1
|
Baudry M, Bi X. Revisiting the calpain hypothesis of learning and memory 40 years later. Front Mol Neurosci 2024; 17:1337850. [PMID: 38361744 PMCID: PMC10867166 DOI: 10.3389/fnmol.2024.1337850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
In 1984, Gary Lynch and Michel Baudry published in Science a novel biochemical hypothesis for learning and memory, in which they postulated that the calcium-dependent protease, calpain, played a critical role in regulating synaptic properties and the distribution of glutamate receptors, thereby participating in memory formation in hippocampus. Over the following 40 years, much work has been done to refine this hypothesis and to provide convincing arguments supporting what was viewed at the time as a simplistic view of synaptic biochemistry. We have now demonstrated that the two major calpain isoforms in the brain, calpain-1 and calpain-2, execute opposite functions in both synaptic plasticity/learning and memory and in neuroprotection/neurodegeneration. Thus, calpain-1 activation is required for triggering long-term potentiation (LTP) of synaptic transmission and learning of episodic memory, while calpain-2 activation limits the magnitude of LTP and the extent of learning. On the other hand, calpain-1 is neuroprotective while calpain-2 is neurodegenerative, and its prolonged activation following various types of brain insults leads to neurodegeneration. The signaling pathways responsible for these functions have been identified and involve local protein synthesis, cytoskeletal regulation, and regulation of glutamate receptors. Human families with mutations in calpain-1 have been reported to have impairment in motor and cognitive functions. Selective calpain-2 inhibitors have been synthesized and clinical studies to test their potential use to treat disorders associated with acute neuronal damage, such as traumatic brain injury, are being planned. This review will illustrate the long and difficult journey to validate a bold hypothesis.
Collapse
Affiliation(s)
- Michel Baudry
- Western University of Health Sciences, Pomona, CA, United States
| | | |
Collapse
|
2
|
Gall CM, Le AA, Lynch G. Sex differences in synaptic plasticity underlying learning. J Neurosci Res 2023; 101:764-782. [PMID: 33847004 PMCID: PMC10337639 DOI: 10.1002/jnr.24844] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
Although sex differences in learning behaviors are well documented, sexual dimorphism in the synaptic processes of encoding is only recently appreciated. Studies in male rodents have built upon the discovery of long-term potentiation (LTP), and acceptance of this activity-dependent increase in synaptic strength as a mechanism of encoding, to identify synaptic receptors and signaling activities that coordinate the activity-dependent remodeling of the subsynaptic actin cytoskeleton that is critical for enduring potentiation and memory. These molecular substrates together with other features of LTP, as characterized in males, have provided an explanation for a range of memory phenomena including multiple stages of consolidation, the efficacy of spaced training, and the location of engrams at the level of individual synapses. In the present report, we summarize these findings and describe more recent results from our laboratories showing that in females the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα). Moreover, in association with the additional ERα involvement, females exhibit a higher threshold for hippocampal LTP and spatial learning. We propose that the distinct LTP threshold in females contributes to as yet unappreciated sex differences in information processing and features of learning and memory.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
3
|
Omari Z, Kazunori S, Sabti M, Bejaoui M, Hafidi A, Gadhi C, Isoda H. Dietary administration of cumin-derived cuminaldehyde induce neuroprotective and learning and memory enhancement effects to aging mice. Aging (Albany NY) 2021; 13:1671-1685. [PMID: 33471781 PMCID: PMC7880363 DOI: 10.18632/aging.202516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/25/2020] [Indexed: 12/01/2022]
Abstract
Cuminaldehyde (CA) is one of the major compounds of the essential oil of Cuminum cyminum. The aim of this study was to evaluate the effects of CA on aging, specifically on spatial learning and memory. To achieve our objective, an in vitro study on SH-SY5Y cells was performed to analyze the neuroprotective effect of CA against dexamethasone using the MTT assay. An in vivo study was performed for evaluation of the spatial learning and memory using Morris water maze (MWM). RT-PCR was performed to quantify the expression of specific genes (Bdnf, Icam and ApoE) in the mice brain. The results obtained showed a neuroprotective effect of CA against dexamethasone-induced neuronal toxicity. The escape latency of CA-treated aged mice was significantly decreased as compared to the water-treated aged mice after 4 days of training in MWM. Moreover, CA treatment up-regulated the gene expression of Bdnf, Icam and ApoE, while it down-regulated the gene expression of IL-6. These findings suggest that CA has a neuroprotective effect, as well as a spatial learning and memory enhancement potential through the modulation of genes coding for neurotrophic factors and/or those implicated in the imbalance of neural circuitry and impairment of synaptic plasticity. Cuminaldehyde (CA) is one of the major compound of the essential oil of Cuminum cyminum. The aim of this study was to evaluate the effects of CA on aging, specifically on spatial learning and memory. To achieve our objective, an in vitro study on SH-SY5Y cells was performed to analyze the neuroprotective effect of CA against dexamethasone using the MTT assay. An in vivo study was performed for evaluation of the spatial learning and memory using Morris water maze (MWM). RT-PCR was performed to quantify the expression of specific genes (Bdnf, Icam and ApoE) in the mice brain. The results obtained showed a neuroprotective effect of CA against dexamethasone-induced neuronal toxicity. The escape latency of CA-treated aged mice was significantly decreased as compared to the water-treated aged mice after 4 days of training in MWM. Moreover, CA treatment up-regulated the gene expression of Bdnf, Icam and ApoE, while it down-regulated the gene expression of IL-6. These findings suggest that CA has a neuroprotective effect, as well as a spatial learning and memory enhancement potential through the modulation of genes coding for neurotrophic factors and/or those implicated in the imbalance of neural circuitry and impairment of synaptic plasticity.
Collapse
Affiliation(s)
- Zineb Omari
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Sasaki Kazunori
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Mouad Sabti
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Abdellatif Hafidi
- Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Chemseddoha Gadhi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8587, Japan
| |
Collapse
|
4
|
Zhang JJ, Haubrich J, Bernabo M, Finnie PS, Nader K. Limits on lability: Boundaries of reconsolidation and the relationship to metaplasticity. Neurobiol Learn Mem 2018; 154:78-86. [DOI: 10.1016/j.nlm.2018.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/08/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
|
5
|
Dong L, Zheng Y, Li ZY, Li G, Lin L. Modulating effects of on-line low frequency electromagnetic fields on hippocampal long-term potentiation in young male Sprague-Dawley rat. J Neurosci Res 2018; 96:1775-1785. [DOI: 10.1002/jnr.24276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments; Tianjin University; Tianjin 300072 China
- Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments; Tianjin University; Tianjin 300072 China
| | - Yu Zheng
- School of Electronics and Information Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Ze-Yan Li
- Viterbi School of Engineering; University of Southern California; Los Angeles 90007
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments; Tianjin University; Tianjin 300072 China
- Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments; Tianjin University; Tianjin 300072 China
| | - Ling Lin
- State Key Laboratory of Precision Measurement Technology and Instruments; Tianjin University; Tianjin 300072 China
- Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments; Tianjin University; Tianjin 300072 China
| |
Collapse
|
6
|
Concurrence of form and function in developing networks and its role in synaptic pruning. Nat Commun 2018; 9:2236. [PMID: 29884799 PMCID: PMC5993834 DOI: 10.1038/s41467-018-04537-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
A fundamental question in neuroscience is how structure and function of neural systems are related. We study this interplay by combining a familiar auto-associative neural network with an evolving mechanism for the birth and death of synapses. A feedback loop then arises leading to two qualitatively different types of behaviour. In one, the network structure becomes heterogeneous and dissasortative, and the system displays good memory performance; furthermore, the structure is optimised for the particular memory patterns stored during the process. In the other, the structure remains homogeneous and incapable of pattern retrieval. These findings provide an inspiring picture of brain structure and dynamics that is compatible with experimental results on early brain development, and may help to explain synaptic pruning. Other evolving networks—such as those of protein interactions—might share the basic ingredients for this feedback loop and other questions, and indeed many of their structural features are as predicted by our model. How structure and function coevolve in developing brains is little understood. Here, the authors study a coupled model of network development and memory, and find that due to the feedback networks with some initial memory capacity evolve into heterogeneous structures with high memory performance.
Collapse
|
7
|
Fauth M, Tetzlaff C. Opposing Effects of Neuronal Activity on Structural Plasticity. Front Neuroanat 2016; 10:75. [PMID: 27445713 PMCID: PMC4923203 DOI: 10.3389/fnana.2016.00075] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
The connectivity of the brain is continuously adjusted to new environmental influences by several activity-dependent adaptive processes. The most investigated adaptive mechanism is activity-dependent functional or synaptic plasticity regulating the transmission efficacy of existing synapses. Another important but less prominently discussed adaptive process is structural plasticity, which changes the connectivity by the formation and deletion of synapses. In this review, we show, based on experimental evidence, that structural plasticity can be classified similar to synaptic plasticity into two categories: (i) Hebbian structural plasticity, which leads to an increase (decrease) of the number of synapses during phases of high (low) neuronal activity and (ii) homeostatic structural plasticity, which balances these changes by removing and adding synapses. Furthermore, based on experimental and theoretical insights, we argue that each type of structural plasticity fulfills a different function. While Hebbian structural changes enhance memory lifetime, storage capacity, and memory robustness, homeostatic structural plasticity self-organizes the connectivity of the neural network to assure stability. However, the link between functional synaptic and structural plasticity as well as the detailed interactions between Hebbian and homeostatic structural plasticity are more complex. This implies even richer dynamics requiring further experimental and theoretical investigations.
Collapse
Affiliation(s)
- Michael Fauth
- Department of Computational Neuroscience, Third Institute of Physics - Biophysics, Georg-August UniversityGöttingen, Germany; Bernstein Center for Computational NeuroscienceGöttingen, Germany
| | - Christian Tetzlaff
- Bernstein Center for Computational NeuroscienceGöttingen, Germany; Max Planck Institute for Dynamics and Self-OrganizationGöttingen, Germany
| |
Collapse
|
8
|
Fernández-Fernández D, Dorner-Ciossek C, Kroker KS, Rosenbrock H. Age-related synaptic dysfunction in Tg2576 mice starts as a failure in early long-term potentiation which develops into a full abolishment of late long-term potentiation. J Neurosci Res 2015; 94:266-81. [PMID: 26629777 DOI: 10.1002/jnr.23701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/30/2015] [Accepted: 11/17/2015] [Indexed: 11/12/2022]
Abstract
Tg2576 mice are widely used to study amyloid-dependent synaptic dysfunction related to Alzheimer's disease. However, conflicting data have been reported for these mice with regard to basal transmission as well as the in vitro correlate of memory, long-term potentiation (LTP). Some studies show clear impairments, whereas others report no deficiency. The present study uses hippocampal slices from 3-, 10-, and 15-month-old wild-type (WT) and Tg2576 mice to evaluate synaptic function in each group, including experiments to investigate basal synaptic transmission, short- and long-term plasticity by inducing paired-pulse facilitation, and both early and late LTP. We show that synaptic function remains intact in hippocampal slices from Tg2576 mice at 3 months of age. However, both early and late LTP decline progressively during aging in these mice. This deterioration of synaptic plasticity starts affecting early LTP, ultimately leading to the abolishment of both forms of LTP in 15-month-old animals. In comparison, WT littermates display normal synaptic parameters during aging. Additional pharmacological investigation into the involvement of NMDA receptors and L-type voltage-gated calcium channels in LTP suggests a distinct mechanism of induction among age groups, demonstrating that both early and late LTP are differentially affected by these channels in Tg2576 mice during aging.
Collapse
Affiliation(s)
- Diego Fernández-Fernández
- Deparment of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | - Cornelia Dorner-Ciossek
- Deparment of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | - Katja S Kroker
- Deptartment of Drug Discovery Support, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| | - Holger Rosenbrock
- Deparment of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach (Riss), Germany
| |
Collapse
|
9
|
Lynch G, Cox CD, Gall CM. Pharmacological enhancement of memory or cognition in normal subjects. Front Syst Neurosci 2014; 8:90. [PMID: 24904313 PMCID: PMC4033242 DOI: 10.3389/fnsys.2014.00090] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
The possibility of expanding memory or cognitive capabilities above the levels in high functioning individuals is a topic of intense discussion among scientists and in society at large. The majority of animal studies use behavioral endpoint measures; this has produced valuable information but limited predictability for human outcomes. Accordingly, several groups are pursuing a complementary strategy with treatments targeting synaptic events associated with memory encoding or forebrain network operations. Transcription and translation figure prominently in substrate work directed at enhancement. Notably, the question of why new proteins would be needed for a now-forming memory given that learning-driven synthesis presumably occurred throughout the immediate past has been largely ignored. Despite this conceptual problem, and some controversy, recent studies have reinvigorated the idea that selective gene manipulation is a plausible route to enhancement. Efforts to improve memory by facilitating synaptic encoding of information have also progressed, in part due of breakthroughs on mechanisms that stabilize learning-related, long-term potentiation (LTP). These advances point to a reductionistic hypothesis for a diversity of experimental results on enhancement, and identify under-explored possibilities. Cognitive enhancement remains an elusive goal, in part due to the difficulty of defining the target. The popular view of cognition as a collection of definable computations seems to miss the fluid, integrative process experienced by high functioning individuals. The neurobiological approach obviates these psychological issues to directly test the consequences of improving throughput in networks underlying higher order behaviors. The few relevant studies testing drugs that selectively promote excitatory transmission indicate that it is possible to expand cortical networks engaged by complex tasks and that this is accompanied by capabilities not found in normal animals.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California Irvine, CA, USA ; Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| |
Collapse
|
10
|
Effects of exposure to an extremely low frequency electromagnetic field on hippocampal long-term potentiation in rat. Brain Res 2014; 1564:1-8. [DOI: 10.1016/j.brainres.2014.03.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 11/20/2022]
|
11
|
Kroker KS, Moreth J, Kussmaul L, Rast G, Rosenbrock H. Restoring long-term potentiation impaired by amyloid-beta oligomers: Comparison of an acetylcholinesterase inhibitior and selective neuronal nicotinic receptor agonists. Brain Res Bull 2013; 96:28-38. [DOI: 10.1016/j.brainresbull.2013.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/25/2022]
|
12
|
Johnson S, Marro J, Torres JJ. Robust short-term memory without synaptic learning. PLoS One 2013; 8:e50276. [PMID: 23349664 PMCID: PMC3551937 DOI: 10.1371/journal.pone.0050276] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
Short-term memory in the brain cannot in general be explained the way long-term memory can – as a gradual modification of synaptic weights – since it takes place too quickly. Theories based on some form of cellular bistability, however, do not seem able to account for the fact that noisy neurons can collectively store information in a robust manner. We show how a sufficiently clustered network of simple model neurons can be instantly induced into metastable states capable of retaining information for a short time (a few seconds). The mechanism is robust to different network topologies and kinds of neural model. This could constitute a viable means available to the brain for sensory and/or short-term memory with no need of synaptic learning. Relevant phenomena described by neurobiology and psychology, such as local synchronization of synaptic inputs and power-law statistics of forgetting avalanches, emerge naturally from this mechanism, and we suggest possible experiments to test its viability in more biological settings.
Collapse
Affiliation(s)
- Samuel Johnson
- Department of Mathematics, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|
13
|
Kroker KS, Rast G, Giovannini R, Marti A, Dorner-Ciossek C, Rosenbrock H. Inhibition of acetylcholinesterase and phosphodiesterase-9A has differential effects on hippocampal early and late LTP. Neuropharmacology 2012; 62:1964-74. [DOI: 10.1016/j.neuropharm.2011.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 01/19/2023]
|
14
|
Bourne JN, Harris KM. Nanoscale analysis of structural synaptic plasticity. Curr Opin Neurobiol 2011; 22:372-82. [PMID: 22088391 DOI: 10.1016/j.conb.2011.10.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 01/07/2023]
Abstract
Structural plasticity of dendritic spines and synapses is an essential mechanism to sustain long lasting changes in the brain with learning and experience. The use of electron microscopy over the last several decades has advanced our understanding of the magnitude and extent of structural plasticity at a nanoscale resolution. In particular, serial section electron microscopy (ssEM) provides accurate measurements of plasticity-related changes in synaptic size and density and distribution of key cellular resources such as polyribosomes, smooth endoplasmic reticulum, and synaptic vesicles. Careful attention to experimental and analytical approaches ensures correct interpretation of ultrastructural data and has begun to reveal the degree to which synapses undergo structural remodeling in response to physiological plasticity.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Center for Learning and Memory, Department of Neurobiology, University of Texas, Austin, TX 78712-0805, USA
| | | |
Collapse
|
15
|
Bourne JN, Harris KM. Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 2011; 21:354-73. [PMID: 20101601 DOI: 10.1002/hipo.20768] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enlargement of dendritic spines and synapses correlates with enhanced synaptic strength during long-term potentiation (LTP), especially in immature hippocampal neurons. Less clear is the nature of this structural synaptic plasticity on mature hippocampal neurons, and nothing is known about the structural plasticity of inhibitory synapses during LTP. Here the timing and extent of structural synaptic plasticity and changes in local protein synthesis evidenced by polyribosomes were systematically evaluated at both excitatory and inhibitory synapses on CA1 dendrites from mature rats following induction of LTP with theta-burst stimulation (TBS). Recent work suggests dendritic segments can act as functional units of plasticity. To test whether structural synaptic plasticity is similarly coordinated, we reconstructed from serial section transmission electron microscopy all of the spines and synapses along representative dendritic segments receiving control stimulation or TBS-LTP. At 5 min after TBS, polyribosomes were elevated in large spines suggesting an initial burst of local protein synthesis, and by 2 h only those spines with further enlarged synapses contained polyribosomes. Rapid induction of synaptogenesis was evidenced by an elevation in asymmetric shaft synapses and stubby spines at 5 min and more nonsynaptic filopodia at 30 min. By 2 h, the smallest synaptic spines were markedly reduced in number. This synapse loss was perfectly counterbalanced by enlargement of the remaining excitatory synapses such that the summed synaptic surface area per length of dendritic segment was constant across time and conditions. Remarkably, the inhibitory synapses showed a parallel synaptic plasticity, also demonstrating a decrease in number perfectly counterbalanced by an increase in synaptic surface area. Thus, TBS-LTP triggered spinogenesis followed by loss of small excitatory and inhibitory synapses and a subsequent enlargement of the remaining synapses by 2 h. These data suggest that dendritic segments coordinate structural plasticity across multiple synapses and maintain a homeostatic balance of excitatory and inhibitory inputs through local protein-synthesis and selective capture or redistribution of dendritic resources.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Center for Learning and Memory, Section of Neurobiology, Institute for Neuroscience, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
16
|
Leslie JH. Activity-regulated genes as mediators of neural circuit plasticity. Prog Neurobiol 2011; 94:223-37. [PMID: 21601615 PMCID: PMC3134580 DOI: 10.1016/j.pneurobio.2011.05.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring.
Collapse
Affiliation(s)
- Jennifer H. Leslie
- Department of Biology Picower Institute for Learning and Memory Massachusetts Institute of Technology Phone: 617-258-5241 Fax: 617-452-2249
| |
Collapse
|
17
|
Tsvetkov EA, Suderevskaya EI, Vesselkin NP. Role of long-term potentiation in mechanism of the conditioned learning. J EVOL BIOCHEM PHYS+ 2011. [DOI: 10.1134/s0022093011030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
McGeachie AB, Cingolani LA, Goda Y. Stabilising influence: integrins in regulation of synaptic plasticity. Neurosci Res 2011; 70:24-9. [PMID: 21352859 PMCID: PMC3242036 DOI: 10.1016/j.neures.2011.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 12/28/2022]
Abstract
Hebbian synaptic plasticity, such as hippocampal long-term potentiation (LTP), is thought to be important for particular types of learning and memory. It involves changes in the expression and activity of a large array of proteins, including cell adhesion molecules. The integrin class of cell adhesion molecules has been extensively studied in this respect, and appear to have a defined role in consolidating both structural and functional changes brought about by LTP. With the use of integrin inhibitors, it has been possible to identify a critical time window of several minutes after LTP induction for the participation of integrins in LTP. Altering the interactions of integrins with their ligands during this time compromises structural changes involving actin polymerisation and spine enlargement that could be required for accommodating new AMPA receptors (AMPARs). After this critical window of structural remodelling and plasticity, integrins "lock-in" and stabilise the morphological changes, conferring the requisite longevity for LTP. Genetic manipulations targeting integrin subtypes have helped identify the specific integrin subunits involved in LTP and correlate alterations in plasticity with behavioural deficits. Moreover, recent studies have implicated integrins in AMPAR trafficking and glycine receptor lateral diffusion, highlighting their multifaceted functions at the synapse.
Collapse
Affiliation(s)
- Andrew B. McGeachie
- Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | - Lorenzo A. Cingolani
- Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | - Yukiko Goda
- Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, London WC1E 6BT, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
19
|
Baudry M, Bi X, Gall C, Lynch G. The biochemistry of memory: The 26year journey of a 'new and specific hypothesis'. Neurobiol Learn Mem 2011; 95:125-33. [PMID: 21134478 PMCID: PMC3042723 DOI: 10.1016/j.nlm.2010.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/19/2010] [Indexed: 12/28/2022]
Abstract
This Special Issue of Neurobiology of Learning and Memory dedicated to Dr. Richard Thompson to celebrate his 80th birthday and his numerous contributions to the field of learning and memory gave us the opportunity to revisit the hypothesis we proposed more than 25years ago regarding the biochemistry of learning and memory. This review summarizes our early 1980s hypothesis and then describes how it was tested and modified over the years following its introduction. We then discuss the current status of the hypothesis and provide some examples of how it has led to unexpected insights into the memory problems that accompany a broad range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michel Baudry
- Neuroscience Program University of Southern California Los Angeles, CA 90089-2520
| | - Xiaoning Bi
- Department of Basic Medical Sciences COMP, Western University of Health Sciences Pomona, CA 91766
| | - Christine Gall
- Department of Anatomy and Neurobiology 837 Health Science Rd University of California at Irvine Irvine CA 92697-4291
| | - Gary Lynch
- Department of Anatomy and Neurobiology 837 Health Science Rd University of California at Irvine Irvine CA 92697-4291
- Department of Psychiatry and Human Behavior 837 Health Science Rd University of California at Irvine Irvine CA 92697-4291
| |
Collapse
|
20
|
|
21
|
Rex CS, Gavin CF, Rubio MD, Kramar EA, Chen LY, Jia Y, Huganir RL, Muzyczka N, Gall CM, Miller CA, Lynch G, Rumbaugh G. Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 2010; 67:603-17. [PMID: 20797537 PMCID: PMC2929390 DOI: 10.1016/j.neuron.2010.07.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2010] [Indexed: 01/15/2023]
Abstract
Reorganization of the actin cytoskeleton is essential for synaptic plasticity and memory formation. Presently, the mechanisms that trigger actin dynamics during these brain processes are poorly understood. In this study, we show that myosin II motor activity is downstream of LTP induction and is necessary for the emergence of specialized actin structures that stabilize an early phase of LTP. We also demonstrate that myosin II activity contributes importantly to an actin-dependent process that underlies memory consolidation. Pharmacological treatments that promote actin polymerization reversed the effects of a myosin II inhibitor on LTP and memory. We conclude that myosin II motors regulate plasticity by imparting mechanical forces onto the spine actin cytoskeleton in response to synaptic stimulation. These cytoskeletal forces trigger the emergence of actin structures that stabilize synaptic plasticity. Our studies provide a mechanical framework for understanding cytoskeletal dynamics associated with synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Christopher S. Rex
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Cristin F. Gavin
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Maria D. Rubio
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Eniko A. Kramar
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Lulu Y. Chen
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Yousheng Jia
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Richard L. Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Nicholas Muzyczka
- Department of Molecular Genetics and Microbiology; UF Genetics Institute, The University of Florida, Gainesville, FL 32610
| | - Christine M. Gall
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Courtney A. Miller
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697
| | - Gavin Rumbaugh
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
22
|
Geinisman Y. Restructuring of Synapses on Hippocampal Dendritic Spines Associated With Hippocampal LTP. Dev Neuropsychol 2010. [DOI: 10.1207/s15326942dn1603_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci 2010; 3:1. [PMID: 20162032 PMCID: PMC2821174 DOI: 10.3389/neuro.02.001.2010] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 01/15/2010] [Indexed: 12/23/2022] Open
Abstract
Since its discovery almost three decades ago, the secreted neurotrophin brain-derived neurotrophic factor (BDNF) has been firmly implicated in the differentiation and survival of neurons of the CNS. More recently, BDNF has also emerged as an important regulator of synaptogenesis and synaptic plasticity mechanisms underlying learning and memory in the adult CNS. In this review we will discuss our knowledge about the multiple intracellular signalling pathways activated by BDNF, and the role of this neurotrophin in long-term synaptic plasticity and memory formation as well as in synaptogenesis. We will show that maturation of BDNF, its cellular localization and its ability to regulate both excitatory and inhibitory synapses in the CNS may result in conflicting alterations in synaptic plasticity and memory formation. Lack of a precise knowledge about the mechanisms by which BDNF influences higher cognitive functions and complex behaviours may constitute a severe limitation in the possibility to devise BDNF-based therapeutics for human disorders of the CNS.
Collapse
Affiliation(s)
- Carla Cunha
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milan, Italy
| | | | | |
Collapse
|
24
|
Johnson S, Torres JJ, Marro J. Nonlinear preferential rewiring in fixed-size networks as a diffusion process. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:050104. [PMID: 19518399 DOI: 10.1103/physreve.79.050104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Indexed: 05/27/2023]
Abstract
We present an evolving network model in which the total numbers of nodes and edges are conserved, but in which edges are continuously rewired according to nonlinear preferential detachment and reattachment. Assuming power-law kernels with exponents alpha and beta , the stationary states which the degree distributions evolve toward exhibit a second-order phase transition-from relatively homogeneous to highly heterogeneous (with the emergence of starlike structures) at alpha=beta . Temporal evolution of the distribution in this critical regime is shown to follow a nonlinear diffusion equation, arriving at either pure or mixed power laws of exponents -alpha and 1-alpha .
Collapse
Affiliation(s)
- Samuel Johnson
- Departmento de Electromagnetismo y Física de la Materia, and Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | | | | |
Collapse
|
25
|
Ovtscharoff W, Segal M, Goldin M, Helmeke C, Kreher U, Greenberger V, Herzog A, Michaelis B, Braun K. Electron microscopic 3D-reconstruction of dendritic spines in cultured hippocampal neurons undergoing synaptic plasticity. Dev Neurobiol 2008; 68:870-6. [PMID: 18327766 DOI: 10.1002/dneu.20627] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dendritic spines are assumed to constitute the locus of neuronal plasticity, and considerable effort has been focused on attempts to demonstrate that new memories are associated with the formation of new spines. However, few studies that have documented the appearance of spines after exposure to plasticity-producing paradigms could demonstrate that a new spine is touched by a bona fida presynaptic terminal. Thus, the functional significance of plastic dendritic spine changes is not clearly understood. We have used quantitative time lapse confocal imaging of cultured hippocampal neurons before and after their exposure to a conditioning medium which activates synaptic NMDA receptors. Following the experiment the cultures were prepared for 3D electron microscopic reconstruction of visually identified dendritic spines. We found that a majority of new, 1- to 2-h-old spines was touched by presynaptic terminals. Furthermore, when spines disappeared, the parent dendrites were sometime touched by a presynaptic bouton at the site where the previously identified spine had been located. We conclude that new spines are most likely to be functional and that pruned spines can be transformed into shaft synapses and thus maintain their functionality within the neuronal network.
Collapse
Affiliation(s)
- Wladimir Ovtscharoff
- Department of Zoology/Developmental Neurobiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lynch G, Rex CS, Chen LY, Gall CM. The substrates of memory: defects, treatments, and enhancement. Eur J Pharmacol 2008; 585:2-13. [PMID: 18374328 PMCID: PMC2427007 DOI: 10.1016/j.ejphar.2007.11.082] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 09/11/2007] [Accepted: 11/29/2007] [Indexed: 12/12/2022]
Abstract
Recent work has added strong support to the long-standing hypothesis that the stabilization of both long-term potentiation and memory requires rapid reorganization of the spine actin cytoskeleton. This development has led to new insights into the origins of cognitive disorders, and raised the possibility that a diverse array of memory problems, including those associated with diabetes, reflect disturbances to various components of the same mechanism. In accord with this argument, impairments to long-term potentiation in mouse models of Huntington's disease and in middle-aged rats have both been linked to problems with modulatory factors that control actin polymerization in spine heads. Complementary to the common mechanism hypothesis is the idea of a single treatment for addressing seemingly unrelated memory diseases. First tests of the point were positive: Brain-Derived Neurotrophic Factor (BDNF), a potent activator of actin signaling cascades in adult spines, rescued potentiation in Huntington's disease mutant mice, middle-aged rats, and a mouse model of Fragile-X syndrome. A similar reversal of impairments to long-term potentiation was obtained in middle-aged rats by up-regulating BDNF production with brief exposures to ampakines, a class of drugs that positively modulate AMPA-type glutamate receptors. Work now in progress will test if chronic elevation of BDNF enhances memory in normal animals.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine CA, United States
| | | | | | | |
Collapse
|
27
|
De Roo M, Klauser P, Garcia PM, Poglia L, Muller D. Spine dynamics and synapse remodeling during LTP and memory processes. PROGRESS IN BRAIN RESEARCH 2008; 169:199-207. [PMID: 18394475 DOI: 10.1016/s0079-6123(07)00011-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While changes in the efficacy of synaptic transmission are believed to represent the physiological bases of learning mechanisms, other recent studies have started to highlight the possibility that a structural reorganization of synaptic networks could also be involved. Morphological changes of the shape or size of dendritic spines or of the organization of postsynaptic densities have been described in several studies, as well as the growth and formation following stimulation of new protrusions. Confocal in vivo imaging experiments have further revealed that dendritic spines undergo a continuous turnover and replacement process that may vary as a function of development, but can be markedly enhanced by sensory activation or following brain damage. The implications of these new aspects of plasticity for learning and memory mechanisms are discussed.
Collapse
Affiliation(s)
- M De Roo
- Department of Neuroscience, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Lauterborn JC, Rex CS, Kramár E, Chen LY, Pandyarajan V, Lynch G, Gall CM. Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J Neurosci 2007; 27:10685-94. [PMID: 17913902 PMCID: PMC6672822 DOI: 10.1523/jneurosci.2624-07.2007] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mice lacking expression of the fragile X mental retardation 1 (Fmr1) gene have deficits in types of learning that are dependent on the hippocampus. Here, we report that long-term potentiation (LTP) elicited by threshold levels of theta burst afferent stimulation (TBS) is severely impaired in hippocampal field CA1 of young adult Fmr1 knock-out mice. The deficit was not associated with changes in postsynaptic responses to TBS, NMDA receptor activation, or levels of punctate glutamic acid decarboxylase-65/67 immunoreactivity. TBS-induced actin polymerization within dendritic spines was also normal. The LTP impairment was evident within 5 min of induction and, thus, may not be secondary to defects in activity-initiated protein synthesis. Protein levels for both brain-derived neurotrophic factor (BDNF), a neurotrophin that activates pathways involved in spine cytoskeletal reorganization, and its TrkB receptor were comparable between genotypes. BDNF infusion had no effect on baseline transmission or on postsynaptic responses to theta burst stimulation, but nonetheless fully restored LTP in slices from fragile X mice. These results indicate that the fragile X mutation produces a highly selective impairment to LTP, possibly at a step downstream of actin filament assembly, and suggest a means for overcoming this deficit. The possibility of a pharmacological therapy based on these results is discussed.
Collapse
Affiliation(s)
- Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4292, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Aoto J, Ting P, Maghsoodi B, Xu N, Henkemeyer M, Chen L. Postsynaptic ephrinB3 promotes shaft glutamatergic synapse formation. J Neurosci 2007; 27:7508-19. [PMID: 17626212 PMCID: PMC6672605 DOI: 10.1523/jneurosci.0705-07.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Excitatory synapses in the CNS are formed on both dendritic spines and shafts. Recent studies show that the density of shaft synapses may be independently regulated by behavioral learning and the induction of synaptic plasticity, suggesting that distinct mechanisms are involved in regulating these two types of synapses. Although the molecular mechanisms underlying spinogenesis and spine synapse formation are being delineated, those regulating shaft synapses are still unknown. Here, we show that postsynaptic ephrinB3 expression promotes the formation of glutamatergic synapses specifically on the shafts, not on spines. Reducing or increasing postsynaptic ephrinB3 expression selectively decreases or increases shaft synapse density, respectively. In the ephrinB3 knock-out mouse, although spine synapses are normal, shaft synapse formation is reduced in the hippocampus. Overexpression of glutamate receptor-interacting protein 1 (GRIP1) rescues ephrinB3 knockdown phenotype by restoring shaft synapse density. GRIP1 knockdown prevents the increase in shaft synapse density induced by ephrinB3 overexpression. Together, our results reveal a novel mechanism for independent modulation of shaft synapses through ephrinB3 reverse signaling.
Collapse
Affiliation(s)
- Jason Aoto
- Department of Molecular and Cell Biology and
| | - Pamela Ting
- Department of Molecular and Cell Biology and
| | | | - Nanjie Xu
- Department of Developmental Biology and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Mark Henkemeyer
- Department of Developmental Biology and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Lu Chen
- Department of Molecular and Cell Biology and
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720-3200, and
| |
Collapse
|
30
|
Chen LY, Rex CS, Casale MS, Gall CM, Lynch G. Changes in synaptic morphology accompany actin signaling during LTP. J Neurosci 2007; 27:5363-72. [PMID: 17507558 PMCID: PMC6672340 DOI: 10.1523/jneurosci.0164-07.2007] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stabilization of long-term potentiation (LTP) is commonly proposed to involve changes in synaptic morphology and reorganization of the spine cytoskeleton. Here we tested whether, as predicted from this hypothesis, induction of LTP by theta-burst stimulation activates an actin regulatory pathway and alters synapse morphology within the same dendritic spines. TBS increased severalfold the numbers of spines containing phosphorylated (p) p21-activated kinase (PAK) or its downstream target cofilin; the latter regulates actin filament assembly. The PAK/cofilin phosphoproteins were increased at 2 min but not 30 s post-TBS, peaked at 7 min, and then declined. Double immunostaining for the postsynaptic density protein PSD95 revealed that spines with high pPAK or pCofilin levels had larger synapses (+60-70%) with a more normal size frequency distribution than did neighboring spines. Based on these results and simulations of shape changes to synapse-like objects, we propose that theta stimulation markedly increases the probability that a spine will enter a state characterized by a large, ovoid synapse and that this morphology is important for expression and later stabilization of LTP.
Collapse
Affiliation(s)
| | - Christopher S. Rex
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550
| | - Malcolm S. Casale
- Psychiatry and Human Behavior, University of California, Irvine, California 92697-4292, and
| | - Christine M. Gall
- Departments of Anatomy and Neurobiology and
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550
| | - Gary Lynch
- Psychiatry and Human Behavior, University of California, Irvine, California 92697-4292, and
| |
Collapse
|
31
|
Lynch G, Kramar EA, Rex CS, Jia Y, Chappas D, Gall CM, Simmons DA. Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington's disease. J Neurosci 2007; 27:4424-34. [PMID: 17442827 PMCID: PMC6672319 DOI: 10.1523/jneurosci.5113-06.2007] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Asymptomatic Huntington's disease (HD) patients exhibit memory and cognition deficits that generally worsen with age. Similarly, long-term potentiation (LTP), a form of synaptic plasticity involved in memory encoding, is impaired in HD mouse models well before motor disturbances occur. The reasons why LTP deteriorates are unknown. Here we show that LTP is impaired in hippocampal slices from presymptomatic Hdh(Q92) and Hdh(Q111) knock-in mice, describe two factors contributing to this deficit, and establish that potentiation can be rescued with brain-derived neurotrophic factor (BDNF). Baseline physiological measures were unaffected by the HD mutation, but LTP induction and, to a greater degree, consolidation were both defective. The facilitation of burst responses that normally occurs during a theta stimulation train was reduced in HD knock-in mice, as was theta-induced actin polymerization in dendritic spines. The decrease in actin polymerization and deficits in LTP stabilization were reversed by BDNF, concentrations of which were substantially reduced in hippocampus of both Hdh(Q92) and Hdh(Q111) mice. These results suggest that the HD mutation discretely disrupts processes needed to both induce and stabilize LTP, with the latter effect likely arising from reduced BDNF expression. That BDNF rescues LTP in HD knock-in mice suggests the possibility of treating cognitive deficits in asymptomatic HD gene carriers by upregulating production of the neurotrophin.
Collapse
Affiliation(s)
- Gary Lynch
- Departments of Psychiatry and Human Behavior
| | | | | | | | | | - Christine M. Gall
- Neurobiology and Behavior, and
- Anatomy and Neurobiology, University of California, Irvine, California 92617-4291
| | | |
Collapse
|
32
|
Marrone DF. Ultrastructural plasticity associated with hippocampal-dependent learning: A meta-analysis. Neurobiol Learn Mem 2007; 87:361-71. [PMID: 17174119 DOI: 10.1016/j.nlm.2006.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 10/01/2006] [Accepted: 10/02/2006] [Indexed: 11/24/2022]
Abstract
In order to develop a profile of how individual synapses in the hippocampal formation alter their structure following learning experience, a meta-analysis synthesized the available literature on morphological change following hippocampal-dependent learning. Analysis of the 132 calculated effect sizes suggest a consistent profile of morphological change in the hippocampus following learning experience. Across the hippocampal formation, dendritic complexity, spine density, and the size of perforated postsynaptic densities showed consistent increases following training. Both the density of synapses in general and perforated synapses in particular showed unique responses to training, depending on the duration of training and/or different cell layers of the hippocampal formation. Most importantly, it seems that this profile, while consistent, is small and specific--only a select few of the morphological parameters typically measured in anatomical studies of plasticity showed significant change following training. Collectively, these data suggest that the distinct electrophysiological properties of neocortical versus hippocampal synapses may be at least partially mediated by distinct morphological cascades. That is, on the basis of theory, and with the support of the current data, it seems that synaptogenesis correlates with enduring neocortical plasticity, while structural changes correlate with more transient hippocampal plasticity. To be able to state these conclusions with conviction, however, more data are needed in several key areas for continued pursuit of the morphological correlates of hippocampal-dependent learning.
Collapse
Affiliation(s)
- Diano F Marrone
- Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, Ont., Canada.
| |
Collapse
|
33
|
Lynch G, Rex CS, Gall CM. LTP consolidation: Substrates, explanatory power, and functional significance. Neuropharmacology 2007; 52:12-23. [PMID: 16949110 DOI: 10.1016/j.neuropharm.2006.07.027] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/05/2006] [Accepted: 07/17/2006] [Indexed: 12/18/2022]
Abstract
Long-term potentiation (LTP) resembles memory in that it is initially unstable and then, over about 30 min, becomes increasingly resistant to disruption. Here we present an hypothesis to account for this initial consolidation effect and consider implications that follow from it. Anatomical studies indicate that LTP is accompanied by changes in spine morphology and therefore likely involves cytoskeletal changes. Accordingly, theta bursts initiate calpain-mediated proteolysis of the actin cross-linking protein spectrin and trigger actin polymerization in spine heads, two effects indicative of cytoskeletal reorganization. Polymerization occurs within 2 min, has the same threshold as LTP, is dependent on integrins, and becomes resistant to disruption over 30 min. We propose that the stabilization of the new cytoskeletal organization, and thus of a new spine morphology, underlies the initial phase of LTP consolidation. This hypothesis helps explain the diverse array of proteins and signaling cascades implicated in LTP, as well as the often-contradictory results about contributions of particular molecules. It also provides a novel explanation for why LTP is potently modulated by factors likely to be released during theta trains (e.g., BDNF). Finally, building on evidence that normal patterns of activity reverse LTP, we suggest that consolidation provides a delay that allows brain networks to sculpt newly formed memories.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, Gillespie Neuroscience Research Facility, University of California, Irvine, CA 92697-4292, USA.
| | | | | |
Collapse
|
34
|
Bourne JN, Kirov SA, Sorra KE, Harris KM. Warmer preparation of hippocampal slices prevents synapse proliferation that might obscure LTP-related structural plasticity. Neuropharmacology 2006; 52:55-9. [PMID: 16895730 DOI: 10.1016/j.neuropharm.2006.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 06/23/2006] [Accepted: 06/27/2006] [Indexed: 10/24/2022]
Abstract
The hippocampal slice is a popular model system in which to study the cellular properties of long-term potentiation (LTP). Synaptogenesis induced by exposure to ice-cold artificial cerebrospinal fluid (ACSF), however, raises the concern that morphological correlates of LTP might be obscured, especially in mature slices. Here we demonstrate that preparation of mature hippocampal slices at room temperature (approximately 25 degrees C) maintains excellent ultrastructure and a synapse density comparable to perfusion-fixed hippocampus. These results suggest that slices prepared at room temperature might provide a better basis from which to detect LTP-related changes in synapse number and morphology.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Synapses and Cognitive Neuroscience Center, Medical College of Georgia, Augusta, GA 30912-2630, USA
| | | | | | | |
Collapse
|
35
|
Lynch G, Rex CS, Gall CM. Synaptic plasticity in early aging. Ageing Res Rev 2006; 5:255-80. [PMID: 16935034 DOI: 10.1016/j.arr.2006.03.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 03/30/2006] [Indexed: 01/25/2023]
Abstract
Studies of how aging affects brain plasticity have largely focused on old animals. However, deterioration of memory begins well in advance of old age in animals, including humans; the present review is concerned with the possibility that changes in synaptic plasticity, as found in the long-term potentiation (LTP) effect, are responsible for this. Recent results indicate that impairments to LTP are in fact present by early middle age in rats but only in certain dendritic domains. The search for the origins of these early aging effects necessarily involves ongoing analyses of how LTP is induced, expressed, and stabilized. Such work points to the conclusion that cellular mechanisms responsible for LTP are redundant and modulated both positively and negatively by factors released during induction of potentiation. Tests for causes of the localized failure of LTP during early aging suggest that the problem lies in excessive activity of a negative modulator. The view of LTP as having redundant and modulated substrates also suggests a number of approaches for reversing age-related losses. Particular attention will be given to the idea that induction of brain-derived neurotrophic factor, an extremely potent positive modulator, can be used to provide long periods of normal plasticity with very brief pharmacological interventions. The review concludes with a consideration of how the selective, regional deficits in LTP found in early middle age might be related to the global phenomenon of brain aging.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
36
|
Kramár EA, Lin B, Rex CS, Gall CM, Lynch G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc Natl Acad Sci U S A 2006; 103:5579-84. [PMID: 16567651 PMCID: PMC1459396 DOI: 10.1073/pnas.0601354103] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term potentiation (LTP), like memory, becomes progressively more resistant to disruption with time after its formation. Here we show that threshold conditions for inducing LTP cause a rapid, long-lasting increase in polymerized filamentous actin in dendritic spines of adult hippocampus. Two independent manipulations that reverse LTP disrupted this effect when applied shortly after induction but not 30 min later. Function-blocking antibodies to beta1 family integrins selectively eliminated both actin polymerization and stabilization of LTP. We propose that the initial stages of consolidation involve integrin-driven events common to cells engaged in activities that require rapid morphological changes.
Collapse
Affiliation(s)
| | - Bin Lin
- Departments of *Psychiatry and Human Behavior
| | | | - Christine M. Gall
- Anatomy and Neurobiology, and
- Neurobiology and Behavior, University of California, Irvine, CA 92697
- To whom correspondence should be addressed. E-mail:
| | - Gary Lynch
- Departments of *Psychiatry and Human Behavior
| |
Collapse
|
37
|
Morando L, Cesa R, Harvey RJ, Strata P. Spontaneous Electrical Activity and Structural Plasticity in the Mature Cerebellar Cortex. Ann N Y Acad Sci 2006; 1048:131-40. [PMID: 16154927 DOI: 10.1196/annals.1342.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Purkinje cell of the cerebellar cortex presents two distinct dendritic domains: a distal one, with spiny branchlets and a high density of spines innervated by many parallel fibers, and a proximal one, with a few clusters of spines innervated by a single climbing fiber terminal arbor. In adult rats, after 7 days of blocked electrical activity by the administration of TTX into the cerebellar parenchyma, the proximal dendritic domain of the Purkinje cell shows a remarkable growth of new spines that are innervated by parallel fibers. At the same time, the climbing fiber terminal arbor tends to become atrophic. In contrast, in the branchlets, spine density remains unmodified. These changes are reversible when TTX is removed. TTX treatment also leads to a decrease in spine size both in the branchlets and in the new spines of the proximal dendritic compartment. Spontaneous electrical activity should therefore be regarded not simply as noise, but as a significant signal for maintaining the typical profile of afferent innervation of the Purkinje cell and for preventing spines from shrinking.
Collapse
Affiliation(s)
- Laura Morando
- Rita Levi Montalcini Center for Brain Repair, Department of Neuroscience, University of Turin, Italy
| | | | | | | |
Collapse
|
38
|
Lin B, Kramár EA, Bi X, Brucher FA, Gall CM, Lynch G. Theta stimulation polymerizes actin in dendritic spines of hippocampus. J Neurosci 2005; 25:2062-9. [PMID: 15728846 PMCID: PMC6726058 DOI: 10.1523/jneurosci.4283-04.2005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been proposed that the endurance of long-term potentiation (LTP) depends on structural changes entailing reorganization of the spine actin cytoskeleton. The present study used a new technique involving intracellular and extracellular application of rhodamine-phalloidin to conventional hippocampal slices to test whether induction of LTP by naturalistic patterns of afferent activity selectively increases actin polymerization in juvenile to young adult spines. Rhodamine-phalloidin, which selectively binds to polymerized actin, was detected in perikarya and proximal dendrites of CA1 pyramidal cells that received low-frequency afferent activity but was essentially absent in spines and fine dendritic processes. Theta pattern stimulation induced LTP and caused a large (threefold), reliable increase in labeled spines and spine-like puncta in the proximal dendritic zone containing potentiated synapses. The spines frequently occurred in the absence of labeling to other structures but were also found in association with fluorescent dendritic processes. These effects were replicated (>10-fold increase in labeled spines) using extracellular applications of rhodamine-phalloidin. Increases in labeling appeared within 2 min, were completely blocked by treatments that prevent LTP induction, and occurred in slices prepared from young adult rats. These results indicate that near-threshold conditions for inducing stable potentiation cause the rapid polymerization of actin in mature spines and suggest that the effect is both sufficiently discrete to satisfy the synapse-specificity rule of LTP as well as rapid enough to participate in the initial stages of LTP consolidation.
Collapse
Affiliation(s)
- Bin Lin
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92617-1695, USA
| | | | | | | | | | | |
Collapse
|
39
|
Brunson KL, Kramár E, Lin B, Chen Y, Colgin LL, Yanagihara TK, Lynch G, Baram TZ. Mechanisms of late-onset cognitive decline after early-life stress. J Neurosci 2005; 25:9328-38. [PMID: 16221841 PMCID: PMC3100717 DOI: 10.1523/jneurosci.2281-05.2005] [Citation(s) in RCA: 373] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 08/05/2005] [Accepted: 08/15/2005] [Indexed: 12/24/2022] Open
Abstract
Progressive cognitive deficits that emerge with aging are a result of complex interactions of genetic and environmental factors. Whereas much has been learned about the genetic underpinnings of these disorders, the nature of "acquired" contributing factors, and the mechanisms by which they promote progressive learning and memory dysfunction, remain largely unknown. Here, we demonstrate that a period of early-life "psychological" stress causes late-onset, selective deterioration of both complex behavior and synaptic plasticity: two forms of memory involving the hippocampus, were severely but selectively impaired in middle-aged, but not young adult, rats exposed to fragmented maternal care during the early postnatal period. At the cellular level, disturbances to hippocampal long-term potentiation paralleled the behavioral changes and were accompanied by dendritic atrophy and mossy fiber expansion. These findings constitute the first evidence that a short period of stress early in life can lead to delayed, progressive impairments of synaptic and behavioral measures of hippocampal function, with potential implications to the basis of age-related cognitive disorders in humans.
Collapse
Affiliation(s)
- Kristen L Brunson
- Department of Anatomy/Neurobiology, University of California, Irvine, California 92697-4475, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Leite JP, Neder L, Arisi GM, Carlotti CG, Assirati JA, Moreira JE. Plasticity, synaptic strength, and epilepsy: what can we learn from ultrastructural data? Epilepsia 2005; 46 Suppl 5:134-41. [PMID: 15987268 DOI: 10.1111/j.1528-1167.2005.01021.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Central nervous system synapses have an intrinsic plastic capacity to adapt to new conditions with rapid changes in their structure. Such activity-dependent refinement occurs during development and learning, and shares features with diseases such as epilepsy. Quantitative ultrastructural studies based on serial sectioning and reconstructions have shown various structural changes associated with synaptic strength involving both dendritic spines and postsynaptic densities (PSDs) during long-term potentiation (LTP). In this review, we focus on experimental studies that have analyzed at the ultrastructural level the consequences of LTP in rodents, and plastic changes in the hippocampus of experimental models of epilepsy and human tissue obtained during surgeries for intractable temporal lobe epilepsy (TLE). Modifications in spine morphology, increases in the proportion of synapses with perforated PSDs, and formation of multiple spine boutons arising from the same dendrite are the possible sequence of events that accompany hippocampal LTP. Structural remodeling of mossy fiber synapses and formation of aberrant synaptic contacts in the dentate gyrus are common features in experimental models of epilepsy and in human TLE. Combined electrophysiological and ultrastructural studies in kindled rats and chronic epileptic animals have indicated the occurrence of seizure- and neuron loss-induced changes in the hippocampal network. In these experiments, the synaptic contacts on granule cells are similar to those described for LTP. Such changes could be associated with enhancement of synaptic efficiency and may be important in epileptogenesis.
Collapse
Affiliation(s)
- João Pereira Leite
- Department of Neurology, University of São Paulo School of Medicine at Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
41
|
Knafo S, Libersat F, Barkai E. Olfactory learning-induced morphological modifications in single dendritic spines of young rats. Eur J Neurosci 2005; 21:2217-26. [PMID: 15869518 DOI: 10.1111/j.1460-9568.2005.04041.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Learning-related morphological modifications in single dendritic spines were studied quantitatively in the brains of young Sprague-Dawley rats. We have previously shown that olfactory discrimination rule-learning results in transient physiological and morphological modifications in piriform cortex pyramidal neurons. In particular, spine density along the apical dendrites of neurons from trained rats is increased after learning. The aim of the present study was to identify and describe olfactory learning-induced modifications in the morphology of single spines along apical dendrites of the same type of neurons. By using laser-scanning confocal microscopy, we show that 3 days after training completion spines on neurons from olfactory discrimination trained rats are shorter as compared to spines on neurons from control rats. Further analysis revealed that spine shortening attributed to olfactory discrimination learning derives from shortening of spine head and not from shortening of spine neck. In addition, detailed analysis of spine head volume suggests that spines with large heads are absent after learning. As spine head size may be related to the efficacy of the synapse it bears, we suggest that modifications in spine head dimensions following olfactory rule-learning enhance the cortical network ability to enter into a 'learning mode', in which memories of new odours can be acquired rapidly and efficiently.
Collapse
Affiliation(s)
- Shira Knafo
- Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University, Beersheva, Israel
| | | | | |
Collapse
|
42
|
Ogiue-Ikeda M, Kawato S, Ueno S. Acquisition of ischemic tolerance by repetitive transcranial magnetic stimulation in the rat hippocampus. Brain Res 2005; 1037:7-11. [PMID: 15777747 DOI: 10.1016/j.brainres.2004.10.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/07/2004] [Accepted: 10/19/2004] [Indexed: 10/25/2022]
Abstract
We investigated the acquisition of ischemic tolerance in the rat hippocampus using repetitive transcranial magnetic stimulation (rTMS). Rats received 1000 pulses/day for 7 days, and the field excitatory postsynaptic potentials were measured in the hippocampal CA1. After slices were exposed to ischemic conditions, long-term potentiation (LTP) was induced. The LTP of the stimulated group was enhanced compared with the LTP of the sham control group in each ischemic condition, suggesting that rTMS has the potential to protect hippocampal function from ischemia.
Collapse
Affiliation(s)
- Mari Ogiue-Ikeda
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
43
|
Long-Term Posttetanic Changes of Synaptic Transmission and Synapse Morphology of the Pike Esox lucius Olfactory Bulb. J EVOL BIOCHEM PHYS+ 2005. [DOI: 10.1007/s10893-005-0070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Harvey RJ, Morando L, Rasetti R, Strata P. Spontaneous electrical activity and dendritic spine size in mature cerebellar Purkinje cells. Eur J Neurosci 2005; 21:1777-84. [PMID: 15869473 DOI: 10.1111/j.1460-9568.2005.04010.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous experiments have shown that in the mature cerebellum both blocking of spontaneous electrical activity and destruction of the climbing fibres by a lesion of the inferior olive have a similar profound effect on the spine distribution on the proximal dendrites of the Purkinje cells. Many new spines develop that are largely innervated by parallel fibers. Here we show that blocking electrical activity leads to a significant decrease in size of the spines on the branchlets. We have also compared the size of the spines of the proximal dendritic domain that appear during activity block and after an inferior olive lesion. In this region also, the spines in the absence of activity are significantly smaller. In the proximal dendritic domain, the new spines that develop in the absence of activity are innervated by parallel fibers and are not significantly different in size from those of the branchlets, although they are shorter. Thus, the spontaneous activity of the cerebellar cortex is necessary not only to maintain the physiological spine distribution profile in the Purkinje cell dendritic tree, but also acts as a signal that prevents spines from shrinking.
Collapse
Affiliation(s)
- Robin J Harvey
- Department of Anatomy and Structural Biology, University of Otago Medical School, Dunedin, New Zealand
| | | | | | | |
Collapse
|
45
|
Kirov SA, Goddard CA, Harris KM. Age-dependence in the homeostatic upregulation of hippocampal dendritic spine number during blocked synaptic transmission. Neuropharmacology 2005; 47:640-8. [PMID: 15458835 DOI: 10.1016/j.neuropharm.2004.07.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 07/17/2004] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
Homeostatic regulation of spine number in mature hippocampal neurons results in more dendritic spines when synaptic transmission is blocked, providing a mechanism to compensate for diminished synaptic input. It is unsettled whether blockade of synaptic transmission also elevates spine number during development. To address this question, synaptic transmission was blocked in rat hippocampal slices during critical developmental stages of spine formation at postnatal days (P) 6-P22 and compared to adults. CA1 pyramidal cells were labeled with DiI and maintained for 5 h in one of three conditions, control artificial cerebrospinal fluid (ACSF), block media containing synaptic transmission antagonists in ACSF, or block media containing synaptic transmission antagonists in a nominally calcium-free ACSF with high magnesium. Slices were fixed in mixed aldehydes, sectioned, and the lateral dendrites were imaged in stratum radiatum with confocal microscopy. Dendritic spine density was quantified per unit length of dendrite. At P6-7 there were only a few protrusions emerging from the dendrites, which were predominantly filopodia-like in appearance. At both P11-12 and P15-16 there was a mixture of dendritic spines and filopodia-like structures. By P20-22 dendritic spines predominated and spine density was about 82% of the adult level. Dendritic spine density increased during blocked synaptic transmission at P20-22 as in adults, but was unchanged during blockade at younger ages. When extracellular calcium was nominally zero, dendritic spine density further increased on P20-22 dendrites as in adults. In contrast, spine density decreased along P11-12 dendrites under the nominally zero calcium condition. Under control conditions, dendritic protrusions were longer at P6-7 than at all other ages, which did not differ from one another. When synaptic transmission was blocked, dendritic protrusions further elongated at P6-7 only. Under the nominally zero calcium condition with blocked synaptic transmission, dendritic protrusions shortened at P11-12 only. These findings reveal age-dependent changes in the manifestation of homeostatic control of dendritic spines that could be mediated by maturational changes in mechanisms regulating postsynaptic calcium.
Collapse
Affiliation(s)
- Sergei A Kirov
- Department of Neurosurgery, Human Brain Laboratory, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
46
|
Zhou Q, Homma KJ, Poo MM. Shrinkage of Dendritic Spines Associated with Long-Term Depression of Hippocampal Synapses. Neuron 2004; 44:749-57. [PMID: 15572107 DOI: 10.1016/j.neuron.2004.11.011] [Citation(s) in RCA: 792] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/10/2004] [Accepted: 10/13/2004] [Indexed: 10/26/2022]
Abstract
Activity-induced modification of neuronal connections is essential for the development of the nervous system and may also underlie learning and memory functions of mature brain. Previous studies have shown an increase in dendritic spine density and/or enlargement of spines after the induction of long-term potentiation (LTP). Using two-photon time-lapse imaging of dendritic spines in acute hippocampal slices from neonatal rats, we found that the induction of long-term depression (LTD) by low-frequency stimulation is accompanied by a marked shrinkage of spines, which can be reversed by subsequent high-frequency stimulation that induces LTP. The spine shrinkage requires activation of NMDA receptors and calcineurin, similar to that for LTD. However, spine shrinkage is mediated by cofilin, but not by protein phosphatase 1 (PP1), which is essential for LTD, suggesting that different downstream pathways are involved in spine shrinkage and LTD. This activity-induced spine shrinkage may contribute to activity-dependent elimination of synaptic connections.
Collapse
Affiliation(s)
- Qiang Zhou
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Will Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
47
|
Abstract
One of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie learning and memory formation. The past decade has seen remarkable progress in understanding changes that accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP) has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP also underlie memory consolidation, significant advances have been made in understanding cell signaling events that contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed. The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on memory/learning and LTP.
Collapse
Affiliation(s)
- M A Lynch
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland.
| |
Collapse
|
48
|
Ogiue-Ikeda M, Kawato S, Ueno S. The effect of repetitive transcranial magnetic stimulation on long-term potentiation in rat hippocampus depends on stimulus intensity. Brain Res 2004; 993:222-6. [PMID: 14642850 DOI: 10.1016/j.brainres.2003.09.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the effect of repetitive transcranial magnetic stimulation (rTMS) on long-term potentiation (LTP) in the rat hippocampus. Rats were magnetically stimulated at a rate of 1000 pulses/day for 7 days by a round coil, in which the peak magnetic fields at the center of the coil were 0.75 and 1.00 T. LTP enhancement was observed only in the 0.75-T rTMS group, while no change was observed in the 1.00-T rTMS group. These results suggest that the effect of rTMS on LTP depends on the stimulus intensity.
Collapse
Affiliation(s)
- Mari Ogiue-Ikeda
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
49
|
Gall CM, Lynch G. Integrins, synaptic plasticity and epileptogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:12-33. [PMID: 15250583 DOI: 10.1007/978-1-4757-6376-8_2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A number of processes are thought to contribute to the development of epilepsy including enduring increases in excitatory synaptic transmission, changes in GABAergic inhibition, neuronal cell death and the development of aberrant innervation patterns in part arising from reactive axonal growth. Recent findings indicate that adhesion chemistries and, most particularly, activities of integrin class adhesion receptors play roles in each of these processes and thereby are likely to contribute significantly to the cell biology underlying epileptogenesis. As reviewed in this chapter, studies of long-term potentiation have shown that integrins are important for stabilizing activity-induced increases in synaptic strength and excitability. Other work has demonstrated that seizures, and in some instances subseizure neuronal activity, modulate the expression of integrins and their matrix ligands and the activities of proteases which regulate them both. These same adhesion proteins and proteases play critical roles in axonal growth and synaptogenesis including processes induced by seizure in adult brain. Together, these findings indicate that seizures activate integrin signaling and induce a turnover in adhesive contacts and that both processes contribute to lasting changes in circuit and synaptic function underlying epileptogenesis.
Collapse
Affiliation(s)
- Christine M Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, USA
| | | |
Collapse
|
50
|
Affiliation(s)
- Raphael Lamprecht
- Center for Neural Science, New York University, 4 Washington Place, New York, New York 10003, USA
| | | |
Collapse
|