1
|
Ordás CM, Alonso-Frech F. The neural basis of somatosensory temporal discrimination threshold as a paradigm for time processing in the sub-second range: An updated review. Neurosci Biobehav Rev 2024; 156:105486. [PMID: 38040074 DOI: 10.1016/j.neubiorev.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The temporal aspect of somesthesia is a feature of any somatosensory process and a pre-requisite for the elaboration of proper behavior. Time processing in the milliseconds range is crucial for most of behaviors in everyday life. The somatosensory temporal discrimination threshold (STDT) is the ability to perceive two successive stimuli as separate in time, and deals with time processing in this temporal range. Herein, we focus on the physiology of STDT, on a background of the anatomophysiology of somesthesia and the neurobiological substrates of timing. METHODS A review of the literature through PubMed & Cochrane databases until March 2023 was performed with inclusion and exclusion criteria following PRISMA recommendations. RESULTS 1151 abstracts were identified. 4 duplicate records were discarded before screening. 957 abstracts were excluded because of redundancy, less relevant content or not English-written. 4 were added after revision. Eventually, 194 articles were included. CONCLUSIONS STDT encoding relies on intracortical inhibitory S1 function and is modulated by the basal ganglia-thalamic-cortical interplay through circuits involving the nigrostriatal dopaminergic pathway and probably the superior colliculus.
Collapse
Affiliation(s)
- Carlos M Ordás
- Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; Department of Neurology, Hospital Rey Juan Carlos, Móstoles, Madrid, Spain.
| | - Fernando Alonso-Frech
- Department of Neurology, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Spain
| |
Collapse
|
2
|
Alonso I, Scheer I, Palacio-Manzano M, Frézel-Jacob N, Philippides A, Prsa M. Peripersonal encoding of forelimb proprioception in the mouse somatosensory cortex. Nat Commun 2023; 14:1866. [PMID: 37045825 PMCID: PMC10097678 DOI: 10.1038/s41467-023-37575-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Conscious perception of limb movements depends on proprioceptive neural responses in the somatosensory cortex. In contrast to tactile sensations, proprioceptive cortical coding is barely studied in the mammalian brain and practically non-existent in rodent research. To understand the cortical representation of this important sensory modality we developed a passive forelimb displacement paradigm in behaving mice and also trained them to perceptually discriminate where their limb is moved in space. We delineated the rodent proprioceptive cortex with wide-field calcium imaging and optogenetic silencing experiments during behavior. Our results reveal that proprioception is represented in both sensory and motor cortical areas. In addition, behavioral measurements and responses of layer 2/3 neurons imaged with two-photon microscopy reveal that passive limb movements are both perceived and encoded in the mouse cortex as a spatial direction vector that interfaces the limb with the body's peripersonal space.
Collapse
Affiliation(s)
- Ignacio Alonso
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Irina Scheer
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Mélanie Palacio-Manzano
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Noémie Frézel-Jacob
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Antoine Philippides
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mario Prsa
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
3
|
Kalidindi HT, Cross KP, Lillicrap TP, Omrani M, Falotico E, Sabes PN, Scott SH. Rotational dynamics in motor cortex are consistent with a feedback controller. eLife 2021; 10:e67256. [PMID: 34730516 PMCID: PMC8691841 DOI: 10.7554/elife.67256] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have identified rotational dynamics in motor cortex (MC), which many assume arise from intrinsic connections in MC. However, behavioral and neurophysiological studies suggest that MC behaves like a feedback controller where continuous sensory feedback and interactions with other brain areas contribute substantially to MC processing. We investigated these apparently conflicting theories by building recurrent neural networks that controlled a model arm and received sensory feedback from the limb. Networks were trained to counteract perturbations to the limb and to reach toward spatial targets. Network activities and sensory feedback signals to the network exhibited rotational structure even when the recurrent connections were removed. Furthermore, neural recordings in monkeys performing similar tasks also exhibited rotational structure not only in MC but also in somatosensory cortex. Our results argue that rotational structure may also reflect dynamics throughout the voluntary motor system involved in online control of motor actions.
Collapse
Affiliation(s)
| | - Kevin P Cross
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
| | - Timothy P Lillicrap
- Centre for Computation, Mathematics and Physics, University College LondonLondonUnited Kingdom
| | - Mohsen Omrani
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
| | - Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant'AnnaPisaItaly
| | - Philip N Sabes
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
| |
Collapse
|
4
|
Banks RW, Ellaway PH, Prochazka A, Proske U. Secondary endings of muscle spindles: Structure, reflex action, role in motor control and proprioception. Exp Physiol 2021; 106:2339-2366. [PMID: 34676617 DOI: 10.1113/ep089826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the topic of this review? We describe the structure and function of secondary sensory endings of muscle spindles, their reflex action and role in motor control and proprioception. What advances does it highlight? In most mammalian skeletal muscles, secondary endings of spindles are more or much more numerous than primary endings but are much less well studied. By focusing on secondary endings in this review, we aim to redress the balance, draw attention to what is not known and stimulate future research. ABSTRACT Kinaesthesia and the control of bodily movement rely heavily on the sensory input from muscle spindles. Hundreds of these sensory structures are embedded in mammalian muscles. Each spindle has one or more sensory endings and its own complement of small muscle fibres that are activated by the CNS via fusimotor neurons, providing efferent control of sensory responses. Exactly how the CNS wields this influence remains the subject of much fascination and debate. There are two types of sensory endings, primary and secondary, with differing development, morphology, distribution and responsiveness. Spindle primary endings have received more attention than secondaries, although the latter usually outnumber them. This review focuses on the secondary endings. Their location within the spindle, their response properties, the projection of their afferents within the CNS and their reflex actions all suggest that secondaries have certain separate roles from the primaries in proprioception and motor control. Specifically, spindle secondaries seem more adapted than primaries to signalling slow and maintained changes in the relative position of bodily segments, thereby contributing to position sense, postural control and static limb positioning. By highlighting, in this way, the roles of secondary endings, a final aim of the review is to broaden understanding of muscle spindles more generally and of the important contributions they make to both sensory and motor mechanisms.
Collapse
Affiliation(s)
- Robert W Banks
- Department of Biosciences, Durham University, Durham, UK.,Biophysical Sciences Institute, Durham University, Durham, UK
| | - Peter H Ellaway
- Department of Brain Sciences, Imperial College London, London, UK
| | - Arthur Prochazka
- Division of Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | - Uwe Proske
- School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
|
6
|
Wang L, Ma L, Yang J, Wu J. Human Somatosensory Processing and Artificial Somatosensation. CYBORG AND BIONIC SYSTEMS 2021; 2021:9843259. [PMID: 36285142 PMCID: PMC9494715 DOI: 10.34133/2021/9843259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022] Open
Abstract
In the past few years, we have gained a better understanding of the information processing mechanism in the human brain, which has led to advances in artificial intelligence and humanoid robots. However, among the various sensory systems, studying the somatosensory system presents the greatest challenge. Here, we provide a comprehensive review of the human somatosensory system and its corresponding applications in artificial systems. Due to the uniqueness of the human hand in integrating receptor and actuator functions, we focused on the role of the somatosensory system in object recognition and action guidance. First, the low-threshold mechanoreceptors in the human skin and somatotopic organization principles along the ascending pathway, which are fundamental to artificial skin, were summarized. Second, we discuss high-level brain areas, which interacted with each other in the haptic object recognition. Based on this close-loop route, we used prosthetic upper limbs as an example to highlight the importance of somatosensory information. Finally, we present prospective research directions for human haptic perception, which could guide the development of artificial somatosensory systems.
Collapse
Affiliation(s)
- Luyao Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Lihua Ma
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Jinglong Wu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
7
|
Fisher KM, Baker SN. A Re-evaluation of Whether Non-monosynaptic Homonymous H Reflex Facilitation Tests Propriospinal Circuits. Front Syst Neurosci 2021; 15:641816. [PMID: 33833670 PMCID: PMC8021928 DOI: 10.3389/fnsys.2021.641816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
The C3-C4 propriospinal system is an important pathway mediating movement in cats; it contributes to movements in primates (including humans), and may have a role in recovery after lesion. Validated clinical tests of this system would find many applications, therefore we sought to test whether non-monosynaptic homonymous facilitation of the forearm flexor H reflex is mediated solely via a C3-C4 propriospinal pathway. In one anesthetized macaque monkey, median nerve stimulation elicited an H reflex in the flexor carpi radialis (FCR). Median nerve conditioning stimuli at sub-threshold intensities facilitated the H reflex, for inter-stimulus intervals up to 30 ms. Successive spinal surgical hemisections were then made. C2 lesion left the homonymous facilitation intact, suggesting mediation by spinal, not supraspinal pathways. Facilitation also remained after a second lesion at C5, indicating a major role for segmental (C7-C8) rather than propriospinal (C3-C4) interneurons. In separate experiments in five healthy human subjects, a threshold tracking approach assessed changes in peripheral axon excitability after conditioning stimulation. This was found to be enhanced up to 20 ms after the conditioning stimulus, and could partly, although not completely, underlie the H reflex facilitation seen. We conclude that homonymous facilitation of the H reflex in FCR can be produced by segmental spinal mechanisms, as well as by a supranormal period of nerve excitability. Unfortunately, this straightforward test cannot therefore be used for selective assessment of propriospinal circuits.
Collapse
Affiliation(s)
- Karen M. Fisher
- Henry Wellcome Building, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N. Baker
- Henry Wellcome Building, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Barrett P, Quick TJ, Mudera V, Player DJ. Generating intrafusal skeletal muscle fibres in vitro: Current state of the art and future challenges. J Tissue Eng 2020; 11:2041731420985205. [PMID: 34956586 PMCID: PMC8693220 DOI: 10.1177/2041731420985205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023] Open
Abstract
Intrafusal fibres are a specialised cell population in skeletal muscle, found within the muscle spindle. These fibres have a mechano-sensory capacity, forming part of the monosynaptic stretch-reflex arc, a key component responsible for proprioceptive function. Impairment of proprioception and associated dysfunction of the muscle spindle is linked with many neuromuscular diseases. Research to-date has largely been undertaken in vivo or using ex vivo preparations. These studies have provided a foundation for our understanding of muscle spindle physiology, however, the cellular and molecular mechanisms which underpin physiological changes are yet to be fully elucidated. Therefrom, the use of in vitro models has been proposed, whereby intrafusal fibres can be generated de novo. Although there has been progress, it is predominantly a developing and evolving area of research. This narrative review presents the current state of art in this area and proposes the direction of future work, with the aim of providing novel pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
9
|
Loutit AJ, Vickery RM, Potas JR. Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub. J Comp Neurol 2020; 529:187-220. [PMID: 32374027 DOI: 10.1002/cne.24942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
The dorsal column nuclei complex (DCN-complex) includes the dorsal column nuclei (DCN, referring to the gracile and cuneate nuclei collectively), external cuneate, X, and Z nuclei, and the median accessory nucleus. The DCN are organized by both somatotopy and modality, and have a diverse range of afferent inputs and projection targets. The functional organization and connectivity of the DCN implicate them in a variety of sensorimotor functions, beyond their commonly accepted role in processing and transmitting somatosensory information to the thalamus, yet this is largely underappreciated in the literature. To consolidate insights into their sensorimotor functions, this review examines the morphology, organization, and connectivity of the DCN and their associated nuclei. First, we briefly discuss the receptors, afferent fibers, and pathways involved in conveying tactile and proprioceptive information to the DCN. Next, we review the modality and somatotopic arrangements of the remaining constituents of the DCN-complex. Finally, we examine and discuss the functional implications of the myriad of DCN-complex projection targets throughout the diencephalon, midbrain, and hindbrain, in addition to their modulatory inputs from the cortex. The organization and connectivity of the DCN-complex suggest that these nuclei should be considered a complex integration and distribution hub for sensorimotor information.
Collapse
Affiliation(s)
- Alastair J Loutit
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Richard M Vickery
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jason R Potas
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
10
|
Long-latency Responses to a Mechanical Perturbation of the Index Finger Have a Spinal Component. J Neurosci 2020; 40:3933-3948. [PMID: 32245828 PMCID: PMC7219296 DOI: 10.1523/jneurosci.1901-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 11/21/2022] Open
Abstract
In an uncertain external environment, the motor system may need to respond rapidly to an unexpected stimulus. Limb displacement causes muscle stretch; the corrective response has multiple activity bursts, which are suggested to originate from different parts of the neuraxis. The earliest response is so fast, it can only be produced by spinal circuits; this is followed by slower components thought to arise from primary motor cortex (M1) and other supraspinal areas. In an uncertain external environment, the motor system may need to respond rapidly to an unexpected stimulus. Limb displacement causes muscle stretch; the corrective response has multiple activity bursts, which are suggested to originate from different parts of the neuraxis. The earliest response is so fast, it can only be produced by spinal circuits; this is followed by slower components thought to arise from primary motor cortex (M1) and other supraspinal areas. Spinal cord (SC) contributions to the slower components are rarely considered. To address this, we recorded neural activity in M1 and the cervical SC during a visuomotor tracking task, in which 2 female macaque monkeys moved their index finger against a resisting motor to track an on-screen target. Following the behavioral trial, an increase in motor torque rapidly returned the finger to its starting position (lever velocity >200°/s). Many cells responded to this passive mechanical perturbation (M1: 148 of 211 cells, 70%; SC: 67 of 119 cells, 56%). The neural onset latency was faster for SC compared with M1 cells (21.7 ± 11.2 ms vs 25.5 ± 10.7 ms, respectively, mean ± SD). Using spike-triggered averaging, some cells in both regions were identified as likely premotor cells, with monosynaptic connections to motoneurons. Response latencies for these cells were compatible with a contribution to the muscle responses following the perturbation. Comparable fractions of responding neurons in both areas were active up to 100 ms after the perturbation, suggesting that both SC circuits and supraspinal centers could contribute to later response components. SIGNIFICANCE STATEMENT Following a limb perturbation, multiple reflexes help to restore limb position. Given conduction delays, the earliest part of these reflexes can only arise from spinal circuits. By contrast, long-latency reflex components are typically assumed to originate from supraspinal centers. We recorded from both spinal and motor cortical cells in monkeys responding to index finger perturbations. Many spinal interneurons, including those identified as projecting to motoneurons, responded to the perturbation; the timing of responses was compatible with a contribution to both short- and long-latency reflexes. We conclude that spinal circuits also contribute to long-latency reflexes in distal and forearm muscles, alongside supraspinal regions, such as the motor cortex and brainstem.
Collapse
|
11
|
Delhaye BP, Long KH, Bensmaia SJ. Neural Basis of Touch and Proprioception in Primate Cortex. Compr Physiol 2018; 8:1575-1602. [PMID: 30215864 PMCID: PMC6330897 DOI: 10.1002/cphy.c170033] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sense of proprioception allows us to keep track of our limb posture and movements and the sense of touch provides us with information about objects with which we come into contact. In both senses, mechanoreceptors convert the deformation of tissues-skin, muscles, tendons, ligaments, or joints-into neural signals. Tactile and proprioceptive signals are then relayed by the peripheral nerves to the central nervous system, where they are processed to give rise to percepts of objects and of the state of our body. In this review, we first examine briefly the receptors that mediate touch and proprioception, their associated nerve fibers, and pathways they follow to the cerebral cortex. We then provide an overview of the different cortical areas that process tactile and proprioceptive information. Next, we discuss how various features of objects-their shape, motion, and texture, for example-are encoded in the various cortical fields, and the susceptibility of these neural codes to attention and other forms of higher-order modulation. Finally, we summarize recent efforts to restore the senses of touch and proprioception by electrically stimulating somatosensory cortex. © 2018 American Physiological Society. Compr Physiol 8:1575-1602, 2018.
Collapse
Affiliation(s)
- Benoit P Delhaye
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, USA
| | - Katie H Long
- Committee on Computational Neuroscience, University of Chicago, Chicago, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, USA.,Committee on Computational Neuroscience, University of Chicago, Chicago, USA
| |
Collapse
|
12
|
Abstract
Several studies have suggested the jaw-muscle spindle as the receptor responsible for regulating and maintaining the occlusal vertical dimension (OVD). However, to challenge this assumption, we hypothesized that long-term changes in OVD could affect the sensory inputs from jaw-muscle spindles. In this study, we investigated changes in masseter muscle spindle function under an increased OVD (iOVD) condition. Responses of primary and secondary endings of masseter muscle spindles to cyclic sinusoidal stretches were investigated. Twenty barbiturate-anesthetized female Wistar rats were divided into control and iOVD groups. Rats in the iOVD group received a 2.0-mm composite resin build-up to the maxillary molars. After iOVD, masseter muscle spindle sensitivity gradually decreased. Primary and secondary spindle endings were affected differently. We conclude that iOVD caused reduction in masseter muscle spindle sensitivity. This result suggests that peripheral sensory plasticity may occur following changes in OVD. Such changes may provide a basis for physiological adaptation to clinical occlusal adjustments.
Collapse
Affiliation(s)
- T Yabushita
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549.
| | | | | | | |
Collapse
|
13
|
Age-dependent decline in density of human nerve and spinal ganglia neurons expressing the α3 isoform of Na/K-ATPase. Neuroscience 2015; 310:342-53. [PMID: 26386295 DOI: 10.1016/j.neuroscience.2015.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022]
Abstract
Ambulatory instability and falls are a major source of morbidity in the elderly. Age-related loss of tendon reflexes is a major contributing factor to this morbidity, and deterioration of the afferent limb of the stretch reflex is a potential contributing factor to such age-dependent loss of tendon reflexes. To evaluate this, we assessed the number and distribution of muscle spindle afferent fibers in human sacral spinal ganglia (S1) and tibial nerve samples obtained at autopsy, using immunohistochemical staining for the α3 isoform of Na(+), K(+)-ATPase (α3NKA), a marker of muscle spindle afferents. Across all age groups, an average of 26 ± 4% of myelinated fibers of tibial nerve and 17 ± 2% of ganglion neuronal profiles were α3NKA-positive (n = 8 per group). Subject age explained 85% of the variability in these counts. The relative frequency of α3NKA-labeled fibers/neurons starts to decline during the 5th decade of life, approaching half that of young adult values in 65-year-old subjects. At all ages, α3NKA-positive neurons were among the largest of spinal ganglia neurons. However, as compared to younger subjects, the population of α3NKA-positive neurons from advanced-age subjects showed diminished numbers of large (both moderately and strongly labeled), and medium-sized (strongly labeled) profiles. Considering the critical significance of ion transport by NKA for neuronal activity, our data suggest that functional impairment and, also, most likely atrophy and/or degeneration of muscle spindle afferents, are mechanisms underlying loss of tendon reflexes with age. The larger and more strongly α3NKA-expressing spindle afferents appear to be proportionally more vulnerable.
Collapse
|
14
|
Galán F, Baker SN. Pre-Synaptic Inhibition of Afferent Feedback in the Macaque Spinal Cord Does Not Modulate with Cycles of Peripheral Oscillations Around 10 Hz. Front Neural Circuits 2015; 9:76. [PMID: 26635536 PMCID: PMC4649044 DOI: 10.3389/fncir.2015.00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
Spinal interneurons are partially phase-locked to physiological tremor around 10 Hz. The phase of spinal interneuron activity is approximately opposite to descending drive to motoneurons, leading to partial phase cancellation and tremor reduction. Pre-synaptic inhibition of afferent feedback modulates during voluntary movements, but it is not known whether it tracks more rapid fluctuations in motor output such as during tremor. In this study, dorsal root potentials (DRPs) were recorded from the C8 and T1 roots in two macaque monkeys following intra-spinal micro-stimulation (random inter-stimulus interval 1.5-2.5 s, 30-100 μA), whilst the animals performed an index finger flexion task which elicited peripheral oscillations around 10 Hz. Forty one responses were identified with latency < 5 ms; these were narrow (mean width 0.59 ms), and likely resulted from antidromic activation of afferents following stimulation near terminals. Significant modulation during task performance occurred in 16/41 responses, reflecting terminal excitability changes generated by pre-synaptic inhibition (Wall's excitability test). Stimuli falling during large-amplitude 8-12 Hz oscillations in finger acceleration were extracted, and sub-averages of DRPs constructed for stimuli delivered at different oscillation phases. Although some apparent phase-dependent modulation was seen, this was not above the level expected by chance. We conclude that, although terminal excitability reflecting pre-synaptic inhibition of afferents modulates over the timescale of a voluntary movement, it does not follow more rapid changes in motor output. This suggests that pre-synaptic inhibition is not part of the spinal systems for tremor reduction described previously, and that it plays a role in overall-but not moment-by-moment-regulation of feedback gain.
Collapse
Affiliation(s)
| | - Stuart N. Baker
- Movement Laboratory, Institute of Neuroscience, Newcastle UniversityNewcastle Upon Tyne, UK
| |
Collapse
|
15
|
|
16
|
|
17
|
Cao DY, Khalsa PS, Pickar JG. Dynamic responsiveness of lumbar paraspinal muscle spindles during vertebral movement in the cat. Exp Brain Res 2009; 197:369-77. [PMID: 19590861 DOI: 10.1007/s00221-009-1924-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 06/20/2009] [Indexed: 11/28/2022]
Abstract
Muscle spindles provide essential information for appropriate motor control. In appendicular muscles, much is known about their position and movement sensitivities, but little is known about the axial muscles of the low back. We investigated the dynamic responsiveness of lumbar paraspinal muscle spindle afferents from L(6) dorsal root filaments during constant velocity movement of the L(6) vertebra (the feline has seven lumbar vertebrae) in Nembutal-anesthetized cats. Actuations of 1 mm applied at the L(6) spinous process were delivered at 0.5, 1.0 and 2.0 mm/s. The slow velocity component was measured as the slope of the relationship between displacement during the constant velocity ramp and instantaneous discharge frequency. The quick velocity component was the slope's intercept at zero displacement. The peak component was determined as the highest discharge rates occurring near the end of the ramp compared with control. The slow velocity component over the three increasing velocities was 23.9 (9.9), 21.6 (9.6) and 20.5 (9.5) imp/(s mm) [mean (SD)], respectively. The quick velocity component was 28.4 (8.6), 31.4 (9.8) and 35.8 (10.6) imp/s, respectively. These measures of dynamic responsiveness were at least 5-10 times higher compared with values reported for appendicular muscle spindles. The peak component's velocity sensitivity was 2.9 (imp/s)/(mm/s) [0.2, 5.5, lower, upper 95% confidence interval] similar to that for cervical paraspinal muscles as well as appendicular muscles. Increased dynamic responsiveness of lumbar paraspinal muscle spindles may insure central driving to insure control of intervertebral motion during changes in spinal orientation. It may also contribute to large, rapid and potentially injurious increases in paraspinal muscle activity during sudden and unexpected muscle stretch.
Collapse
Affiliation(s)
- Dong-Yuan Cao
- Palmer College of Chiropractic, Palmer Center for Chiropractic Research, 741 Brady St, Davenport, IA 52803, USA
| | | | | |
Collapse
|
18
|
Cao DY, Pickar JG, Ge W, Ianuzzi A, Khalsa PS. Position sensitivity of feline paraspinal muscle spindles to vertebral movement in the lumbar spine. J Neurophysiol 2009; 101:1722-9. [PMID: 19164108 DOI: 10.1152/jn.90976.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle spindles contribute to sensorimotor control by supplying feedback regarding muscle length and consequently information about joint position. While substantial study has been devoted to determining the position sensitivity of spindles in limb muscles, there appears to be no data on their sensitivity in the low back. We determined the relationship between lumbar paraspinal muscle spindle discharge and paraspinal muscle lengthening estimated from controlled cranialward movement of the L(6) vertebra in anesthetized cats. Ramp (0.4 mm/s) and hold displacements (0.2, 0.4, 0.6, 0.8, and 1.2 mm for 2.5 s) were applied at the L(6) spinous process. Position sensitivity was defined as the slope of the relationship between the estimated increase in muscle length and mean instantaneous frequency at each length. To enable comparisons with appendicular muscle spindles where joint angle was measured, we also calculated sensitivity in terms of the L(6) and L(7) intervertebral flexion angle (IVA). This angle was estimated from measurements of facet joint capsule strain (FJC) based on a previously established relationship between IVA and FJC strain in the cat lumbar vertebral column during lumbar flexion. Single-unit recordings were obtained from 12 muscle spindle afferents. Longissimus and multifidus muscles contained the receptive field of 10 and 2 afferents, respectively. Mean position sensitivity was 16.3 imp.s(-1).mm(-1) [10.6-22.1, 95% confidence interval (CI), P < 0.001]. Mean angular sensitivity was 5.2 imp.s(-1). degrees (-1) (2.6-8.0, P < 0.003). These slope estimates were more than 3.5 times greater compared with appendicular muscle spindles, and their CIs did not contain previous slope estimates for the sensitivity of appendicular spindles from the literature. Potential reasons for and the significance of the apparently high position sensitivity in the lumbar spine are discussed.
Collapse
Affiliation(s)
- Dong-Yuan Cao
- Palmer Center for Chiropractic Research, 741 Brady St., Davenport, IA 52803, USA
| | | | | | | | | |
Collapse
|
19
|
Kim GH, Suzuki S, Kanda K. Age-related physiological and morphological changes of muscle spindles in rats. J Physiol 2007; 582:525-38. [PMID: 17495047 PMCID: PMC2075321 DOI: 10.1113/jphysiol.2007.130120] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Age-related physiological and morphological changes of muscle spindles were examined in rats (male Fischer 344/DuCrj: young, 4-13 months; middle-aged, 20-22 months; old, 28-31 months). Single afferent discharges of the muscle spindles in gastrocnemius muscles were recorded from a finely split dorsal root during ramp-and-hold (amplitude, 2.0 mm; velocity, 2-20 mm s(-1)) or sinusoidal stretch (amplitude, 0.05-1.0 mm; frequency, 0.5-2 Hz). Respective conduction velocities (CVs) were then measured. After electrophysiological experimentation, the muscles were dissected. The silver-impregnated muscle spindles were teased and then analysed using a light microscope. The CV and dynamic response to ramp-and-hold stretch of many endings were widely overlapped in old rats because of the decreased CV and dynamic response of primary endings. Many units in old rats showed slowing of discharge during the release phase under ramp-and-hold stretch and continuous discharge under sinusoidal stretch, similarly to secondary endings in young and middle-aged rats. Morphological studies revealed that primary endings of aged rat muscle spindles were less spiral or non-spiral in appearance, but secondary endings appeared unchanged. These results suggest first that primary muscle spindles in old rats are indistinguishable from secondary endings when determined solely by previously used physiological criteria. Secondly, these physiological results reflect drastic age-related morphological changes in spindle primary endings.
Collapse
Affiliation(s)
- Gee Hee Kim
- Graduate School of Human Sciences, Waseda University, Tokorozawa, 359-1192, Japan.
| | | | | |
Collapse
|
20
|
Riddle CN, Baker SN. Manipulation of peripheral neural feedback loops alters human corticomuscular coherence. J Physiol 2005; 566:625-39. [PMID: 15919711 PMCID: PMC1464768 DOI: 10.1113/jphysiol.2005.089607] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Sensorimotor EEG shows approximately 20 Hz coherence with contralateral EMG. This could involve efferent and/or afferent components of the sensorimotor loop. We investigated the pathways responsible for coherence genesis by manipulating nervous conduction delays using cooling. Coherence between left sensorimotor EEG and right EMG from three hand and two forearm muscles was assessed in healthy subjects during the hold phase of a precision grip task. The right arm was then cooled to 10 degrees C for approximately 90 min, increasing peripheral motor conduction time (PMCT) by approximately 35% (assessed by F-wave latency). EEG and EMG recordings were repeated, and coherence recalculated. Control recordings revealed a heterogeneous subject population. In 6/15 subjects (Group A), the corticomuscular coherence phase increased linearly with frequency, as expected if oscillations were propagated along efferent pathways from cortex to muscle. The mean corticomuscular conduction delay for intrinsic hand muscles calculated from the phase-frequency regression slope was 10.4 ms; this is smaller than the delay expected for conduction over fast corticospinal pathways. In 8/15 subjects (Group B), the phase showed no dependence with frequency. One subject showed both Group A and Group B patterns over different frequency ranges. Following cooling, averaged corticomuscular coherence was decreased in Group A subjects, but unchanged for Group B, even though both groups showed comparable slowing of nervous conduction. The delay calculated from the slope of the phase-frequency regression was increased following cooling. However, the size of this increase was around twice the rise in PMCT measured using the F-wave (regression slope 2.33, 95% confidence limits 1.30-3.36). Both afferent and efferent peripheral nerves will be slowed by similar amounts following cooling. The change in delay calculated from the coherence phase therefore better matches the rise in total sensorimotor feedback loop time caused by cooling, rather than just the change in the efferent limb. A model of corticomuscular coherence which assumes that only efferent pathways contribute cannot be reconciled to these results. The data rather suggest that afferent feedback pathways may also play a role in the genesis of corticomuscular coherence.
Collapse
Affiliation(s)
- C Nicholas Riddle
- Department of Anatomy, University of Cambridge, Cambridge CB2 3DY, UK
| | | |
Collapse
|
21
|
De-Doncker L, Picquet F, Petit J, Falempin M. Characterization of spindle afferents in rat soleus muscle using ramp-and-hold and sinusoidal stretches. J Neurophysiol 2003; 89:442-9. [PMID: 12522192 DOI: 10.1152/jn.00153.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discharge properties of 51 afferents were studied in the rat soleus muscle spindles. Under deep anesthesia using a pentobarbital sodium solution (30 mg/kg), a laminectomy was performed and the right L(4) and L(5) dorsal and ventral roots were transected near their entry into the spinal cord. In situ, the minimal (L(min)) muscle length [3 +/- 0.08 (SE) cm] of the soleus was measured at full ankle extension. Unitary potentials from the L(5) dorsal root were recorded in response to ramp-and-hold stretches applied at 3 mm (S3) and 4 mm (S4) amplitudes and four stretch velocities (6, 10, 15, and 30 mm/s), sinusoidal stretches performed at four amplitudes (0.12, 0.25, 0.5, and 1 mm) and six stretch frequencies (0.5, 1, 2, 3, 6, and 10 Hz), and vibrations applied at 50-, 100-, and 150-Hz frequencies. These two kinds of stretches were performed at three different muscle lengths (L(min+10%), L(min+15%), and L(min+20%)), whereas vibrations were applied at L(min+20%) muscle length. Conduction velocity of the fibers was calculated but did not allow to discriminate different fiber types. However, the mean conduction velocity of the first fiber group (43.3 +/- 0.8 m/s) was significantly higher than that of the second fiber group (33.9 +/- 0.9 m/s). Three parameters allowed to differentiate the responses of primary and secondary endings: the dynamic index (DI), the discharge during the stretch release from the ramp-and-hold stretches, and the linear range and the vibration sensitivity from sinusoidal stretches. The slope histogram of the linear regression based on the DI and the stretch velocity was clearly bimodal. Therefore the responses were separated into two groups. During the stretch release at a velocity of 3 mm/s, the first response group (n = 26) exhibited a pause, whereas the second (n = 25) did not. The linear range of the second ending group (0.12-1 mm) was broader than that of the first (0.12-0.25 mm). The first ending group showed a higher sensitivity to high-vibration frequencies of small amplitude than the second. In comparison with the literature, we can assert that the first and the second ending groups corresponded to the primary and secondary endings, respectively. In conclusion, our study showed that in rat soleus muscle spindles, it was possible to immediately classify the discharge of Ia and II fibers by using some parameters measured under ramp-and-hold and sinusoidal stretches.
Collapse
Affiliation(s)
- Laurent De-Doncker
- Laboratoire de Plasticité Neuromusculaire, EA 1032, IFR 118, Bât. SN4, Université des Sciences et Technologies de Lille 1, F-59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | |
Collapse
|
22
|
Reflexes in the Hand: Strong Synaptic Coupling Between Single Tactile Afferents and Spinal Motoneurones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002. [DOI: 10.1007/978-1-4615-0713-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
23
|
McNulty PA, Macefield VG. Modulation of ongoing EMG by different classes of low-threshold mechanoreceptors in the human hand. J Physiol 2001; 537:1021-32. [PMID: 11744774 PMCID: PMC2278990 DOI: 10.1111/j.1469-7793.2001.01021.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. We have previously demonstrated that the input from single FA I and SA II cutaneous mechanoreceptors in the glabrous skin of the human hand is sufficiently strong to modulate ongoing EMG of muscles acting on the digits. Some unresolved issues have now been addressed. 2. Single cutaneous (n = 60), joint (n = 2) and muscle spindle (n = 34) afferents were recorded via tungsten microelectrodes inserted into the median and ulnar nerves at the wrist. Spike-triggered averaging was used to investigate synaptic coupling between these afferents and muscles acting on the digits. The activity of 37 % of FA I (7/19), 20 % of FA II (1/5) and 52 % of SA II afferents (11/21) evoked a reflex response. The discharge from muscle spindles, 15 SA I and two joint afferents did not modulate EMG activity. 3. Two types of reflex responses were encountered: a single excitatory response produced by irregularly firing afferents, or a cyclic modulation evoked by regularly discharging afferents. Rhythmic stimulation of one FA I afferent generated regularly occurring bursts which corresponded to the associated cyclic EMG response. 4. Selectively triggering from the first or last spike of each burst of one FA I afferent altered the averaged EMG profile, suggesting that afferent input modulates the associated EMG and not vice versa. 5. The discharge from single FA I, FA II and SA II afferents can modify ongoing voluntary EMG in muscles of the human hand, presumably via a spinally mediated oligosynaptic pathway. Conversely, we saw no evidence of such modulation by SA I, muscle spindle or joint afferents.
Collapse
Affiliation(s)
- P A McNulty
- Prince of Wales Medical Research Institute and University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|
24
|
Riso RR, Mosallaie FK, Jensen W, Sinkjaer T. Nerve cuff recordings of muscle afferent activity from tibial and peroneal nerves in rabbit during passive ankle motion. IEEE TRANSACTIONS ON REHABILITATION ENGINEERING : A PUBLICATION OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY 2000; 8:244-58. [PMID: 10896197 DOI: 10.1109/86.847826] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Activity from muscle afferents regarding ankle kinesthesia was recorded using cuff electrodes in a rabbit preparation in which tactile input from the foot was eliminated. The purpose was to determine if such activity can provide information useful in controlling functional electrical stimulation (FES) systems that restore mobility in spinal injured man. The rabbit's ankle was passively flexed and extended while the activity of the tibial and peroneal nerves was recorded. Responses to trapezoidal stimulus profiles were investigated for excursions from 10 degrees to 60 degrees using velocities from 5 degrees/s to 30 degrees/s and different initial ankle positions. The recorded signals mainly reflect activity from primary and secondary muscle afferents. Dorsiflexion stretched the ankle extensors and produced velocity dependent activity in the tibial nerve, and this diminished to a tonic level during the stimulus plateau. The peroneal nerve was silent during dorsiflexion, but was activated by stretch of the peroneal muscles during ankle extension. The responses of the two nerves behaved in a reciprocal manner, but exhibited considerable hysteresis, since motion that relaxed the stretch to the driving muscle produced an immediate cessation of the prior stretch induced activity. A noted difference between the tibial and peroneal nerve responses is that the range of joint position change that activated the flexor afferents was greater then for the extensor afferents. Ankle rotation at higher velocities increased the dynamic stretch evoked responses during the stimulus ramp but showed no effect on the tonic activity during the stimulus plateau. Prestretching the muscles by altering the initial position increased the response to the ramp movement, however, for the peroneal nerve, when the prestretch brought the flexor muscles near to their maximal lengths, the response to additional stretch provided by the ramp movement was diminished. The results indicate that the whole nerve recorded muscle afferent activity may be useful for control of FES assisted standing, because it can indicate the direction of rotation of the passively moved ankle joint, along with coarse information regarding the rate of movement and static joint position.
Collapse
Affiliation(s)
- R R Riso
- Center for Sensory-Motor Interaction, Aalborg University, Denmark
| | | | | | | |
Collapse
|
25
|
Capra NF, Ro JY. Experimental muscle pain produces central modulation of proprioceptive signals arising from jaw muscle spindles. Pain 2000; 86:151-62. [PMID: 10779672 DOI: 10.1016/s0304-3959(00)00231-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to investigate the effects of intramuscular injection with hypertonic saline, a well-established experimental model for muscle pain, on central processing of proprioceptive input from jaw muscle spindle afferents. Fifty-seven cells were recorded from the medial edge of the subnucleus interpolaris (Vi) and the adjacent parvicellular reticular formation from 11 adult cats. These cells were characterized as central units receiving jaw muscle spindle input based on their responses to electrical stimulation of the masseter nerve, muscle palpation and jaw stretch. Forty-five cells, which were successfully tested with 5% hypertonic saline, were categorized as either dynamic-static (DS) (n=25) or static (S) (n=20) neurons based on their responses to different speeds and amplitudes of jaw movement. Seventy-six percent of the cells tested with an ipsilateral injection of hypertonic saline showed a significant modulation of mean firing rates (MFRs) during opening and/or holding phases. The most remarkable saline-induced change was a significant reduction of MFR during the hold phase in S units (100%, 18/18 modulated). Sixty-nine percent of the DS units (11/16 modulated) also showed significant changes in MFRs limited to the hold phase. However, in the DS neurons, the MFRs increased in seven units and decreased in four units. Finally, five DS neurons showed significant changes of MFRs during both opening and holding phases. Injections of isotonic saline into the ipsilateral masseter muscle had little effect, but hypertonic saline injections made into the contralateral masseter muscle produced similar results to ipsilateral injections with hypertonic saline. These results unequivocally demonstrate that intramuscular injection with an algesic substance, sufficient to produce muscle pain, produces significant changes in the proprioceptive properties of the jaw movement-related neurons. Potential mechanisms involved in saline-induced changes in the proprioceptive signals and functional implications of the changes are discussed.
Collapse
Affiliation(s)
- N F Capra
- Department of Oral and Craniofacial Biological Sciences, University of Maryland Baltimore, School of Dentistry, Baltimore, MD 21201, USA
| | | |
Collapse
|
26
|
Kato T, Masuda Y, Hidaka O, Komuro A, Inoue T, Morimoto T. Characteristics of the muscle spindle endings of the masticatory muscles in the rabbit under halothane anesthesia. Brain Res 1999; 833:1-9. [PMID: 10375671 DOI: 10.1016/s0006-8993(99)01350-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To explore the response characteristics of muscle spindle units in the masticatory muscles in the rabbit, the responses of muscle spindle units were recorded from the mesencephalic trigeminal nucleus (MesV) under halothane anesthesia during ramp-and-hold stretches. Three firing patterns, initial burst (IB) at the onset of the dynamic phase, negative adaptation (NA) at the end of the dynamic phase and firing during the release (FDR) phase, were observed during muscle stretch. IB was present at higher stretch velocities, FDR at lower stretch velocities. The velocity at which an IB or FDR was present was different from unit to unit. Because, within the range of the velocities of stretch tested, units with NA always showed NA and units without NA never did, all recorded units were divided into two groups on the basis of the existence of NA (NA(+) or NA(-) units). Response characteristics of the two groups were then compared. NA(+) units showed an IB more frequently and FDR less frequently than NA(-) units. NA(+) units had significantly higher dynamic responsiveness and discharge variability than NA(-) units. The conduction velocity of the afferents of NA(+) units was higher than that of NA(-) units. However, distributions of these measurements were not bimodal. These results suggest that NA is the useful criteria to classify the muscle spindle endings in the masticatory muscles in the rabbit under halothane anesthesia.
Collapse
Affiliation(s)
- T Kato
- Department of Oral Physiology, Faculty of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Yoshida A, Mukai N, Moritani M, Nagase Y, Hirose Y, Honma S, Fukami H, Takagi K, Matsuya T, Shigenaga Y. Physiologic and morphologic properties of motoneurons and spindle afferents innervating the temporal muscle in the cat. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990329)406:1<29::aid-cne3>3.0.co;2-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Kishimoto H, Bae YC, Yoshida A, Moritani M, Takemura M, Nakagawa S, Nagase Y, Wada T, Sessle BJ, Shigenaga Y. Central distribution of synaptic contacts of primary and secondary jaw muscle spindle afferents in the trigeminal motor nucleus of the cat. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980202)391:1<50::aid-cne5>3.0.co;2-q] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Shefner JM, Logigian EL. Conduction velocity in motor, cutaneous afferent, and muscle afferent fibers within the same mixed nerve. Muscle Nerve 1994; 17:773-8. [PMID: 8008005 DOI: 10.1002/mus.880170712] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mammalian axons subserving different functions have different conduction velocities (CV); motor fibers conduct more slowly than cutaneous fibers, which conduct slower than muscle afferents. However, human studies have yielded conflicting results. We studied isolated fiber populations in human sciatic nerve to examine further this question. Motor studies were performed in standard fashion, stimulating at gluteal fold (GF) and popliteal fossa (PF) and recording soleus. In addition, conduction velocity of a pure motor nerve volley was calculated for 3 subjects. Stimulating and recording electrodes were needles placed close to the nerve. Cutaneous afferents were studied by stimulating the sural nerve at the ankle and recording at PF and GF. Muscle afferent velocity was assessed by comparing soleus H reflex latency with stimulation at PF and GF. Results in 10 subjects showed muscle afferent CV of 57.6, cutaneous afferent CV of 55.1, motor CV of 52.4, and mixed nerve CV of 56.3 m/s. Although statistically significant, these differences are much smaller than in animal studies. These results have implications for understanding what fibers contribute to spinal reflexes.
Collapse
Affiliation(s)
- J M Shefner
- Neurology Division, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | | |
Collapse
|
30
|
Taylor A, Durbaba R, Rodgers JF. The classification of afferents from muscle spindles of the jaw-closing muscles of the cat. J Physiol 1992; 456:609-28. [PMID: 1293289 PMCID: PMC1175701 DOI: 10.1113/jphysiol.1992.sp019356] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. The effects of the muscle-depolarizing drug succinylcholine (SCh) on the stretch responses of jaw-closer muscle spindle afferents were studied in the anaesthetized cat. Using ramp and hold stretches repeated every 6 s the basic measurements made were: initial frequency (IF), peak frequency (PF) and static index (SI), the frequency 0.5 s after the end of the ramp of stretch. Derived from these were: dynamic difference (DD) = PF-IF, dynamic index (DI) = PF-SI and static difference (SD) = SI-IF. Increases in these measures caused by a single I.V. dose of SCh (200 micrograms kg-1) are symbolized by the prefix delta. 2. In a population of 234 units, delta DD and delta IF were each distributed bimodally, but were uncorrelated, thus defining four subgroups. 3. delta DD was argued to be an index of the effect of bag1 intrafusal fibre contraction and delta IF to be an index of the effect of bag2 fibre contraction. On this basis it is proposed that units can be divided into four groups according to the predominant influences of the bag1, bag2 and chain fibres as b1c (6.8%), b1b2c (22.2%), b2c (54.3%) or c (16.7%). 4. Testing with sine wave stretches at 1 Hz showed that changes in mean frequency and amplitude of response caused by SCh correlated with delta IF and delta DD respectively, but separated groups of units much less effectively than did ramp and hold testing. 5. Evidence is presented to indicate that the control value of DD in passive spindles does not relate to the potential strength of bag1 fibre effects in fully activated spindles. The bag1 fibre appears to contribute little to responses of spindle afferents in the passive state. DD is superior to DI as a measure of bag1 effects. 6. Conduction velocity was unimodally distributed in masseter spindle afferents and was not correlated with delta DD or delta IF and was therefore of no value in classifying them. 7. Neither the threshold of afferents to quick transient stretch nor the coefficient of variation of interspike intervals provided any significant additional help in classification. 8. The unexpectedly high proportion of units of b2c type is thought to include primaries lacking appreciable bag1 fibre contacts and secondaries with more or less substantial bag2 contracts.
Collapse
Affiliation(s)
- A Taylor
- Sherrington School of Physiology, UMDS, London
| | | | | |
Collapse
|
31
|
Taylor A, Rodgers JF, Fowle AJ, Durbaba R. The effect of succinylcholine on cat gastrocnemius muscle spindle afferents of different types. J Physiol 1992; 456:629-44. [PMID: 1293290 PMCID: PMC1175702 DOI: 10.1113/jphysiol.1992.sp019357] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. A population of 269 gastrocnemius muscle spindle afferents have been studied in anaesthetized cats for the effects of succinylcholine (SCh) on their response to ramp and hold stretches repeated every 6 s. The effectiveness and reliability of the SCh test was improved by prior stimulation of the muscle at 10 Hz for 30 s to increase the blood flow. 2. Responses have been assessed from averaged cycle histograms before and after a single I.V. dose of SCh of 200 micrograms kg-1. As for previous studies of jaw muscle spindles the basic measurements were initial frequency (IF), peak frequency (PF) and static index (SI), the frequency 0.5 s after the end of the ramp of stretch. Dynamic difference (DD = PF-IF), dynamic index (DI = PF-SI) and static difference (SD = SI-IF) were derived from these and increases caused by SCh indicated by the prefix delta. 3. delta DD and delta IF were each distributed bimodally and since they were uncorrelated formed the basis for a four-way classification. Since delta DD can be attributed to activation of bag1 (b1) intrafusal fibres and delta IF to bag2 (b2) fibres, while all afferents receive input from chain (c) fibres it is proposed as with the jaw spindles that the classes correspond to predominant influence from b1c, b1b2c, b2c and c intrafusal fibres. 4. The proportion of units in the different groups were similar to those in the jaw muscles except for there being very few b1c type in gastrocnemius. 5. Conduction velocity was bimodally distributed with the best dividing line at 63.2 m s-1. The b1b2c units were all, save one, in the fast group, while the b2c units were equally divided between fast and slow. 6. Mean control values for DD did not differ between the b1b2c and the b2c groups, which is taken to indicate that the b1 fibre does not contribute significantly to the dynamic stretch response of spindles with no intrafusal contraction. 7. The results emphasize the importance of recognizing that some apparently primary afferents lack b1 fibre influence, while many secondaries have marked b2 fibre influence. 8. The importance of the SCh classification is discussed in relation to the identification of fusimotor effects on spindle discharge and in relation to studies of central connectivity.
Collapse
Affiliation(s)
- A Taylor
- Sherrington School of Physiology, UMDS, London
| | | | | | | |
Collapse
|
32
|
Bronstein AM, Rudge P, Gresty MA, Du Boulay G, Morris J. Abnormalities of horizontal gaze. Clinical, oculographic and magnetic resonance imaging findings. II. Gaze palsy and internuclear ophthalmoplegia. J Neurol Neurosurg Psychiatry 1990; 53:200-7. [PMID: 2324752 PMCID: PMC1014128 DOI: 10.1136/jnnp.53.3.200] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The site of lesions responsible for horizontal gaze palsy and various types of internuclear ophthalmoplegia (INO) was established by identifying the common areas where the abnormal MRI signals from patients with a given ocular-motor disorder overlapped. Patients with unilateral gaze palsy had lesions in the paramedian area of the pons, including the abducens nucleus, the lateral part of the nucleus reticularis pontis caudalis and the nucleus reticularis pontis oralis. Patients with abducens nucleus lesions showed additional clinical signs of lateral rectus weakness. Lesions responsible for bilateral gaze palsy involved the pontine tegmental raphe. Since this region contains the saccadic omnipause neurons, this finding suggests that damage to omnipause cells produces slowing of saccades rather than opsoclonus, as previously proposed. All INOs, regardless of the presence of impaired abduction or convergence, had similar MRI appearances. Frequently the lesions in patients with INO, were not confined to the medial longitudinal fasciculus (MLF) but also involved neighbouring structures at the pontine and mid-brain levels. There was a statistically significant association between the clinical severity of the INO and the presence of abnormal abduction or convergence. The findings suggest that the lesions outside the MLF, which may affect abducens, gaze or convergence pathways, are responsible for the presence of features additional to INO, depending on the magnitude of functional disruption they produce.
Collapse
Affiliation(s)
- A M Bronstein
- Medical Research Council Neuro-Otology Unit, Institute of Neurology, National Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Abstract
Muscle-spindle afferents are commonly classified according to their conduction velocity. Under certain conditions such classifications may not be feasible and another form of identification is required. In this study 5 tests, comprising either quantitative or qualitative criteria, have been evaluated as a means of classifying spindle afferents. The choice of these tests was made on the basis of predicted physiological differences arising from the structural variations in the endings. Prior conditioning of the spindles was found to enhance the distinction between the two types of afferent. All the tests generated similar identifications with a maximum of 10% of afferents being classified differently by any two tests.
Collapse
Affiliation(s)
- J J Scott
- Department of Physiology, University of Leicester, U.K
| |
Collapse
|
34
|
Abstract
1. Single-unit activity was recorded with the microneurographic technique from the radial nerve of attending human subjects. During active finger movements, impulses in spindle afferents from the extensor digitorum muscle were analysed along with joint movements, size of imposed load and EMG activity of the receptor-bearing muscle. 2. In a simple motor adaptation task the subjects were requested to perform ramp-and-hold movements of prescribed amplitudes and velocities at a single metacarpo-phalangeal joint. A test run consisted of a series of movement cycles when the flexor muscle was continuously loaded with a constant torque, immediately followed by cycles when this load was abruptly decreased during the flexion movement, producing a fast stretch of the receptor-bearing muscle. The subjects' task was to strive for movements of constant velocity and particularly to minimize the effect of the disturbance. In order to allow prediction on the basis of immediately preceding cycles, the disturbance was always injected at the same angular position in a number of successive cycles. 3. Motor adaptation was manifested as a successive decrease of the perturbation amplitude, usually associated with the development of a continuous and growing EMG activity in the parent muscle and a growing reflex response of long latency (60 ms). Short-latency reflexes were not seen. 4. The main mechanism accounting for the improved performance was a co-contraction of the agonist-antagonist muscle pair during voluntary movements, producing an increased muscular stiffness. The reflex did not contribute to the motor adaptation because it was not fast enough to curtail the perturbation. 5. The development and the growth of the reflex were not due to a growing fusimotor drive during adaptation, because spindle discharge actually decreased when the reflex increased. The size of spindle response was related to the amplitude of perturbation rather than to the amplitude of the reflex. These findings suggest that reflex modifications were due to central excitability changes which paralleled the muscle contraction. 6. Spindle firing rate during active movements was generally higher in disturbed cycles compared to undisturbed cycles, indicating a higher fusimotor drive. Since muscle contraction was present mainly in the former, this finding may simply represent a case of fusimotor activation along with skeletomotor activation. No indication of an independence between the two was found. 7. The findings lend no support for the view that the size of the stretch reflex in a behavioural task is adjusted by selective changes of the fusimotor drive.
Collapse
Affiliation(s)
- N A Al-Falahe
- Department of Physiology, University of Umeå, Sweden
| | | |
Collapse
|
35
|
Abstract
The conduction velocities of muscle spindle afferent fibers have a bimodal distribution, and classifications of spindle receptors based on afferent fiber diameter have therefore divided these receptors into two groups, the well known primary and secondary endings. However, measures of spindle function that are likely to be important for kinesthetic sensibility such as dynamic response, adaptation and linear directionality (hysteresis) are distributed rather uniformly. Therefore, from this functional perspective it might be argued that muscle spindle receptors should not be subdivided at all. On the other hand, different receptors demonstrate these properties to varying degrees, and there are simple, linear correlations among log (dynamic response), log (adaptation), linear directionality and conduction velocity. Thus, the receptors can be divided into as many as 5-10 different subpopulations that differ significantly in one or more of these properties.
Collapse
|
36
|
Huhle R. Topographic studies relating distribution of Ia- and gamma-fibres in spinal cord and position of muscle spindles in cat tibialis anterior muscle. Brain Res 1985; 333:299-304. [PMID: 3158375 DOI: 10.1016/0006-8993(85)91583-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The segmental distribution of 115 Ia- and 115 paired gamma-fibres of the tibialis anterior muscle was studied in anaesthetized cats. All Ia-fibres recorded were found in the lumbar segments L6 and L7, from caudal L6 to middle L7. The paired gamma-axons were also mainly found in these parts of the spinal cord, only 7 gamma-fibres were localized in caudal L7. A total of 70% of all fibres was found in L7. Of the fibres constituting 'muscle spindle units' of the tibialis anterior 92.2% enter the same segment (a 'muscle spindle unit' is here defined as a muscle spindle with its Ia-fibres and one gamma-fibre innervating it). More than that, 88% of the afferent and efferent fibres of muscle spindle units were found in the same part of the segment. For the first time, the position of the muscle spindles was related to the location of their Ia- and gamma-fibres in the spinal cord. In general, the muscle spindles located in the proximal muscle region project to the more cranial part of the spinal cord and the muscle spindles localized distally in the muscle project to the more caudal part of the spinal cord. The topographic pattern of the muscle spindle units is discussed with respect to the topographically arranged monosynaptic reflex loop.
Collapse
|
37
|
Hulliger M, Nordh E, Vallbo AB. Discharge in muscle spindle afferents related to direction of slow precision movements in man. J Physiol 1985; 362:437-53. [PMID: 3160852 PMCID: PMC1192906 DOI: 10.1113/jphysiol.1985.sp015687] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Single-unit activity was recorded with needle electrodes in eighteen muscle spindle afferents (eleven primaries, seven secondaries) from finger extensor muscles in the radial nerve of awake human subjects. The discharge rate of the afferents was determined during precisely controlled voluntary movements. The subjects performed a standardized visual ramp-and-hold tracking task, which included very slow finger extension and flexion movements (2.5 deg/s) with an amplitude of 20 deg. Throughout the tracking task a constant torque load of small or intermediate size, i.e. less than 30% of maximum voluntary contraction force, opposed finger extension. Altogether, 131 trials were studied. For most units the discharge rate was lower during shortening compared with active position holding, and it was higher during lengthening contractions. Thus, the majority of units responded to phasic stretch during the active movements, although the size of the movement response varied considerably between units and was never large. A few units even exhibited a reversed stretch response pattern. Hence, when estimated from pooled data, movement responses of the unit sample as a whole were small, around 1 impulse/s. The over-all response pattern of an individual afferent during the tracking task was very similar between successive tests. Although the discharge rate of most units increased with the load during movements as well as during position holding, the presence as well as the magnitude of movement responses depended only little on the size of the load. However, a few afferents exhibited a stretch response pattern with small loads and a reversed stretch response pattern with larger loads. In spite of the predominant increase of afferent firing during muscle lengthening there was no systematic modulation of the discharge rate in relation to the joint angle during the active movements, either in the primary or in the secondary afferents. The present findings suggest that human muscle spindles provide information about the occurrence as well as the direction of slow isotonic movements at low velocities in a precision motor task. This is in contrast to the lack of accurate position response which has previously been demonstrated.
Collapse
|
38
|
Abstract
Distributions of 25 motor axons to 60 intrafusal muscle fibers of 10 poles of monkey spindle were reconstructed from serial 1 micron thick transverse sections of lumbrical muscles. About 44% of motor axons co-innervated two or more types of intrafusal fiber. The (dynamic) bag1 fiber shared motor innervation with the (static) bag2 or chain fibers in about 50% of spindle poles. Activation of single intrafusal fibers independent of the other fibers of the same intrafusal bundle occurs to a lesser degree in spindles of monkeys than in spindles of cats. Functional implications of this pattern of motor innervation are discussed.
Collapse
|
39
|
|
40
|
Abstract
Skeletofusimotor (beta) axons exerting a static action on spindle primary endings were identified in the peroneus brevis and tertius muscles of the cynomolgus monkey. In most of the identified static beta motor units, the extrafusal portion was of the fast-contracting fatiguable type.
Collapse
|
41
|
Nordh E, Hulliger M, Vallbo AB. The variability of inter-spike intervals of human spindle afferents in relaxed muscles. Brain Res 1983; 271:89-99. [PMID: 6883123 DOI: 10.1016/0006-8993(83)91367-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The impulse discharge in single afferent units was recorded in waking human subjects. Tungsten needle electrodes were percutaneously inserted in the left radial nerve, and activity in muscle spindle afferents from the extensor muscles of the forearm were studied while the subjects remained relaxed. Thirty-six spontaneously discharging single units were studied, 16 primaries, 10 secondaries and 10 non-classified. The regularity of afferent discharge and the shape of the inter-spike interval histograms was assessed by off-line statistical analysis of stationary segments of afferent discharge. The mean discharge rate of both primary and secondary afferents was generally low. Secondaries predominantly fired with low variability, whereas primaries showed high as well as low variability, but the median values for the two groups differed significantly. However, the individual unit values of coefficient of variation showed a considerable overlap between the two groups. The size of the coefficient of variation in the human spindle afferents was between that of de-efferented and of intact afferents in decerebrated cats. Determination of the coefficient of variation may therefore help, as a complementary criterion, to differentiate between primary and secondary afferents in man.
Collapse
|
42
|
Hulliger M, Nordh E, Vallbo AB. The absence of position response in spindle afferent units from human finger muscles during accurate position holding. J Physiol 1982; 322:167-79. [PMID: 6461756 PMCID: PMC1249663 DOI: 10.1113/jphysiol.1982.sp014030] [Citation(s) in RCA: 109] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
1. Single unit activity of muscle spindle afferents from finger extensor muscles was recorded in the radial nerve of waking human subjects. The mean discharge rate of the afferent units was determined while the receptor related finger was held at fixed angular positions of the metacarpo-phalangeal joint. 2. During a visual tracking task the subjects had to maintain specified angular positions against a load of constant torque which opposed finger extension. For each unit a comparison was made between the mean discharge rates at two angular positions which differed by 20 deg. Under such isotonic conditions the rates of afferent discharge at the two joint positions did not significantly differ, neither for the whole sample of primary, nor for that of secondary units. This was true, no matter whether the load was small or intermediate. Large loads were not tested. 3. For comparison, the passive position responses of a sample of spindle afferent units from the same muscles were studied when the finger was held in fixed positions while the muscles were voluntarily relaxed. Under these conditions a significant position sensitivity was found for both primary and secondary afferents. The mean values were 0.28 impulses/sec. deg (primaries), and 0.21 impulses/sec. deg (secondaries). 4. The absence of position response during active position holding was interpreted as a manifestation of changes in fusimotor outflow which depended on joint position and were large enough to compensate for changes in muscle length.
Collapse
|
43
|
Inoue H, Morimoto T, Kawamura Y. Response characteristics an classification of muscle spindles of the masseter muscle in the cat. Exp Neurol 1981; 74:548-60. [PMID: 7297634 DOI: 10.1016/0014-4886(81)90190-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Sakai T, Preston JB. Evidence for a transcortical reflex: primate corticospinal tract neuron responses to ramp stretch of muscle. Brain Res 1978; 159:463-7. [PMID: 103601 DOI: 10.1016/0006-8993(78)90559-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
LaMotte C. Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord. J Comp Neurol 1977; 172:529-61. [PMID: 402397 DOI: 10.1002/cne.901720308] [Citation(s) in RCA: 151] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tract of Lissauer receives small caliber dorsal root fibers in addition to axons arising from dorsal horn neurons. The termination of Lissauer's tract and dorsal root fibers was examined in the C7 segment of the rhesus monkey spinal cord. The distribution of normal dorsal root afferents was mapped by labelling the C7 dorsal root ganglion with tritiated amino acids, and then compared with the degeneration of C7 dorsal root fibers following an intradural dorsal rhizotomy. To focus on the distribution of the small afferents, the degeneration following a Lissauer tractotomy was compared with the degeneration following dorsal rhizotomy and following selected lesions involving the large afferents. The survival times following the lesions and rhizotomies were varied to facilitate identification of groups of fibers and terminals which might degenerate at different rates. Both large and small diameter dorsal root afferents were found to exhibit the same rostro-caudal topography within the dorsal horn. The C7 root axons and terminals distribute throughout the mid-C7 dorsal horn grey. Proceeding rostrally through C6, the majority of the C7 root fibers ending in laminae I-IV shift to a lateral position. Proceeding caudally through C8, the C7 root fibers shift medially. Few of the small diameter C7 afferents entering via Lissauer's tract extend above C6 or below C8. Large diameter C7 afferents, arising as dorsal column collaterals, can extend several segments above and below C7. Autoradiography revealed label in all dorsal horn laminae, the heaviest always occurring in the substantia gelatinosa. After one day, label was absent over dorsal column and Lissauer's tract axons, suggesting that the label was mainly associated with fine axonal branches or possibly terminals. After six to ten days many axons were labelled and could be traced into the dorsal and ventral horn. Degeneration from the rhizotomies and lesions, as demonstrated with Fink-Heimer and Nauta methods, depended on the survival time. No degeneration products were present before three days. The large afferents begin to degenerate within the dorsal horn after three to four days and mainly terminate in laminae IV-VI; by 12 days they can also be traced into the intermediate and ventral grey. The small afferents, which include those serving pain and temperature sensibility, arise from the tract of Lissauer and distribute to laminae I, II and III. The tract of Lissauer consists of two populations, each containing small afferents. One population degenerates at three to five days and distributes mainly to laminae II and III (substantia gelatinosa); the other degenerates around 12 days and distributes mainly to lamina I and the outer zone of II. It is suggested that the exclusive termination of the small afferents to laminae I, II and III may be correlated with certain unique histochemical properties (e.g., high substance P and high opiate receptor binding levels) of these same dorsal horn areas...
Collapse
|