied to identify synergistic components (i.e., activation coefficients and muscle synergy vectors). Reconstruction goodness scores (VAF and r2) were used to evaluate the ability of a given number of synergies to reconstruct the EMG signals. A set of metrics based on the similarity between pathologic and healthy synergies were correlated with clinical scales of gait performance and spasticity. Results: iSCI patients preserved a synergistic control of muscles during cycling. The similarity with the healthy reference was consistent with the degree of the impairment, i.e., less impaired patients showed higher similarities with the healthy reference. There was a strong correlation between reconstruction goodness scores at 42 rpm and motor performance scales (TUG, 10-m test and WISCI II). On the other hand, the similarity between the healthy and affected synergies presented correlation with some spasticity symptoms measured by Penn, Modified Ashworth and SCATS scales. Conclusion: Overall, the results of this study support the hypothesis that the analysis of muscle synergies during cycling can provide detailed quantitative assessment of functional motor impairments and symptoms of spasticity caused by abnormal spatiotemporal muscle co-activation following iSCI.
Collapse
Affiliation(s)
- Filipe O Barroso
- Electronics Department, University of MinhoGuimarães, Portugal; Neural Rehabilitation Group, Cajal Institute, Spanish National Research CouncilMadrid, Spain
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council Madrid, Spain
| | - Elisabeth Bravo-Esteban
- Sensorimotor Function Group - Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha (SESCAM)Toledo, Spain; iPhysio Research Group, San Jorge UniversityZaragoza, Spain
| | - Julian Taylor
- Sensorimotor Function Group - Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha (SESCAM)Toledo, Spain; National Spinal Injuries Centre, Stoke Mandeville Spinal Research, Buckinghamshire Health Trust, National Health Service (NHS)Aylesbury, UK; Harris Manchester College, University of OxfordOxford, UK
| | - Julio Gómez-Soriano
- Sensorimotor Function Group - Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha (SESCAM)Toledo, Spain; Toledo Physiotherapy Research Group (GIFTO), Nursing and Physical Therapy School, Castilla la Mancha UniversityToledo, Spain
| | - Cristina Santos
- Electronics Department, University of Minho Guimarães, Portugal
| | - Juan C Moreno
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council Madrid, Spain
| | - José L Pons
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council Madrid, Spain
| |
Collapse
|
7
|
Svensson E, Kim O, Parker D. Altered GABA and somatostatin modulation of proprioceptive feedback after spinal cord injury in lamprey. Neuroscience 2013; 235:109-18. [PMID: 23333673 DOI: 10.1016/j.neuroscience.2013.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/29/2012] [Accepted: 01/03/2013] [Indexed: 11/29/2022]
Abstract
While various changes occur after spinal cord lesions, their influence on functional recovery is generally unclear. We have shown changes in proprioceptor and locomotor network properties below lesion sites in the lamprey spinal cord. The proprioceptive system offers a particularly tractable model for analyzing these changes. Here, we have sought evidence for changes in neuromodulatory effects below lesion sites by comparing the effects of gamma-aminobutyric acid (GABA) and somatostatin, both of which are located around the edge cells, on proprioceptive responses in lesioned and unlesioned spinal cords. Exogenously applied GABA significantly reduced or abolished bending-evoked responses in unlesioned animals. In lesioned animals bending-evoked responses were stronger and certain of the effects of exogenously applied GABA were reduced. However, blocking endogenous GABA with bicuculline significantly potentiated responses in lesioned but not unlesioned animals. This suggested that the potentiated responses in lesioned animals were nevertheless associated with stronger tonic GABAergic inhibition. There were significant differences in these effects when lesioned animals were separated on the basis of their degree of recovery: notably, bicuculline only potentiated responses in animals that recovered good locomotor function, suggesting a need for raised endogenous GABA levels. Somatostatin alone did not affect edge cell responses in lesioned or unlesioned animals, but in lesioned animals it reduced and thus further weakened the inhibitory effects of GABA. There are thus multiple changes in sensory modulation in the lesioned spinal cord, and differences in these effects may influence the degree of recovery.
Collapse
Affiliation(s)
- E Svensson
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK.
| | | | | |
Collapse
|
8
|
Harris RL, Bennett DJ, Levine MA, Putman CT. Tail muscle parvalbumin content is decreased in chronic sacral spinal cord injured rats with spasticity. Exp Physiol 2011; 96:1311-20. [PMID: 21930674 DOI: 10.1113/expphysiol.2011.061614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In rats, chronic sacral spinal isolation eliminates both descending and afferent inputs to motoneurons supplying the segmental tail muscles, eliminating daily tail muscle EMG activity. In contrast, chronic sacral spinal cord transection preserves afferent inputs, causing tail muscle spasticity that generates quantitatively normal daily EMG. Compared with normal rats, rats with spinal isolation and transection/spasticity provide a chronic model of progressive neuromuscular injury. Using normal, spinal isolated and spastic rats, we characterized the activity dependence of calcium-handling protein expression for parvalbumin, fast sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1) and slow SERCA2. As these proteins may influence fatigue resistance, we also assayed the activities of oxidative (citrate synthase; CS) and glycolytic enzymes (glyceraldehyde phosphate dehydrogenase; GAPDH). We hypothesized that, compared with normal rats, chronic isolation would cause decreased parvalbumin, SERCA1 and SERCA2 expression and CS and GAPDH activities. We further hypothesized that chronic spasticity would promote recovery of parvalbumin, SERCA1 and SERCA2 expression and of CS and GAPDH activities. Parvalbumin, SERCA1 and SERCA2 were quantified with Western blotting. Citrate synthase and GAPDH activities were quantified photometrically. Compared with normal rats, spinal isolation caused large decreases in parvalbumin (95%), SERCA1 (70%) and SERCA2 (68%). Compared with spinal isolation, spasticity promoted parvalbumin recovery (ninefold increase) and a SERCA2-to-SERCA1 transformation (84% increase in the ratio of SERCA1 to SERCA2). Compared with normal values, CS and GAPDH activities decreased in isolated and spastic muscles. In conclusion, with complete paralysis due to spinal isolation, parvalbumin expression is nearly eliminated, but with muscle spasticity after spinal cord transection, parvalbumin expression partly recovers. Additionally, spasticity after transection causes a slow-to-fast SERCA isoform transformation that may be compensatory for decreased parvalbumin content.
Collapse
Affiliation(s)
- R Luke Harris
- School of Health Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada.
| | | | | | | |
Collapse
|
9
|
Gómez-Soriano J, Goiriena E, Taylor J. Spasticity therapy reacts to astrocyte GluA1 receptor upregulation following spinal cord injury. Br J Pharmacol 2011; 161:972-5. [PMID: 20662840 DOI: 10.1111/j.1476-5381.2010.00964.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
For almost three decades intrathecal baclofen therapy has been the standard treatment for spinal cord injury spasticity when oral medication is ineffective or produces serious side effects. Although intrathecal baclofen therapy has a good clinical benefit-risk ratio for spinal spasticity, tolerance and the life-threatening withdrawal syndrome present serious problems for its management. Now, in an experimental model of spinal cord injury spasticity, AMPA receptor blockade with NGX424(Tezampanel) has been shown to reduce stretch reflex activity alone and during tolerance to intrathecal baclofen therapy.These results stem from the observation that GluA1 receptors are overexpressed on reactive astrocytes following experimental ischaemic spinal cord injury. Although further validation is required, the appropriate choice of AMPA receptor antagonists for treatment of stretch hyperreflexia based on our recent understanding of reactive astrocyte neurobiology following spinal cord injury may lead to the development of a better adjunct clinical therapy for spasticity without the side effects of intrathecal baclofen therapy.
Collapse
Affiliation(s)
- Julio Gómez-Soriano
- Grupo Función Sensitivomotora, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, Toledo, Spain
| | | | | |
Collapse
|
10
|
Gómez-Soriano J, Castellote JM, Pérez-Rizo E, Esclarin A, Taylor JS. Voluntary ankle flexor activity and adaptive coactivation gain is decreased by spasticity during subacute spinal cord injury. Exp Neurol 2010; 224:507-16. [PMID: 20580713 DOI: 10.1016/j.expneurol.2010.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/18/2010] [Indexed: 11/24/2022]
Abstract
Although spasticity has been defined as an increase in velocity-dependent stretch reflexes and muscle hypertonia during passive movement, the measurement of flexor muscle paresis may better characterize the negative impact of this syndrome on residual motor function following incomplete spinal cord injury (iSCI). In this longitudinal study Tibialis Anterior (TA) muscle paresis produced by a loss in maximal voluntary contraction during dorsiflexion and ankle flexor muscle coactivation during ramp-and-hold controlled plantarflexion was measured in ten patients during subacute iSCI. Tibialis Anterior activity was measured at approximately two-week intervals between 3-5 months following iSCI in subjects with or without spasticity, characterized by lower-limb muscle hypertonia and/or involuntary spasms. Following iSCI, maximal voluntary contraction ankle flexor activity was lower than that recorded from healthy subjects, and was further attenuated by the presence of spasticity. Furthermore the initially high percentage value of TA coactivation increased at 75% but not at 25% maximal voluntary torque (MVT), reflected by an increase in TA coactivation gain (75%/25% MVT) from 2.5+/-0.4 to 7.5+/-1.9, well above the control level of 2.9+/-0.2. In contrast contraction-dependent TA coactivation gain decreased from 2.4+/-0.3 to 1.4+/-0.1 during spasticity. In conclusion the adaptive increase in TA coactivation gain observed in this pilot study during subacute iSCI was also sensitive to the presence of spasticity. The successful early diagnosis and treatment of spasticity would be expected to further preserve and promote adaptive motor function during subacute iSCI neurorehabilitation.
Collapse
Affiliation(s)
- J Gómez-Soriano
- Grupo Funcion Sensitivomotora, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | | | | | | | | |
Collapse
|
11
|
Espasticidad después de la lesión medular: revisión de los mecanismos fisiopatológicos, técnicas de diagnóstico y tratamientos fisioterapéuticos actuales. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.ft.2009.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|