1
|
Disinhibitory gating of retinal output by transmission from an amacrine cell. Proc Natl Acad Sci U S A 2011; 108:18447-52. [PMID: 22031693 DOI: 10.1073/pnas.1107994108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inhibitory interneurons help transform the input of a neural circuit into its output. Such interneurons are diverse, and most have unknown function. To study the function of single amacrine cells in the intact salamander retina, we recorded extracellularly from a population of ganglion cells with a multielectrode array, while simultaneously recording from or injecting current into single Off-type amacrine cells that had linear responses. We measured how visual responses of the amacrine cell interacted both with other visual input to the ganglion cell and with transmission between the two cells. We found that on average, visual responses from Off-type amacrine cells inhibited nearby Off-type ganglion cells. By recording and playing back the light-driven membrane potential fluctuations of amacrine cells during white noise visual stimuli, we found that paradoxically, increasing the light-driven modulations of inhibitory amacrine cells increased the firing rate of nearby Off-type ganglion cells. By measuring the correlations and transmission between amacrine and ganglion cells, we found that, on average, the amacrine cell hyperpolarizes before the ganglion cell fires, generating timed disinhibition just before the ganglion cell spikes. In addition, we found that amacrine to ganglion cell transmission is nonlinear in that increases in ganglion cell activity produced by amacrine hyperpolarization were greater than decreases in activity produced by amacrine depolarization. We conclude that the primary mode of action of this class of amacrine cell is to actively gate the ganglion cell response by a timed release from inhibition.
Collapse
|
2
|
Abstract
Action potentials were recorded from rat retinal ganglion cell fibers in the presence of a uniform field, and the maintained discharge pattern was characterized. Spike trains recorded under ketaminexylazine. The majority of cells had multimodal interval distributions, with the first peak in the range of 25.00.97). Both ON and OFF cells show serial correlations between adjacent interspike intervals, while ON cells also showed second-order correlations. Cells with multimodal interval distribution showed a strong peak at high frequencies in the power spectra in the range of 28.9-41.4 Hz. Oscillations were present under both anesthetic conditions and persisted in the dark at a slightly lower frequency, implying that the oscillations are generated independent of any light stimulus but can be modulated by light level. The oscillation frequency varied slightly between cells of the same type and in the same eye, suggesting that multiple oscillatory generating mechanisms exist within the retina. Cells with high-frequency oscillations were described well by an integrate-and-fire model with the input consisting of Gaussian noise plus a sinusoid where the phase was jittered randomly to account for the bandwidth present in the oscillations.
Collapse
|
3
|
Vigh J, Solessio E, Morgans CW, Lasater EM. Ionic mechanisms mediating oscillatory membrane potentials in wide-field retinal amacrine cells. J Neurophysiol 2003; 90:431-43. [PMID: 12649310 DOI: 10.1152/jn.00092.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Particular types of amacrine cells of the vertebrate retina show oscillatory membrane potentials (OMPs) in response to light stimulation. Historically it has been thought the oscillations arose as a result of circuit properties. In a previous study we found that in some amacrine cells, the ability to oscillate was an intrinsic property of the cell. Here we characterized the ionic mechanisms responsible for the oscillations in wide-field amacrine cells (WFACs) in an effort to better understand the functional properties of the cell. The OMPs were found to be calcium (Ca2+) dependent; blocking voltage-gated Ca2+ channels eliminated the oscillations, whereas elevating extracellular Ca2+ enhanced them. Strong intracellular Ca2+ buffering (10 mM EGTA or bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid) eliminated any attenuation in the OMPs as well as a Ca2+-dependent inactivation of the voltage-gated Ca2+ channels. Pharmacological and immunohistochemical characterization revealed that WFACs express L- and N-type voltage-sensitive Ca2+ channels. Block of the L-type channels eliminated the OMPs, but omega-conotoxin GVIA did not, suggesting a different function for the N-type channels. The L-type channels in WFACs are functionally coupled to a set of calcium-dependent potassium (K(Ca)) channels to mediate OMPs. The initiation of OMPs depended on penitrem-A-sensitive (BK) K(Ca) channels, whereas their duration is under apamin-sensitive (SK) K(Ca) channel control. The Ca2+ current is essential to evoke the OMPs and triggering the K(Ca) currents, which here act as resonant currents, enhances the resonance as an amplifying current, influences the filtering characteristics of the cell membrane, and attenuates the OMPs via CDI of the L-type Ca2+ channel.
Collapse
Affiliation(s)
- Jozsef Vigh
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
4
|
Abstract
Nearby retinal ganglion cells often fire action potentials in near synchrony. We have investigated the circuit mechanisms that underlie these correlations by recording simultaneously from many ganglion cells in the salamander retina. During spontaneous activity in darkness, three types of correlations were distinguished: broad (firing synchrony within 40-100 ms), medium (10-50 ms), and narrow (<1 ms). When chemical synaptic transmission was blocked, the broad correlations disappeared, but the medium and narrow correlations persisted. Further analysis of the strength and time course of synchronous firing suggests that nearby ganglion cells share inputs from photoreceptors conveyed through interneurons via chemical synapses (broad correlations), share excitation from amacrine cells via electrical junctions (medium), and excite each other via electrical junctions (narrow). It appears that the firing patterns in the optic nerve are strongly shaped by electrical coupling in the inner retina.
Collapse
Affiliation(s)
- I H Brivanlou
- Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
5
|
Sakai HM, Machuca H, Korenberg MJ, Naka KI. Processing of color- and noncolor-coded signals in the gourami retina. III. Ganglion cells. J Neurophysiol 1997; 78:2034-47. [PMID: 9325371 DOI: 10.1152/jn.1997.78.4.2034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The dynamics of intracellular responses from ganglion cells, as well as that of spike discharges, were studied with the stimulus regimens and analytic procedures identical to those used to study the dynamics of the responses from horizontal and amacrine cells (,). The stimuli used were large fields of red and green light given as a pulsatile input or modulation about a mean luminance by a white-noise signal. Spike discharges evoked by a white-noise stimulus were analyzed in exactly the same manner as that used for analysis of analog responses. The canonical nature of kernels allowed us to correlate the first- and second-order components in a spike train with those of the intracellular responses from horizontal, amacrine, and ganglion cells. Both red and green stimuli given alone in darkness produced noncolor-coded responses from all ganglion cells. In the case of some cells, steady red illumination changed the polarity or waveform of the response to green light. Color-coded ganglions responded only to simultaneous color contrast. Nonlinearities recovered from intracellular responses, and spike discharges were similar to those found in responses from amacrine cells and were of two types, one characteristic of the C amacrine cells and the other characteristic of the N amacrine cells. The first-order kernels of most ganglion cells could be divided into two basic types, biphasic and triphasic. The combination of kernels of these two basic types with different polarities can produce a wide range of responses. Addition of two types of second-order nonlinearity could render color coding in this relatively simple retina as an extremely complex process. Color information appeared to be represented by the polarity, as well as the waveform, of the first-order kernel. The response dynamics is a means of transmission of color-coded information. Second-order components carry information about changes around a mean luminance regardless of the color of an input. Some spike discharges produced a well-defined cross-kernel between red and green inputs to show that a particular time sequence of red and green stimuli was detected by the retinal neuron network. The similarity between signatures of second-order kernels for both amacrine and ganglion cells indicates that signals undergo a minimal transformation in the temporal domain when they are transmitted from amacrine to ganglion cells and then transformed into a spike train. Under our experimental conditions, a single spike train carried simultaneously information about red and green inputs, as well as about linear and nonlinear components. In addition, the spike train also carries a cross-talk component. A spike train is a carrier of multiple signals. Conversely, many types of information in a stimulus are independently encoded into a spike train.
Collapse
Affiliation(s)
- H M Sakai
- Departments of Ophthalmology, New York University Medical Center, New York, New York 10016, USA
| | | | | | | |
Collapse
|
6
|
Korenberg MJ, Hunter IW. The identification of nonlinear biological systems: Volterra kernel approaches. Ann Biomed Eng 1996; 24:250-68. [PMID: 8841729 DOI: 10.1007/bf02648117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Representation, identification, and modeling are investigated for nonlinear biomedical systems. We begin by considering the conditions under which a nonlinear system can be represented or accurately approximated by a Volterra series (or functional expansion). Next, we examine system identification through estimating the kernels in a Volterra functional expansion approximation for the system. A recent kernel estimation technique that has proved to be effective in a number of biomedical applications is investigated as to running time and demonstrated on both clean and noisy data records, then it is used to illustrate identification of cascades of alternating dynamic linear and static nonlinear systems, both single-input single-output and multivariable cascades. During the presentation, we critically examine some interesting biological applications of kernel estimation techniques.
Collapse
Affiliation(s)
- M J Korenberg
- Department of Electrical and Computer Engineering, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
7
|
Korenberg MJ, Hunter IW. The identification of nonlinear biological systems: Volterra kernel approaches. Ann Biomed Eng 1996; 24:250-68. [PMID: 8678357 DOI: 10.1007/bf02667354] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Representation, identification, and modeling are investigated for nonlinear biomedical systems. We begin by considering the conditions under which a nonlinear system can be represented or accurately approximated by a Volterra series (or functional expansion). Next, we examine system identification through estimating the kernels in a Volterra functional expansion approximation for the system. A recent kernel estimation technique that has proved to be effective in a number of biomedical applications is investigated as to running time and demonstrated on both clean and noisy data records, then it is used to illustrate identification of cascades of alternating dynamic linear and static nonlinear systems, both single-input single-output and multivariable cascades. During the presentation, we critically examine some interesting biological applications of kernel estimation techniques.
Collapse
Affiliation(s)
- M J Korenberg
- Department of Electrical and Computer Engineering, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
8
|
Abstract
Responses from catfish retinal ganglion cells were evoked by a spot or an annulus of light and were analyzed by a procedure identical to the one used previously to study catfish amacrine cells (Sakai H. M., and K.-I. Naka, 1992. Journal of Neurophysiology. 67:430-442.). In two-input white-noise experiments, a response evoked by simultaneous stimulation of the center and surround was decomposed into the components generated by the center and surround through a process of cross-correlation. The center and surround responses were also decomposed into their linear and nonlinear components so that the response dynamics of the linear and nonlinear components could be measured. We found that the concentric organization of the receptive field was determined by linear components, i.e., the first-order kernels generated by the center and surround were of opposite polarity. Both the center and surround generated second-order kernels with similar signatures, i.e., the second-order components formed a monotonic receptive field. The peak response time of the first- and second-order kernels from the surround was longer by approximately 20 ms than that of the center. Except for the DC potential present in the intracellular responses, almost identical first- and second-order kernels for the center and surround were obtained from both the intracellular response and spike discharges. Thus, information on concentric organization of a receptive field is translated into spike discharges with little loss of information. A train of spike discharges carries, simultaneously, at least four kinds of information: two linear and two nonlinear components, which originate in the receptive field center and the surround. A spike train is not a simple signaling device but is a carrier of complex and multiple signals. Victor, J. D., and R. M. Shapley (1979. Journal of General Physiology. 74:671-687.) discovered similarly that, in the cat retina, static second-order nonlinearity is encoded into spike trains. Results obtained in this study support the thesis that signals generated by the preganglionic cells are translated into spike discharges without major modification and that those signals can be recovered from the spike trains (Sakuranaga, M., Y. Ando, and K.-I. Naka. 1987. Journal of General Physiology. 90:229-259.; Korenberg, M. J., H. M. Sakai, and K.-I. Naka. 1989. Journal of Neurophysiology. 61:1110-1120.). Current injection studies have shown that such signal transmission is possible (Sakai, H. M., and K.-I. Naka, 1988a. Journal of Neurophysiology. 60:1549-1567.; 1990. Journal of Neurophysiology. 63:105-119.).
Collapse
Affiliation(s)
- H M Sakai
- Department of Ophthalmology, New York University Medical Center, New York 10016, USA
| | | |
Collapse
|
9
|
Croner LJ, Purpura K, Kaplan E. Response variability in retinal ganglion cells of primates. Proc Natl Acad Sci U S A 1993; 90:8128-30. [PMID: 8367474 PMCID: PMC47301 DOI: 10.1073/pnas.90.17.8128] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The signal encoded by a sensory neuron is usually characterized as the cell's average response to repeated presentations of a stimulus. However, each stimulus presentation elicits a slightly different response. This response variability may obscure the signal represented by neural activity, but it might also be an important aspect of a neuron's message and in some instances may even serve useful function. Here we present evidence that response variability (noise) in primate retinal ganglion cells at photopic light levels is (i) independent of the amplitude of either the stimulus or the response and is therefore additive, (ii) independent of receptive field size and retinal eccentricity, and (iii) similar for all primate ganglion cells. Our results show that the primate retina maintains a uniform noise level across the entire visual field and suggest that the noise originates within the ganglion cells themselves.
Collapse
Affiliation(s)
- L J Croner
- Laboratory of Biophysics, Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|
10
|
Hensley SH, Cohen JL. Effects of serotonergic agonists and antagonists on ganglion cells in the goldfish retina. Vis Neurosci 1992; 9:353-64. [PMID: 1390393 DOI: 10.1017/s0952523800010762] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Extracellular recordings were made from the isolated goldfish retina during superfusion with various serotonergic agonists and antagonists to determine the effects of these drugs on the maintained activity and response properties of the ganglion cells. Superfusion of the retina with serotonin (25-500 microM) increased the maintained activity of OFF-center ganglion cells and decreased the maintained activity of ON-center ganglion cells. In addition, serotonin also attenuated the excitatory responses to annular stimuli, suggesting a decrease in the strength of surround input to the ganglion cells. The effects of serotonin on OFF-center ganglion cells were mimicked by the nonselective 5-HT1 agonist 5-MeOT and the 5-HT1A receptor agonist 8-OH-DPAT, while only 5-MeOT mimicked the action of serotonin on ON-center ganglion cells. The effects of exogenously applied serotonin on the ganglion cells could be blocked by the mixed 5-HT1/5-HT2 receptor antagonist methysergide but not by the 5-HT2 receptor antagonist mianserin or the dopamine receptor antagonist haloperidol. These results support previous anatomical and biochemical evidence that serotonin functions in a neurotransmitter or neuromodulatory role in the teleost retina and suggest that serotonin may be involved in modulating the maintained activity and surround input to the ganglion cells. The results also indicate that two different types of receptors may mediate the actions of serotonin in the ON and OFF pathways, respectively.
Collapse
Affiliation(s)
- S H Hensley
- Biomedical Sciences Ph. D. Program, Wright State University, Dayton, Ohio
| | | |
Collapse
|
11
|
Toyoda J, Shimbo K, Kondo H, Kujiraoka T. Push-pull modulation of ganglion cell responses of carp retina by amacrine cells. Neurosci Lett 1992; 142:41-4. [PMID: 1407715 DOI: 10.1016/0304-3940(92)90615-e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The responses of a ganglion and an amacrine cell were recorded simultaneously in the carp retina. Sinusoidal current injected into amacrine cells modulated ganglion cell discharges either in phase (excitation) or in opposite phase (inhibition). ON-center ganglion cells received excitatory inputs and OFF-center ganglion cells received inhibitory inputs from ON-center amacrine cells. They received inputs of opposite polarity from OFF-center amacrine cells. Namely, inputs from ON-center and OFF-center amacrine cells augment the responses of ON-center and OFF-center ganglion cells in a push-pull manner.
Collapse
Affiliation(s)
- J Toyoda
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | |
Collapse
|
12
|
|
13
|
Korenberg MJ, Hunter IW. The identification of nonlinear biological systems: Wiener kernel approaches. Ann Biomed Eng 1990; 18:629-54. [PMID: 2281885 DOI: 10.1007/bf02368452] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Detection, representation, and identification of nonlinearities in biological systems are considered. We begin by briefly but critically examining a well-known test of system nonlinearity, and point out that this test cannot be used to prove that a system is linear. We then concentrate on the representation of nonlinear systems by Wiener's orthogonal functional series, discussing its advantages, limitations, and biological applications. System identification through estimating the kernels in the functional series is considered in detail. An efficient time-domain method of correcting for coloring in inputs is examined and shown to result in significantly improved kernel estimates in a biologically realistic system.
Collapse
Affiliation(s)
- M J Korenberg
- Department of Electrical Engineering, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|