1
|
Osaki H, Mori M, Oshima K, Shimazu Y, Takeda M. Effect of local administration of eicosapentaenoic acid on the jaw-opening reflex in rats. Eur J Oral Sci 2023; 131:e12917. [PMID: 36749095 DOI: 10.1111/eos.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/14/2023] [Indexed: 02/08/2023]
Abstract
Although eicosapentaenoic acid (EPA) application in vitro inhibits voltage-gated Na+ (Nav) channels in excitable tissues, the acute local effect of EPA on the jaw-opening reflex in vivo remains unknown. The aim of the present study was to determine whether local administration of EPA to adult male Wistar rats could attenuate the excitability of the jaw-opening reflex in vivo, including nociception. The jaw-opening reflex evoked by electrical stimulation of the tongue was recorded by a digastric muscle electromyogram (dEMG) in pentobarbital-anesthetized rats. The amplitude of the dEMG response was significantly increased in proportion to the electrical stimulation intensity (1×-5× threshold). At 3×, local administration of EPA dose-dependently inhibited the dEMG response, lasting 60 min, with maximum inhibition observed within approximately 10 min. The mean magnitude of dEMG signal inhibition by EPA was almost equal to that observed with a local anesthetic, 1% lidocaine, and with a half dose of lidocaine plus a half dose of EPA. These findings suggest that EPA attenuates the jaw-opening reflex, possibly by blocking Nav channels of primary nerve terminals, and strongly support the idea that EPA is a potential therapeutic agent and complementary alternative medicine for the prevention of acute trigeminal nociception.
Collapse
Affiliation(s)
- Hibiki Osaki
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| | - Mina Mori
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| | - Katsuo Oshima
- Department of Dental Technology, The Nippon Dental University College, Tokyo, Japan
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, Sagamihara, Japan
| |
Collapse
|
2
|
Developmental changes in GABAergic and glycinergic synaptic transmission to rat motoneurons innervating jaw-closing and jaw-opening muscles. Brain Res 2021; 1777:147753. [PMID: 34914930 DOI: 10.1016/j.brainres.2021.147753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022]
Abstract
Trigeminal motoneurons (MNs) innervating the jaw-closing and jaw-opening muscles receive numerous inhibitory synaptic inputs from GABAergic and glycinergic neurons, which are essential for oromotor functions, such as the orofacial reflex, suckling, and mastication. The properties of the GABAergic and glycinergic inputs of these MNs undergo developmental alterations during the period in which their feeding behavior proceeds from suckling to mastication; however, the detailed characteristics of the developmental patterns of GABAergic and glycinergic transmission in these neurons remain to be elucidated. This study was conducted to investigate developmental changes in miniature inhibitory postsynaptic currents (mIPSCs) in masseter (jaw-closing) and digastric (jaw-opening) MNs using brainstem slice preparations obtained from Wistar rats on postnatal day (P)2-5, P9-12, and P14-17. The frequency and amplitude of glycinergic mIPSCs substantially increased with age in both the masseter and digastric MNs. The rise time and decay time of glycinergic mIPSCs in both MNs decreased during development. In contrast, the frequency of GABAergic components in masseter MNs was higher at P2-5 than at P14-17, whereas that in the digastric MNs remained unchanged throughout the postnatal period. The proportion of currents mediated by GABA-glycine co-transmission was higher at P2-5, and then it decreased with age in both MNs. These results suggest that characteristics related to the development of inhibitory synaptic inputs differ between jaw-closing and jaw-opening MNs and between GABAergic and glycinergic currents. These distinct developmental characteristics may contribute to the development of feeding behaviors.
Collapse
|
3
|
Iwata K, Sessle BJ. The Evolution of Neuroscience as a Research Field Relevant to Dentistry. J Dent Res 2020; 98:1407-1417. [PMID: 31746682 DOI: 10.1177/0022034519875724] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The field of neuroscience did not exist as such when the Journal of Dental Research was founded 100 y ago. It has emerged as an important scientific field relevant to dentistry in view of the many neurally based functions manifested in the orofacial area (e.g., pain, taste, chewing, swallowing, salivation). This article reviews many of the novel insights that have been gained through neuroscience research into the neural basis of these functions and their clinical relevance to the diagnosis and management of pain and sensorimotor disorders. These include the neural pathways and brain circuitry underlying each of these functions and the role of nonneural as well as neural processes and their "plasticity" in modulating these functions and allowing for adaptation to tissue injury and pain and for learning or rehabilitation of orofacial functions.
Collapse
Affiliation(s)
- K Iwata
- Department of Physiology, Nihon University, School of Dentistry, Tokyo, Japan
| | - B J Sessle
- Faculty of Dentistry and Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Local anesthetic effect of docosahexaenoic acid on the nociceptive jaw-opening reflex in rats. Neurosci Res 2018; 137:30-35. [DOI: 10.1016/j.neures.2018.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/13/2018] [Accepted: 02/21/2018] [Indexed: 02/01/2023]
|
5
|
Vesicular glutamate transporter 1 (VGLUT1)- and VGLUT2-immunopositive axon terminals on the rat jaw-closing and jaw-opening motoneurons. Brain Struct Funct 2018; 223:2323-2334. [DOI: 10.1007/s00429-018-1636-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/19/2018] [Indexed: 12/16/2022]
|
6
|
Kokuba S, Takehana S, Oshima K, Shimazu Y, Takeda M. Systemic administration of the dietary constituent resveratrol inhibits the nociceptive jaw-opening reflex in rats via the endogenous opioid system. Neurosci Res 2017; 119:1-6. [PMID: 28153523 DOI: 10.1016/j.neures.2017.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 11/15/2022]
Abstract
The aim of the present study was to investigate whether, under in vivo conditions, systemic administration of resveratrol could attenuate the rat nociceptive jaw-opening reflex (JOR) via the endogenous opioid system. The JOR evoked by electrical stimulation of the tongue was recorded as digastric muscle electromyograms (dEMG) in pentobarbital-anesthetized rats. The amplitude of the dEMG increased significantly in proportion to the intensity of electrical stimulation (from 1× to 5 × threshold for the JOR). dEMG amplitude in response to 3× threshold electrical stimulation of the tongue was dose-dependently inhibited by intravenous administration of resveratrol (0.5-2mg/kg). Maximum inhibition of dEMG amplitude was seen within approximately 10min. These inhibitory effects were reversible, with dEMG responses returning to control levels after approximately 20min. Pretreatment of rats with naloxone resulted in significant, dose-dependent attenuation of the inhibitory effects of resveratrol on dEMG amplitude compared with control. These findings suggest that resveratrol inhibits the nociceptive JOR via the endogenous opioid system. Further, the findings of the present study strongly support the idea that resveratrol, which is not known to have any toxic side effects, combined with an opioid could be a potential therapeutic agent for the prevention of acute trigeminal nociception.
Collapse
Affiliation(s)
- Shota Kokuba
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Shiori Takehana
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Katsuo Oshima
- Department of Dental Technology, The Nippon Dental University College at Tokyo, 2-3-16, Fujimi-cho, Chiyoda-ku 102-007, Japan
| | - Yoshihito Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
7
|
Satoh Y, Ishizuka K, Takahashi M, Iwasaki SI. Role of the vestibular nuclear complex in facilitating the jaw-opening reflex following stimulation of the red nucleus. Neurosci Res 2016; 110:29-36. [PMID: 26945617 DOI: 10.1016/j.neures.2016.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/08/2016] [Accepted: 02/23/2016] [Indexed: 01/21/2023]
Abstract
According to our previous studies, stimulation of the red nucleus (RN) facilitates the low-threshold afferent-evoked jaw-opening reflex (L-JOR). It has been reported that the RN projects to the superior (SVN), lateral (LVN) and inferior vestibular (IVN) nuclei. The SVN and the LVN have reciprocal intrinsic connections with the medial vestibular nucleus (MVN). Our previous study demonstrated that stimulation of the vestibular nuclear complex (VN) modulates the L-JOR. These facts suggest that RN-induced facilitation of the L-JOR is mediated via the VN. In the present work we investigated whether electrically induced lesions of the VN, or microinjection of muscimol into the VN, affects RN-induced facilitation of the L-JOR. The L-JOR was evoked by electrical stimulation of the inferior alveolar nerve. The stimulus intensity was 1.2 times the evocation threshold. Lesions of the MVN or the LVN or the SVN, and the muscimol injection into the MVN or the LVN or the SVN, reduced the RN-induced facilitation of the L-JOR. Conversely, lesions of the IVN, and the muscimol injection into the IVN, increased the RN-induced facilitation of the L-JOR. These results suggest that the RN-induced facilitation of the L-JOR is mediated by a relay in the VN.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan.
| | - Ken'Ichi Ishizuka
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| | - Mutsumi Takahashi
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan; Department of Removable Prosthodontics, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| | - Shin-Ichi Iwasaki
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| |
Collapse
|
8
|
Johansson AS, Pruszynski JA, Edin BB, Westberg KG. Biting intentions modulate digastric reflex responses to sudden unloading of the jaw. J Neurophysiol 2014; 112:1067-73. [PMID: 24899675 DOI: 10.1152/jn.00133.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reflex responses in jaw-opening muscles can be evoked when a brittle object cracks between the teeth and suddenly unloads the jaw. We hypothesized that this reflex response is flexible and, as such, is modulated according to the instructed goal of biting through an object. Study participants performed two different biting tasks when holding a peanut half stacked on a chocolate piece between their incisors. In one task, they were asked to split the peanut half only (single-split task), and in the other task, they were asked to split both the peanut and the chocolate in one action (double-split task). In both tasks, the peanut split evoked a jaw-opening muscle response, quantified from electromyogram (EMG) recordings of the digastric muscle in a window 20-60 ms following peanut split. Consistent with our hypothesis, we found that the jaw-opening muscle response in the single-split trials was about twice the size of the jaw-opening muscle response in the double-split trials. A linear model that predicted the jaw-opening muscle response on a single-trial basis indicated that task settings played a significant role in this modulation but also that the presplit digastric muscle activity contributed to the modulation. These findings demonstrate that, like reflex responses to mechanical perturbations in limb muscles, reflex responses in jaw muscles not only show gain-scaling but also are modulated by subject intent.
Collapse
Affiliation(s)
- Anders S Johansson
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Umeå, Sweden
| | - J Andrew Pruszynski
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Umeå, Sweden
| | - Benoni B Edin
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Umeå, Sweden
| | - Karl-Gunnar Westberg
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Role of the red nucleus in suppressing the jaw-opening reflex following stimulation of the raphe magnus nucleus. Neurosci Res 2014; 85:12-9. [PMID: 24929104 DOI: 10.1016/j.neures.2014.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/15/2014] [Accepted: 05/17/2014] [Indexed: 11/22/2022]
Abstract
In a previous study, we found that electrical and chemical stimulation of the red nucleus (RN) suppressed the high-threshold afferent-evoked jaw-opening reflex (JOR). It has been reported that the RN receives bilaterally projection fibers from the raphe magnus nucleus (RMg), and that stimulation of the RMg inhibits the tooth pulp-evoked nociceptive JOR. These facts imply that RMg-induced inhibition of the JOR could be mediated via the RN. The present study first examines whether stimulation of the RMg suppresses the high-threshold afferent-evoked JOR. The JOR was evoked by electrical stimulation of the inferior alveolar nerve (IAN), and was recorded as the electromyographic response of the anterior belly of the digastric muscle. The stimulus intensity was 4.0 (high-threshold) times the threshold. Conditioning electrical stimulation of the RMg significantly suppressed the JOR. A further study then examined whether electrically induced lesions of the RN or microinjection of muscimol into the RN affects RMg-induced suppression of the JOR. Electrically induced lesions of the bilateral RN and microinjection of muscimol into the bilateral RN both reduced the RMg-induced suppression of the JOR. These results suggest that RMg-induced suppression of the high-threshold afferent-evoked JOR is mediated by a relay in the RN.
Collapse
|
10
|
Funaki Y, Hiranuma M, Shibata M, Kokai S, Ono T. Effects of nasal obstruction on maturation of the jaw-opening reflex in growing rats. Arch Oral Biol 2014; 59:530-8. [DOI: 10.1016/j.archoralbio.2014.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/20/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
|
11
|
Nakamura S, Nakayama K, Mochizuki A, Sato F, Haque T, Yoshida A, Inoue T. Electrophysiological and morphological properties of rat supratrigeminal premotor neurons targeting the trigeminal motor nucleus. J Neurophysiol 2014; 111:1770-82. [PMID: 24501266 DOI: 10.1152/jn.00276.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The electrophysiological and morphological characteristics of premotor neurons in the supratrigeminal region (SupV) targeting the trigeminal motor nucleus (MoV) were examined in neonatal rat brain stem slice preparations with Ca(2+) imaging, whole cell recordings, and intracellular biocytin labeling. First, we screened SupV neurons that showed a rapid rise in intracellular free Ca(2+) concentration ([Ca(2+)]i) after single-pulse electrical stimulation of the ipsilateral MoV. Subsequent whole cell recordings were generated from the screened SupV neurons, and their antidromic responses to MoV stimulation were confirmed. We divided the antidromically activated premotor neurons into two groups according to their discharge patterns during the steady state in response to 1-s depolarizing current pulses: those firing at a frequency higher (HF neurons, n = 19) or lower (LF neurons, n = 17) than 33 Hz. In addition, HF neurons had a narrower action potential and a larger afterhyperpolarization than LF neurons. Intracellular labeling revealed that the axons of all HF neurons (6/6) and half of the LF neurons (4/9) entered the MoV from its dorsomedial aspect, whereas the axons of the remaining LF neurons (5/9) entered the MoV from its dorsolateral aspect. Furthermore, the dendrites of three HF neurons penetrated into the principal sensory trigeminal nucleus (Vp), whereas the dendrites of all LF neurons were confined within the SupV. These results suggest that the types of SupV premotor neurons targeting the MoV with different firing properties have different dendritic and axonal morphologies, and these SupV neuron classes may play unique roles in diverse oral motor behaviors, such as suckling and mastication.
Collapse
Affiliation(s)
- Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan; and
| | | | | | | | | | | | | |
Collapse
|
12
|
Satoh Y, Yajima E, Ishizuka K, Iwasaki SI. Role of the lateral reticular nucleus in suppressing the jaw-opening reflex following stimulation of the red nucleus. Neurosci Res 2013; 80:10-6. [PMID: 24370814 DOI: 10.1016/j.neures.2013.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/26/2022]
Abstract
We found in a previous study that stimulation of the red nucleus (RN) facilitated the low-threshold afferent-evoked jaw-opening reflex (JOR) and suppressed the high-threshold afferent-evoked JOR. It has been reported that the RN projections to the contralateral lateral reticular nucleus (LRt), and stimulation of the LRt inhibits the nociceptive JOR. These facts suggest that RN-induced modulation of the JOR is mediated via the LRt. We investigated whether electrically induced lesions of the LRt, or microinjection of muscimol into the LRt, affects RN-induced modulation of the JOR. The JOR was evoked by electrical stimulation of the inferior alveolar nerve (IAN), and was recorded as the electromyographic response of the anterior belly of the digastric muscle. The stimulus intensity was either 1.2 (low-threshold) or 4.0 (high-threshold) times the threshold. Electrically induced lesion of the LRt and microinjection of muscimol into the LRt reduced the RN-induced suppression of the high-threshold afferent-evoked JOR, but did not affect the RN-induced facilitation of the low-threshold afferent-evoked JOR. These results suggest that the RN-induced suppression of the high-threshold afferent-evoked JOR is mediated by a relay in the contralateral LRt.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan.
| | - Eriko Yajima
- Department of Orthodontics, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| | - Ken'Ichi Ishizuka
- Department of Physiology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| | - Shin-ichi Iwasaki
- Department of Physiology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| |
Collapse
|
13
|
Satoh Y, Yajima E, Ishizuka K, Nagamine Y, Iwasaki SI. Modulation of two types of jaw-opening reflex by stimulation of the red nucleus. Brain Res Bull 2013; 97:24-31. [DOI: 10.1016/j.brainresbull.2013.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 01/03/2023]
|
14
|
Satoh Y, Ishizuka K, Yajima E, Nagamine Y, Iwasaki SI. Neuronal activities of the vestibular nuclear complex during mechanically induced rhythmic jaw movements in rats. Brain Res Bull 2012; 89:86-91. [PMID: 22828572 DOI: 10.1016/j.brainresbull.2012.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 01/16/2023]
Abstract
We studied the neuronal activities of the vestibular nuclear complex (VN) neurons during rhythmic jaw movements in rats anesthetized with urethane. Rhythmic jaw movements were induced by mechanical stimulation of the palate mucosa. The firing rate of approximately 25% of VN neurons increased significantly, and that of 10% of VN neurons decreased significantly, during these rhythmic jaw movements. There was no correlation between the change in the firing rate and the phase of the rhythmic jaw movements (jaw-opening and jaw-closing phases). The neurons that were affected were intermingled in the VN. These results suggest that the VN neurons are involved in controlling jaw movements.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan.
| | | | | | | | | |
Collapse
|
15
|
Changsiripun C, Yabushita T, Soma K. Differences in maturation of the jaw-opening reflex between rats that received early-and late-masticatory stimulation. J Oral Rehabil 2012; 39:879-87. [DOI: 10.1111/joor.12000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2012] [Indexed: 11/30/2022]
Affiliation(s)
- C. Changsiripun
- Department of Orthodontics; Faculty of Dentistry; Chulalongkorn University; Bangkok Thailand
| | - T. Yabushita
- Orthodontic Science; Department of Orofacial Development and Function; Division of Oral Health Sciences; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - K. Soma
- Orthodontic Science; Department of Orofacial Development and Function; Division of Oral Health Sciences; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
16
|
Ristić D, Ellrich J. P2X7 receptor blockade reverses purinergic facilitation of neck muscle nociception in mice. Cephalalgia 2012; 32:544-53. [PMID: 22529194 DOI: 10.1177/0333102412444013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Facilitation of neck muscle nociception mediated via purinergic signalling may play a role in the pathophysiology of tension-type headache (TTH). The present study addressed reversal of purinergic facilitation of brainstem nociception via P2X7 antagonist action in anaesthetized mice. METHODS Following administration of α,β-meATP (i.m. 20 µL/min, 20 µL each) into semispinal neck muscles, the impact of neck muscle nociceptive input on brainstem processing was monitored by the jaw-opening reflex in anaesthetized mice (n = 20). The hypothesized involvement of the P2X7 receptor in the α,β-meATP effect was addressed with i.p. (systemic) and i.m. (semispinalis, 20 µL/min, 20 µL each) administration of P2X7 inhibitor A438079 during established facilitation; i.p. saline served as control. RESULTS α,β-meATP reliably induced jaw-opening reflex facilitation (256 ± 48% (mean ± SEM), n = 20). I.p. A438079 (150, 300 µmol/kg) completely reversed this α,β-meATP effect dose-dependently. Neither saline nor intramuscular A438079 (100 µM) altered facilitated brainstem nociceptive processing. DISCUSSION These data suggest that muscular structures are not directly involved in the P2X7 antagonist-mediated reversal of purinergic facilitation. Instead, involvement of neuronal structures, particularly of the central nervous system, seems more probable. The results from this animal experimental model may point to involvement of purinergic P2X7 receptors in TTH pathophysiology and may suggest potential future targets for its pharmacological treatment.
Collapse
|
17
|
Paik SK, Kwak WK, Bae JY, Na YK, Park SY, Yi HW, Ahn DK, Ottersen OP, Yoshida A, Bae YC. Development of γ-aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on rat jaw-opening motoneurons. J Comp Neurol 2012; 520:1212-26. [DOI: 10.1002/cne.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Li Z, Ge S, Zhang F, Zhang T, Mizuno N, Hioki H, Kaneko T, Gao G, Li J. Distribution of Gephyrin-Immunoreactivity in the Trigeminal Motor Nucleus: An Immunohistochemical Study in Rats. Anat Rec (Hoboken) 2012; 295:641-51. [DOI: 10.1002/ar.22426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/10/2012] [Indexed: 11/11/2022]
|
19
|
Acetylsalicylic acid inhibits α,β-meATP-induced facilitation of neck muscle nociception in mice--implications for acute treatment of tension-type headache. Eur J Pharmacol 2011; 673:13-9. [PMID: 22032900 DOI: 10.1016/j.ejphar.2011.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/10/2011] [Indexed: 12/27/2022]
Abstract
Infusion of α,β-methylene ATP (α,β-meATP) into murine neck muscle facilitates brainstem nociception. This animal experimental model is suggested to be appropriate for investigating pathophysiological mechanisms in tension-type headache. It was hypothesized that d-lysine acetylsalicylic acid (ASA, aspirin®) reverses this α,β-meATP effect. Facilitation of neck muscle nociceptive processing was induced via bilateral infusion of α,β-meATP into semispinal neck muscles (100 nM, 20 μl each) in 42 anesthetized mice. Brainstem nociception was monitored by the jaw-opening reflex elicited via electrical tongue stimulation. The hypothesis was addressed by subsequent (15, 30, 60 mg/kg) and preceding (60 mg/kg) intraperitoneal ASA injection. Saline served as control to ASA solution. Subsequent ASA dose-dependently reversed α,β-meATP-induced reflex facilitation and was the most prominent with 60 mg/kg. Preceding 60 mg/kg ASA prevented reflex facilitation. Cyclooxygenases are involved in nociceptive transmission. Former experiments showed that unspecific inhibition of cyclooxygenases does not alter the α,β-meATP effect. This suggests a specific mode of action of ASA. The concept is accepted that neck muscle nociception is involved in the pathophysiology of tension-type headache. Thus, objective proof of ASA effects in this experimental model may emphasize its major role in pharmacological treatment of tension-type headache attacks.
Collapse
|
20
|
Isaak A, Ellrich J. Neuronal nitric oxide synthase is involved in the induction of nerve growth factor-induced neck muscle nociception. Headache 2011; 51:734-43. [PMID: 21434910 DOI: 10.1111/j.1526-4610.2011.01854.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Neck muscle nociception mediated by nitric oxide may play a role in the pathophysiology of tension-type headache. OBJECTIVE The present study addresses the involvement of neuronal nitric oxide synthase (nNOS) in the facilitation of neck muscle nociception after local application of nerve growth factor (NGF). METHODS After administration of NGF into semispinal neck muscles, the impact of neck muscle noxious input on brainstem processing was monitored by the jaw-opening reflex in anesthetized mice. The modulatory effect of preceding and subsequent administration of an inhibitor of neuronal nitric oxide synthase on central facilitation was addressed in a controlled study. RESULTS With preceding i.p. application of saline or 0.096 mg/kg of the specific nNOS inhibitor Nω-propyl-L-arginine (NPLA), NGF induced a sustained reflex facilitation within 60 minutes. Preceding injection of 0.96 mg/kg or 1.92 mg/kg NPLA completely prevented the potentially facilitatory effect of NGF. Subsequent administration of 0.96 mg/kg NPLA did not affect established NGF-evoked reflex facilitation. Thus, NPLA prevents facilitation of brainstem processing by noxious myofascial input from neck muscles in a dose-dependent manner. CONCLUSION These findings suggest that nNOS is involved in the induction but not the maintenance of NGF-evoked facilitation of nociception in the brainstem. These results from an experimental animal model may support the idea of NOS and nNOS as potential targets for pharmacological treatment of tension-type headache.
Collapse
Affiliation(s)
- Andreas Isaak
- Experimental Neurosurgery Section, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
21
|
Luschei ES, Goldberg LJ. Neural Mechanisms of Mandibular Control: Mastication and Voluntary Biting. Compr Physiol 2011. [DOI: 10.1002/cphy.cp010227] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Ristic D, Spangenberg P, Ellrich J. Inhibition of nNOS prevents and inhibition of iNOS reverses α,β-meATP-induced facilitation of neck muscle nociception in mice. Eur J Pharmacol 2010; 647:55-61. [PMID: 20813105 DOI: 10.1016/j.ejphar.2010.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/23/2010] [Accepted: 08/10/2010] [Indexed: 12/24/2022]
Abstract
Infusion of α,β-methylene ATP (α,β-meATP) into murine neck muscle facilitates brainstem nociception. Unspecific nitric oxide synthase (NOS) inhibition prevents and reverses this sensitization. It is unclear whether neuronal (nNOS), inducible (iNOS) or endothelial NOS isoenzymes are involved in this α,β-meATP effect. Hypothesized involvement of nNOS isoenzyme was addressed by preceding (0.5, 1, and 2 mg/kg) and subsequent (2 mg/kg) intraperitoneal injection of the nNOS-inhibitor NPLA. iNOS involvement was addressed by subsequent, intraperitoneal administration of the iNOS-inhibitor 1400 W (2 mg/kg). Brainstem nociception was monitored by the jaw-opening reflex elicited via electrical tongue stimulation in 45 anesthetized mice. Preceding NPLA dose-dependently prevented α,β-meATP-induced reflex facilitation. Whereas subsequent inhibition of nNOS showed no effect, iNOS inhibition by 1400 W significantly reversed reflex facilitation. Data provide evidence that nNOS plays a major role in induction and iNOS in maintenance of facilitation in neck muscle nociception. Divergent roles of NOS isoenzymes may promote research on target specific treatment for headache and neck muscle pain.
Collapse
Affiliation(s)
- Dejan Ristic
- Department of Health Science and Technology, Medical Faculty, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
23
|
|
24
|
Evolutionary psychologists need to distinguish between the evolutionary process, ancestral selection pressures, and psychological mechanisms. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025577] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
|
26
|
|
27
|
Selfishness reexamined: No man is an island. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
How useful is a concept such as muscle partitioning? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
|
30
|
The physiological basis and implications of differential motor activation. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Selfish genes and ingroup altruism. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
A Comparative approach to muscle function. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x0002505x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
|
34
|
|
35
|
|
36
|
Abstract
AbstractSocial dilemmas occur when the pursuit of self-interest by individuals in a group leads to less than optimal collective outcomes for everyone in the group. A critical assumption in the human sciences is that people's choices in such dilemmas are individualistic, selfish, and rational. Hence, cooperation in the support of group welfare will only occur if there are selfish incentives that convert the social dilemma into a nondilemma. In recent years, inclusive fitness theories have lent weight to such traditional views of rational selfishness on Darwinian grounds. To show that cooperation is based on selfish incentives, however, one must provide evidence that people do not cooperate without such incentives. In a series of experimental social dilemmas, subjects were instructed to make single, anonymous choices about whether or not to contribute money for a shared “bonus” that would be provided only if enough other people in the group also contributed their money. Noncontributors cited selfish reasons for their choices; contributors did not. If people are allowed to engage in discussion, they will contribute resources at high rates, frequently on irrational grounds, to promote group welfare. These findings are consistent with previous research on ingroup biasing effects that cannot be explained by “economic man” or “selfish gene” theories. An alternative explanation is that sociality was a primary factor shaping the evolution of Homo sapiens. The cognitive and affective mechanisms underlying such choices evolved under selection pressures on small groups for developing and maintaining group membership and for predicting and controlling the behavior of other group members. This sociality hypothesis organizes previously inexplicable and disparate phenomena in a Darwinian framework and makes novel predictions about human choice.
Collapse
|
37
|
|
38
|
|
39
|
|
40
|
Continuous and discrete models and measures of speech events. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Partitioning hypothesis in perspective. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
A multiple source, or, is a striped apple more striped than a striped orange? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
The use of mathematical models in perceptual theory. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
|
45
|
|
46
|
|
47
|
Ecological and social factors in hominid evolution. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Central partitioning may be altered during high-frequency activation of the lamotoneuron connection. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Speech perception by ear, eye, hand, and mind. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
What is the organization, scope, and functional significance of partitioning? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00025280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|