1
|
Ryew C, Hyun S. Does Oreum trekking exercise during 12 hours affect shock attenuation and dynamic stability between bilateral lower limbs? GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.19.04111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Al-Yahya E, Mahmoud W, Meester D, Esser P, Dawes H. Neural Substrates of Cognitive Motor Interference During Walking; Peripheral and Central Mechanisms. Front Hum Neurosci 2019; 12:536. [PMID: 30687049 PMCID: PMC6333849 DOI: 10.3389/fnhum.2018.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
Current gait control models suggest that independent locomotion depends on central and peripheral mechanisms. However, less information is available on the integration of these mechanisms for adaptive walking. In this cross-sectional study, we investigated gait control mechanisms in people with Parkinson’s disease (PD) and healthy older (HO) adults: at self-selected walking speed (SSWS) and at fast walking speed (FWS). We measured effect of additional cognitive task (DT) and increased speed on prefrontal (PFC) and motor cortex (M1) activation, and Soleus H-reflex gain. Under DT-conditions we observed increased activation in PFC and M1. Whilst H-reflex gain decreased with additional cognitive load for both groups and speeds, H-reflex gain was lower in PD compared to HO while walking under ST condition at SSWS. Attentional load in PFC excites M1, which in turn increases inhibition on H-reflex activity during walking and reduces activity and sensitivity of peripheral reflex during the stance phase of gait. Importantly this effect on sensitivity was greater in HO. We have previously observed that the PFC copes with increased attentional load in young adults with no impact on peripheral reflexes and we suggest that gait instability in PD may in part be due to altered sensorimotor functioning reducing the sensitivity of peripheral reflexes.
Collapse
Affiliation(s)
- Emad Al-Yahya
- School of Rehabilitation Sciences, The University of Jordan, Amman, Jordan.,Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Wala' Mahmoud
- Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom.,Institute for Clinical Psychology and Behavioural Neurobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Daan Meester
- Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Patrick Esser
- Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom.,Faculty of Health and Life Sciences, Centre for Movement, Occupational and Rehabilitation Sciences, OxINMAHR, Oxford Brookes University, Oxford, United Kingdom
| | - Helen Dawes
- Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom.,Faculty of Health and Life Sciences, Centre for Movement, Occupational and Rehabilitation Sciences, OxINMAHR, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
3
|
Nair PM, Phadke CP, Behrman AL. Phase dependent modulation of soleus H-reflex in healthy, non-injured individuals while walking with an ankle foot orthosis. Gait Posture 2014; 39:1086-91. [PMID: 24598077 DOI: 10.1016/j.gaitpost.2014.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/11/2014] [Accepted: 01/22/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine the dynamic modulation of the soleus H-reflex while walking with a posterior leaf spring ankle foot orthosis (PAFO). METHODS Soleus H-reflexes were evoked on randomly chosen lower limb of fourteen healthy individuals (age range of 22-36 years, 7 women) while walking on a treadmill with and without a PAFO. In order to capture excitability across the duration of the gait cycle, H-reflexes were evoked at heel strike (HS), HS+100ms, HS+200ms, HS+300ms, HS+400ms in the stance phase and at toe-off (TO), TO+100ms, TO+200ms, TO+300ms, TO+400ms in the swing phase respectively. RESULTS H-reflex excitability was significantly higher in the form of greater slope of the rise in H-reflex amplitude across the swing phase (p=0.024) and greater mean H-reflex amplitude (p=0.014) in the swing phase of walking with a PAFO. There was no change in the slope (p=0.25) or the mean amplitude of H-reflexes (p=0.22) in the stance phase of walking with a PAFO. Mean background EMG activity between the two walking conditions was not significantly different for both the tibialis anterior (p=0.69) and soleus muscles (p=0.59). CONCLUSION PAFO increased reflex excitability in the swing phase of walking in healthy individuals. Altered sensory input originating from joint, muscle and cutaneous receptors may be the underlying mechanism for greater reflex excitability. The neurophysiological effect of PAFOs on reflex modulation during walking needs to be tested in persons with neurological injury. The relationship between the sensory input and the reflex output during walking may assist in determining if there exists a neurological disadvantage of using a compensatory device such as a PAFO.
Collapse
Affiliation(s)
- Preeti M Nair
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcolm Randall VA Medical Center, Gainesville, FL, USA; School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA.
| | - Chetan P Phadke
- Upper Motorneuron Disorder Spasticity Program, West Park Healthcare Centre, Toronto, ON, Canada; Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Andrea L Behrman
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcolm Randall VA Medical Center, Gainesville, FL, USA
| |
Collapse
|
4
|
Rogers LM, Stinear JW, Lewis GN, Brown DA. Descending control to the nonparetic limb degrades the cyclic activity of paretic leg muscles. Hum Mov Sci 2011; 30:1225-44. [PMID: 21601300 DOI: 10.1016/j.humov.2011.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 11/30/2022]
Abstract
During anti-phased locomotor tasks such as cycling or walking, hemiparetic phasing of muscle activity is characterized by inappropriate early onset of activity for some paretic muscles and prolonged activity in others. Pedaling with the paretic limb alone reduces inappropriate prolonged activity, suggesting a combined influence of contralesional voluntary commands and movement-related sensory feedback. Five different non-target leg movement state conditions were performed by 15 subjects post-stroke and 15 nonimpaired controls while they pedaled with the target leg and EMG was recorded bilaterally. Voluntary engagement of the non-lesioned motor system increased prolonged paretic vastus medialis (VM) activity and increased phase-advanced rectus femoris (RF) activity. We suggest bilateral descending commands are primarily responsible for the inappropriate activity in the paretic VM during anti-phase pedaling, and contribute to the dysfunctional motor output in the paretic RF. Findings from controls suggest that even an undamaged motor system can contribute to this phenomenon.
Collapse
Affiliation(s)
- Lynn M Rogers
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering and Applied Science, Evanston, IL, USA.
| | | | | | | |
Collapse
|
5
|
de Ruiter GC, Hundza SR, Zehr EP. Phase-dependent modulation of soleus H-reflex amplitude induced by rhythmic arm cycling. Neurosci Lett 2010; 475:7-11. [PMID: 20298752 DOI: 10.1016/j.neulet.2010.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/16/2010] [Accepted: 03/09/2010] [Indexed: 11/29/2022]
Abstract
Rhythmic arm cycling is known to suppress the Hoffmann (H-) reflex amplitudes in the soleus (Sol) muscles of stationary legs. However, it has remained unclear if this suppression is modulated according to the phase of movement in the cycle path or is rather a general setting of excitability level related to rhythmic movement. In the present study we investigated the phase-dependent modulation of the Sol H-reflex induced by rhythmic arm cycling by examining reflex amplitudes at 12 phases of the arm cycle movement. Arm cycling tasks consisted of bilateral, ipsilateral and contralateral movement. Additionally, data were also sampled at 12 static arm positions mimicking those occurring during movement. H-reflexes were evoked and recorded at constant motor wave amplitudes across all conditions. Suppression of Sol H-reflex amplitude was dependent upon the phase of movement (main effect p<0.0001) during arm cycling, but not during static positioning. Results suggest that locomotor central pattern generators may contribute to the phasic reflex modulation observed in this study. The phasic modulation was more pronounced during bilateral movement, however aspects of the neural control driving this modulation were also present during ipsilateral and contralateral movement.
Collapse
Affiliation(s)
- Geoff C de Ruiter
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
6
|
Kamibayashi K, Nakajima T, Fujita M, Takahashi M, Ogawa T, Akai M, Nakazawa K. Effect of sensory inputs on the soleus H-reflex amplitude during robotic passive stepping in humans. Exp Brain Res 2010; 202:385-95. [PMID: 20044745 DOI: 10.1007/s00221-009-2145-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 12/15/2009] [Indexed: 11/30/2022]
Abstract
We investigated the modulation of the soleus (Sol) Hoffmann (H-) reflex excitability by peripheral sensory inputs during passive stepping using a robotic-driven gait orthosis in healthy subjects and spinal cord-injured patients. The Sol H-reflex was evoked at standing and at six phases during passive stepping in 40 and 100% body weight unloaded conditions. The Sol H-reflex excitability was significantly inhibited during passive stepping when compared with standing posture at each unloaded condition. During passive stepping, the H-reflex amplitude was significantly smaller in the early- and mid-swing phases than in the stance phase, which was similar to the modulation pattern previously reported for normal walking. No significant differences were observed in the H-reflex amplitude between the two unloaded conditions during passive stepping. The reflex depression observed at the early part of the swing phase during passive stepping might be attributed to the sensory inputs elicited by flexion of the hip and knee joints. The present study provides evidence that peripheral sensory inputs have a significant role in phase-dependent modulation of the Sol H-reflex during walking, and that the Sol H-reflex excitability might be less affected by load-related afferents during walking.
Collapse
Affiliation(s)
- Kiyotaka Kamibayashi
- Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Iglesias C, Nielsen JB, Marchand-Pauvert V. Speed-related spinal excitation from ankle dorsiflexors to knee extensors during human walking. Exp Brain Res 2008; 188:101-10. [PMID: 18340438 DOI: 10.1007/s00221-008-1344-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 03/03/2008] [Indexed: 11/26/2022]
Abstract
Automatic adjustments of muscle activity throughout the body are required for the maintenance of balance during human walking. One mechanism that is likely to contribute to this control is the heteronymous spinal excitation between human ankle dorsiflexors and knee extensors (CPQ-reflex). Here, we investigated the CPQ-reflex at different walking speeds (1-6 km/h) and stride frequencies (0.6-1.3 Hz) in healthy human subjects to provide further evidence of its modulation, and its role in ensuring postural stability during walking. The CPQ-reflex was small or absent at walking speeds below 2-3 km/h, then increased with walking speeds about 3-4 km/h, and reached a plateau without any further change at walking speeds from 4 to 6 km/h. The reflex showed no modulation when the stride cycle was varied at constant speed (4 km/h; short steps versus long steps). These changes were unlikely to be only caused by changes in the background EMG activity and modifications in peripheral input, and likely reflected central modulation of transmission in the involved reflex pathways as well. It is suggested that the purpose of the reflex is to ensure knee stability at moderate-to-high walking speeds.
Collapse
|
8
|
Phadke CP, Wu SS, Thompson FJ, Behrman AL. Comparison of Soleus H-Reflex Modulation After Incomplete Spinal Cord Injury in 2 Walking Environments: Treadmill With Body Weight Support and Overground. Arch Phys Med Rehabil 2007; 88:1606-13. [DOI: 10.1016/j.apmr.2007.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 06/28/2007] [Accepted: 07/17/2007] [Indexed: 11/28/2022]
|
9
|
Abstract
Locomotion results from intricate dynamic interactions between a central program and feedback mechanisms. The central program relies fundamentally on a genetically determined spinal circuitry (central pattern generator) capable of generating the basic locomotor pattern and on various descending pathways that can trigger, stop, and steer locomotion. The feedback originates from muscles and skin afferents as well as from special senses (vision, audition, vestibular) and dynamically adapts the locomotor pattern to the requirements of the environment. The dynamic interactions are ensured by modulating transmission in locomotor pathways in a state- and phase-dependent manner. For instance, proprioceptive inputs from extensors can, during stance, adjust the timing and amplitude of muscle activities of the limbs to the speed of locomotion but be silenced during the opposite phase of the cycle. Similarly, skin afferents participate predominantly in the correction of limb and foot placement during stance on uneven terrain, but skin stimuli can evoke different types of responses depending on when they occur within the step cycle. Similarly, stimulation of descending pathways may affect the locomotor pattern in only certain phases of the step cycle. Section ii reviews dynamic sensorimotor interactions mainly through spinal pathways. Section iii describes how similar sensory inputs from the spinal or supraspinal levels can modify locomotion through descending pathways. The sensorimotor interactions occur obviously at several levels of the nervous system. Section iv summarizes presynaptic, interneuronal, and motoneuronal mechanisms that are common at these various levels. Together these mechanisms contribute to the continuous dynamic adjustment of sensorimotor interactions, ensuring that the central program and feedback mechanisms are congruous during locomotion.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montreal, Quebec, Canada H3C 3J7.
| | | | | |
Collapse
|
10
|
Kido A, Tanaka N, Stein RB. Spinal excitation and inhibition decrease as humans age. Can J Physiol Pharmacol 2005; 82:238-48. [PMID: 15181462 DOI: 10.1139/y04-017] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although changes in the soleus H-reflex (an electrical analog of the tendon jerk) with age have been examined in a number of studies, some controversy remains. Also, the effect of age on inhibitory reflexes has received little attention. The purpose of this paper was to examine some excitatory and inhibitory reflexes systematically in healthy human subjects having a wide range of ages. We confirmed that both the maximum H-reflex (Hmax) and the maximum M-wave (Mmax) (from direct stimulation of motor axons) decrease gradually with age. The decrease in Hmax was larger so the Hmax/Mmax ratio decreased dramatically with age. Interestingly, the modulation of the H-reflex during walking was essentially the same at all ages, suggesting that the pathways that modulate the H-reflex amplitude during walking are relatively well preserved during the aging process. We showed for the first time that the short-latency, reciprocal inhibitory pathways from the common peroneal nerve to soleus muscle and from the tibial nerve to the tibialis anterior muscle also decreased with age, when measured as a depression of ongoing voluntary activity. These results suggest that there may be a general decrease in excitability of spinal pathways with age. Thus, the use of age-matched controls is particularly important in assessing abnormalities resulting from disorders that occur primarily in the elderly.
Collapse
Affiliation(s)
- Aiko Kido
- Centre for Neuroscience, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
11
|
Larsen B, Voigt M. Changes in the gain of the soleus H-reflex with changes in the motor recruitment level and/or movement speed. Eur J Appl Physiol 2004; 93:19-29. [PMID: 15316788 DOI: 10.1007/s00421-004-1152-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 10/26/2022]
Abstract
The behaviour of the soleus H-reflex is considered to be motor task-dependent. However, the speed of movements as well as the motor recruitment level is altered when motor tasks are changed. Therefore it is ambiguous to what extent the motor task-dependent changes found between walking and running, for example, are simply due to changes in these two parameters. The purpose of this study was to investigate how movement speed and motor recruitment level separately influence the soleus H-reflex behaviour when the motor task is unchanged. Soleus H-reflexes were elicited during pedalling at different cadences and crank loads, by which movement speed and muscle recruitment level were modified separately. The H-reflex gain was expressed as the slope of the linear relation between the reflex amplitudes and the background electromyelogram (EMG), and the reflex threshold was expressed by the intercept. The results showed a decrease in reflex gain by 54% ( P=0.001) when the speed of movement was doubled from 40 to 80 rpm (repetitions per minute) without changes in the level of soleus EMG activity. Reflex gain decreased 40% ( P=0.002) when the soleus EMG level was increased by 47% without changing the speed of movement. No significant changes were found in the reflex threshold. We conclude that as speed of movement and motor recruitment level influence the gain of the soleus H-reflex, it is significant that these two parameters are comparable before changes in H-reflexes are stated to be task-dependent.
Collapse
Affiliation(s)
- Birgit Larsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7-A2, 9220 Aalborg, Denmark.
| | | |
Collapse
|
12
|
Brooke JD. Somatosensory paths proceeding to spinal cord and brain — centripetal and centrifugal control for human movement. Can J Physiol Pharmacol 2004; 82:723-31. [PMID: 15523529 DOI: 10.1139/y04-045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The flow of fast-conducting somatosensory information proceeding from the human leg, and entering sensorimotor control processes, is modulated according to the demands of limb movement. Both centripetal (proceeding in from sensory receptor discharge) and centrifugal (proceeding out from motor control centres) convergences can cause modulation, as seen in human, dog, and cat studies. Spinal H-reflexes appear to be strongly centripetally modulated in magnitude, as do initial somatosensory-evoked potentials recorded from the scalp following transmission in fast-conducting afferents from the leg. From the brain and from locomotor pattern-generators, there is also centrifugal control onto fast-conducting somatosensory pathways from the leg, both serving spinal reflexes and ascending to the brain. One expression of the centrifugal control appears to be pattern-generator modulation of cutaneous reflexes. Centrifugal control also can be seen premovement, as spinal H-reflex facilitation. Further, it can be observed as reduction of reception at somatosensory cerebral cortex, when motor learning has occurred or when stimuli are less salient for the task. Fourteen research developments have been identified that involve the generalizability of effects, specific mechanisms, and somatosensory modulation in predictive control.Key words: feedback, feedforward, modulation, prediction, somatosensory evoked potential (SEP), H-reflex.
Collapse
Affiliation(s)
- John D Brooke
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 1233 Lands End Road, North Saanich, British Columbia V8L 5K2, Canada.
| |
Collapse
|
13
|
Caulfield B, Garrett M. Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. Clin Biomech (Bristol, Avon) 2004; 19:617-21. [PMID: 15234486 DOI: 10.1016/j.clinbiomech.2004.03.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 03/08/2004] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To identify changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. DESIGN Comparison of ground reaction force during jump landing between subjects with functional instability and healthy controls. BACKGROUND We have recently demonstrated significantly altered patterns of ankle and knee movement immediately pre- and post-impact in subjects with functional instability compared to healthy controls. We now examine the changes in timing and magnitude of forces sustained by the unstable ankle during jump landing. METHODS Fourteen subjects with unstable ankles and 10 age, sex and activity matched controls performed five single leg jumps onto a force platform whilst ground reaction forces were sampled. Timing and magnitudes of forces during the first 150 ms following impact were analysed and compared between groups. RESULTS Lateral and anterior force peaks occurred significantly earlier in subjects with functional instability. Significant differences were seen between groups' time-averaged vertical, frontal and sagittal components of ground reaction force. These ranged from 5% (frontal force) to 100% (vertical force) of body mass. These changes occur immediately post-impact and too early for reflex correction/modification. CONCLUSIONS The disordered force patterns observed in subjects with functional instability are likely to result in repeated injury due to significant increase in stress on ankle joint structures during jump landing. We suggest that they are most likely to result from deficits in feed-forward motor control. RELEVANCE These results identify the potentially injurious nature of the changes in the forces applied to the unstable ankle joint during jump landing. The timing of these changes suggests that they are caused by a motor control deficit. Treatment approaches aimed at retraining feed-forward control of ankle joint movement could succeed in restoring more normal patterns of force absorption and reduce the occurrence of repeated micro-trauma to ankle structures.
Collapse
Affiliation(s)
- Brian Caulfield
- Clinical Movement Analysis Laboratory, University College Dublin School of Physiotherapy, Mater Hospital, Dublin 7, Ireland.
| | | |
Collapse
|
14
|
Jaberzadeh S, Scutter S, Warden-Flood A, Nazeran H. Between-days reliability of H-reflexes in human flexor carpi radialis. Arch Phys Med Rehabil 2004; 85:1168-73. [PMID: 15241769 DOI: 10.1016/j.apmr.2003.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To assess between-day reliability of the latency and peak-to-peak amplitude of a technique to elicit the H-reflex and M response of the flexor carpi radialis (FCR) and the ratio of maximum H-reflex and M-response amplitude (Hmax/Mmax). DESIGN Test-retest reliability study. SETTING Electrophysiology laboratory at a university. PARTICIPANTS Fifteen consecutively recruited healthy volunteers (8 men, 7 women; age range, 22-65y). INTERVENTION Volunteers were tested on 2 separate days at the same time of day for H-reflex and M response by stimulating the median nerve in the cubital fossa in the presence of a standardized voluntary contraction of the FCR muscle. MAIN OUTCOME MEASURES Onset latencies, peak-to-peak amplitudes, and Hmax/Mmax. RESULTS Latency measurements of H-reflex and M response showed excellent reliability between days, as did the maximum amplitude of the M response. The maximum amplitudes of the H-reflex and Hmax/Mmax ratio were less reliable but still within acceptable limits. CONCLUSIONS The H-reflex and M response can be reliably elicited in the FCR. This technique provides a useful clinical tool for diagnostic purposes during the course of neurologic disorders and in preclinical and postclinical intervention studies.
Collapse
Affiliation(s)
- Shapour Jaberzadeh
- Department of Physiology, Medical School, Adelaide University, Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
15
|
Zehr EP, Carroll TJ, Chua R, Collins DF, Frigon A, Haridas C, Hundza SR, Thompson AK. Possible contributions of CPG activity to the control of rhythmic human arm movement. Can J Physiol Pharmacol 2004; 82:556-68. [PMID: 15523513 DOI: 10.1139/y04-056] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is extensive modulation of cutaneous and H-reflexes during rhythmic leg movement in humans. Mechanisms controlling reflex modulation (e.g., phase- and task-dependent modulation, and reflex reversal) during leg movements have been ascribed to the activity of spinal central pattern generating (CPG) networks and peripheral feedback. Our working hypothesis has been that neural mechanisms (i.e., CPGs) controlling rhythmic movement are conserved between the human lumbar and cervical spinal cord. Thus reflex modulation during rhythmic arm movement should be similar to that for rhythmic leg movement. This hypothesis has been tested by studying the regulation of reflexes in arm muscles during rhythmic arm cycling and treadmill walking. This paper reviews recent studies that have revealed that reflexes in arm muscles show modulation within the movement cycle (e.g., phase-dependency and reflex reversal) and between static and rhythmic motor tasks (e.g., task-dependency). It is concluded that reflexes are modulated similarly during rhythmic movement of the upper and lower limbs, suggesting similar motor control mechanisms. One notable exception to this pattern is a failure of contralateral arm movement to modulate reflex amplitude, which contrasts directly with observations from the leg. Overall, the data support the hypothesis that CPG activity contributes to the neural control of rhythmic arm movement.Key words: central pattern generator, locomotion, motor control, neural control.
Collapse
Affiliation(s)
- E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia V8W 3N4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The purpose of this paper was to study spinal inhibition during several different motor tasks in healthy human subjects. The short-latency, reciprocal inhibitory pathways from the common peroneal (CP) nerve to the soleus muscle and from the tibial nerve to the tibialis anterior muscle were studied as a depression of ongoing voluntary electromyograph (EMG) activity. First, the effect of stimulus intensity on the amount of inhibition was examined to decide an appropriate stimulation to study the task-dependent modulation of inhibition. Then, the inhibition at one level of stimulation (1.5 x motor threshold) was investigated during standing, walking, and running. The change in slope of inhibition vs. EMG level, which approximates the fraction of ongoing activity that is inhibited, decreased with CP stimulation from 0.52 during standing to 0.30 during fast walking (6 km/h) to 0.17 during running at 9 km/h. Similarly, the slope decreased with tibial nerve stimulation from 0.68 (standing) to 0.42 (fast walking) to 0.35 (running at 9 km/h). All differences, except the last one, were highly significant (P < 0.01, Student's t-test). However, the difference between walking (0.42) and running (0.36) at the same speed (6 km/h) was not significant with tibial nerve stimulation and only significant at P < 0.05 with CP nerve stimulation (0.30, 0.20). Also, the difference between standing (0.52) and slow walking (3 km/h; 0.41) with CP stimulation was not significant, but it was significant (P < 0.01) with tibial nerve stimulation (0.68, 0.49). In conclusion, our findings indicate that spinal reciprocal inhibition decreases substantially with increasing speed and only changes to a lesser extent with task.
Collapse
Affiliation(s)
- Aiko Kido
- Centre for Neuroscience, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | |
Collapse
|
17
|
Fumoto M, Komiyama T, Nishihira Y. Soleus H-reflex dynamics during fast plantarflexion in humans. J Electromyogr Kinesiol 2002; 12:367-74. [PMID: 12223169 DOI: 10.1016/s1050-6411(02)00030-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The relationship between the size of the soleus (Sol) Hoffmann (H-) reflex and the level of background (BG) electromyographic (EMG) activity was examined during plantarflexing at different force levels. The experiments were carried out on seven healthy male subjects aged 20-37 years. The subjects were asked to perform fast plantarflexion under a reaction-time condition. The amounts of contraction force were 10, 20, 50 and 80% of maximum voluntary contraction (MVC). Since the maximum size of the M-wave (Mmax) changed systematically during the plantarflexion, we tried to maintain the size of the reference M-wave, an indicator of the efficiency of the electrical stimulation, at a constant value (20% of Mmax) throughout the experiment. The size of the H-reflex was rapidly increased at the very beginning of the movement, and then it tended to decrease in the later phase of the movement. Consequently, even with the same level of BG EMG, the size of the H-reflex was always larger in the early rising phase of the EMG activity than in the later falling phase. The maximum size of the H-reflex was poorly correlated with the force exerted. In contrast, the size of the F-response was proportional to the force exerted. The non-linear relationship between the size of the H-reflex and the BG EMG suggests that the level of the presynaptic inhibition onto Ia terminals was modified depending on the required force level and during the course of the movement.
Collapse
Affiliation(s)
- Masaki Fumoto
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
18
|
Abstract
Walking the way we do is inherently unstable. Sophisticated neurological control systems are required to ensure that we progress and maintain our balance at the same time. Most of what is known about the functional organization of these neurological control systems is inferred from studies on animals. Here, I compare selected studies on the neural control of human walking with similar studies in reduced animal preparations. The simple monosynaptic reflex appears to be controlled by comparable mechanisms in walking cats and humans. However, peripheral feedback mechanisms suggested to contribute to the switch from stance to swing on the basis of experiments in reduced cat preparations have little influence during human walking. A cat whose spinal cord has been completely transected can be made to walk on a treadmill by drug injections, but such an immediate effect of pharmacological intervention is not seen in humans. However, there have been reports that pharmacological intervention can improve the walking of patients with incomplete spinal cord injury, especially when pharmacological treatment is combined with training.
Collapse
Affiliation(s)
- Charles Capaday
- Brain and Movement Laboratory, CRULRG, Departmentt of Anatomy and Physiology, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1J 2G3.
| |
Collapse
|
19
|
Pinniger GJ, Nordlund M, Steele JR, Cresswell AG. H-reflex modulation during passive lengthening and shortening of the human triceps surae. J Physiol 2001; 534:913-23. [PMID: 11483720 PMCID: PMC2278740 DOI: 10.1111/j.1469-7793.2001.00913.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The present study investigated the effects of lengthening and shortening actions on H-reflex amplitude. H-reflexes were evoked in the soleus (SOL) and medial gastrocnemius (MG) of human subjects during passive isometric, lengthening and shortening actions performed at angular velocities of 0, +/-2, +/-5 and +/-15 deg s(-1). 2. H-reflex amplitudes in both SOL and MG were significantly depressed during passive lengthening actions and facilitated during passive shortening actions, when compared with the isometric H-reflex amplitude. 3. Four experiments were performed in which the latencies from the onset of movement to delivery of the stimulus were altered. Passive H-reflex modulation during lengthening actions was found to begin at latencies of less than 60 ms suggesting that this inhibition was due to peripheral and/or spinal mechanisms. 4. It is postulated that the H-reflex modulation seen in the present study is related to the tonic discharge of muscle spindle afferents and the consequent effects of transmission within the Ia pathway. Inhibition of the H-reflex at less than 60 ms after the onset of muscle lengthening may be attributed to several mechanisms, which cannot be distinguished using the current protocol. These may include the inability to evoke volleys in Ia fibres that are refractory following muscle spindle discharge during rapid muscle lengthening, a reduced probability of transmitter release from the presynaptic terminal (homosynaptic post-activation depression) and presynaptic inhibition of Ia afferents from plantar flexor agonists. Short latency facilitation of the H-reflex may be attributed to temporal summation of excitatory postsynaptic potentials arising from muscle spindle afferents during rapid muscle lengthening. At longer latencies, presynaptic inhibition of Ia afferents cannot be excluded as a potential inhibitory mechanism.
Collapse
Affiliation(s)
- G J Pinniger
- Department of Biomedical Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | | | |
Collapse
|
20
|
Garrett M, Caulfield B. Increased H(max):M(max) ratio in community walkers poststroke without increase in ankle plantarflexion during walking. Arch Phys Med Rehabil 2001; 82:1066-72. [PMID: 11494186 DOI: 10.1053/apmr.2001.23880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate whether changes in H-reflex response at midswing and midstance are related to excessive plantarflexion during walking in community walkers poststroke compared with control subjects without stroke. DESIGN Survey of functional walking handicap in a random sample of an annual stroke cohort followed by H-reflex and M(max) testing of a smaller sample. SETTING Community and laboratory testing. PARTICIPANTS Forty individuals with stroke (IWS group) completed the functional walking handicap survey, 10 of whom agreed (with 10 age-matched controls) to enroll in a study of of the H(max):M(max) ratio in soleus during walking. INTERVENTION Electromyography during treadmill walking. MAIN OUTCOME MEASURES Functional Walking Handicap Scale, soleus H(max):M(max) ratio, and the ankle joint's angle of displacement. RESULTS Nine of the 10 stroke patients were community walkers. All had significantly (p <.05) more variable ankle movement during walking than the controls. The H(max):M(max) ratio was significantly (p <.01) increased in the IWS group because of a decrease in M(max) response without significant (p >.05) increase in H(max) response. CONCLUSIONS Individuals with community-level walking ability after stroke have significantly (p <.05) less repeatability of ankle joint movement than controls at both midswing and midstance. Simultaneous soleus H(max) and M(max) testing showed a significant (p <.01) reduction in the H(max) and H(max):M(max) ratio at midswing in controls only. This inhibition at midswing was lost by the IWS group without significant increase in H(max), suggesting that central synaptic excitability was within the normal range, and possibly accounting for the absence of excessive ankle plantarflexion during walking in the IWS group with community level walking ability.
Collapse
Affiliation(s)
- M Garrett
- Clinical Movement Analysis Laboratory, University College Dublin School of Physiotherapy, Mater Misericordiae Hospital, Dublin, Ireland.
| | | |
Collapse
|
21
|
Ferris DP, Aagaard P, Simonsen EB, Farley CT, Dyhre-Poulsen P. Soleus H-reflex gain in humans walking and running under simulated reduced gravity. J Physiol 2001; 530:167-80. [PMID: 11136869 PMCID: PMC2278388 DOI: 10.1111/j.1469-7793.2001.0167m.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by ~30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.
Collapse
Affiliation(s)
- D P Ferris
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Schneider C, Lavoie BA, Capaday C. On the origin of the soleus H-reflex modulation pattern during human walking and its task-dependent differences. J Neurophysiol 2000; 83:2881-90. [PMID: 10805685 DOI: 10.1152/jn.2000.83.5.2881] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, Brooke and colleagues have suggested "that the strong inhibition arising from passive movement about the knee and hip joints, lays down the base for the soleus H-reflex gain modulation seen during human gait." In particular stretch-evoked afferent activity from the quadriceps muscle was emphasized as the most important source of movement-induced inhibition of the H-reflex. To test this hypothesis we examined the kinematics and electromyographic (EMG) activity of the leg during human walking and correlated these with the modulation pattern of the soleus H-reflex. To further test the possible contribution of stretch-evoked quadriceps afferent activity to the soleus H-reflex modulation pattern during walking different walking gaits were studied. In one condition subjects were asked to walk with their knee locked in full extension by a rigid knee brace. In a second condition subjects were asked to walk backwards. During normal walking, the soleus H-reflex modulation pattern is strongly correlated with the EMG events of the soleus and tibialis anterior (TA), but not with hip, knee, or ankle angular displacement or velocity. When subjects walked with the knee locked in full extension, the amplitude of the H-reflex, its modulation pattern, and the task-dependent changes of its amplitude were the same as during normal walking. During backward walking, the H-reflex increases in late swing before activity of the soleus has begun and while the knee is flexing, an observation that highlights central control of the H-reflex amplitude. The effects of imposed flexion of the knee in passive subjects were also reexamined. The knee flexion imposed by the experimenter followed the same trajectory as that which occurred during the swing phase of the subject's step cycle. It was found that imposed knee flexions elicited a burst of TA EMG activity with an average latency of 81.6 ms (SD = 21 ms) in six out of eight subjects. Inhibition of the H-reflex, when it occurred, was associated with the occurrence of this burst. When subjects voluntarily flexed their right knee from an initial quiet standing posture, the inhibition of the soleus H-reflex began before flexion of the knee or that of any other leg segment. Once again the onset of inhibition was closely associated with the onset of activity in the TA. In the discussion section the present observations are examined in light of the predictions made by the movement-induced inhibition hypothesis of Brooke et al. It will be concluded that none of the predictions of this hypothesis were corroborated by present tests done during human walking. In consequence, we suggest that the modulation pattern of the H-reflex observed during normal human walking is centrally determined, as are the task-dependent differences of its amplitude (e.g., standing versus the stance phase of human walking).
Collapse
Affiliation(s)
- C Schneider
- Department of Anatomy and Physiology, Centre de Recherche Université Laval-Robert Giffard, Quebec G1J 2G3, Canada
| | | | | |
Collapse
|